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Radiomics is a converging multidisciplinary field of 
translational medicine aimed at automatic and completely 
data-centric diagnosis of any disease entity in individual 
patients using a variety of medical imaging technology 
and machine learning (ML) methodology. This usually 
entails the use of automated techniques for data processing 
and analysis followed by the application of powerful 
statistical solutions for predicting accurate diagnosis 
and prognosis on a single-subject basis. A wide array 
of computing methods have been developed for data 
reduction, feature extraction and classification. As a 
surrogate marker of synaptic activity, regional cerebral 
glucose metabolism measured with 18F-fluorodeoxyglucose 
(FDG) positron emission tomography (PET) has been 
one of most versatile and cost-effective neuroimaging 
biomarkers in the field of neurodegenerative disorders. 
Indeed, this biomarker has been widely used in the 
objective assessment of early differential diagnosis, clinical 
correlation, disease progression and therapeutic response 
in patients with Parkinson’s disease (PD) as well as with 
atypical parkinsonism (APD) including multiple system 
atrophy (MSA), progressive supranuclear palsy (PSP) and 
corticobasal degeneration (CBD) (1-5). Both regional and 
brain network biomarkers are used in clinical and research 
applications of translational medicine based on mean and 
variance information of glucose metabolism provided by 
FDG PET. It is still a challenge to distinguish PD from any 
form of APD at early clinical stages despite the tremendous 
achievements over the last decade. 

Discrimination of PD from healthy controls

A recent article on this journal reported a new method to 
discriminate early-stage patients with PD from normal 
control (NC) subjects using radiomic features extracted 
from brain FDG PET images (6). The work involved 
supervised feature selection based on texture analysis in a set 
of predetermined anatomical regions of interest alongside 
a classifier built with a support vector machine (SVM). The 
study taps into valuable diagnostic information from high-
dimensional radiomic features that reflect regional brain 
tissue heterogeneity revealed by FDG PET. The diagnostic 
performance of this method was evaluated rigorously with 
bootstrap resampling where a large cohort of PD and NC 
subjects at one center were used as training and test sets 
with five-fold cross-validation, while a small cohort of PD 
and NC subjects at another center were used as a separate 
test set. Main outcomes were the accuracy, sensitivity and 
specificity averaged across multiple runs for each of the two 
test datasets. The authors showed high diagnostic accuracy 
in comparable patients with PD at early clinical stages 
versus age- and gender-matched healthy controls from two 
medical centers.

This study has put forth several major advances in the 
development of computer aided diagnosis for PD and 
related disorders with FDG PET. The authors selected 
26 subcortical and cortical anatomical volumes of interest 
(VOIs) known to have abnormal metabolism from prior 
published studies. The matrix-based analysis resulted in 
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43 texture features, 188 wavelet features and 4 intensity 
features for each VOI. They then identified 30 independent 
radiomic features most relevant for disease discrimination 
by using autocorrelation and Fisher scoring algorithms. Of 
interest, the 10 top-ranked features were found across a set 
of relatively hypermetabolic regions of pons, cerebellum, 
pallidum and supplementary motor area (MSA) and 
relatively hypometabolic regions of inferior occipital cortex. 
In this study, three kernel (linear, sigmoid, and radial basis) 
functions were included to assess the ability of feature 
generalization and the reliability of SVM classification (6). 
The authors showed that diagnosis by the SVM classifier 
was similar among the three different kernels and improved 
slightly versus another classifier based on random forest. 
They further demonstrated with both classifiers that 
radiomic features provided superior classification compared 
to the traditional method that used features from mean 
metabolic values in these VOIs, and the combination of 
both types of features increased the diagnostic accuracy 
moderately. The latter is expected because some of these 
features were weakly correlated as predictive variables.

One important finding of this study is that some high-
frequency radiomic features in the right pons, SMA 
and cerebellum correlated positively with clinical stages 
or severity of motor symptoms and also variably with 
corresponding metabolic values in these regions in the 
combined cohort of patients with PD. Thus, the top 
discriminatory radiomic features selected by the algorithms 
captured disease-related signatures despite their weak but 
significant associations with clinical variables and abnormal 
regional metabolism. This is also not surprising given the 
prior hypothesis concerning the VOIs included in the study 
as well as the strategy underling the extraction and selection 
of diagnostic features. 

There are several areas of interest worth of further 
investigations on this topic. Firstly, decision scores 
produced for individual subjects by the SVM classifier 
appear to be a promising biomarker but this potential has 
to be fully evaluated with the same dataset for diagnostic 
use and clinical correlation. Secondly, it may be worthwhile 
to incorporate clinical stage and disease severity of patients 
in the ML models to improve the replicability across sites, 
in addition to the demographic information of individual 
subjects. Thirdly, it would be of importance to examine 
whether regionally-specific radiomic features have anything 
to do with clinical asymmetry of motor symptoms and 
subtype (i.e., akinesia, rigidity and resting tremor) rating 
scales in PD. Fourthly, the questions remain about whether 

diagnostic performance can be further enhanced by using 
ratio images compared to those of standard uptake value 
(SUV) considering that the sensitivity for detecting group 
difference in regional glucose metabolism is often increased 
with FDG PET image ratio-normalized by mean value 
in a reference region like gray matter or white matter. 
Finally, although the proposed ML techniques marginally 
outperformed the diagnostic accuracy of deep belief 
learning network, it may be more valuable to compare 
with other innovative methods like deep convoluted neural 
network demonstrating superior accuracy for early diagnosis 
of PD versus NC subjects using a more specific biomarker 
of dopaminergic dysfunction (7). 

One technical limitation of this study is that the large 
anatomical VOIs selected from the standard brain atlas are 
still primarily hypothesis-driven and may be less sensitive 
to localized metabolic alteration in PD. This was so despite 
the partial confirmation of these VOIs by the authors in 
comparison with brain mapping analysis in the large cohort 
of patients with PD and healthy controls (6). It would be 
necessary to determine whether diagnosis can be improved 
using radiomic features derived from more specific regions 
of abnormal glucose metabolism defined by voxel-wise brain 
mapping analysis with either univariate and multivariate 
models in neurodegenerative disorders (8,9). These can 
also offer disease-specific brain masks to help implement 
or refine any completely voxel-based ML algorithms for 
differential diagnosis.

Since early 2000s many studies with FDG PET images 
and voxel-based principal component analysis (PCA) have 
shown that individual patients with PD can be assessed 
reliably by elevated expression scores of a specific disease-
related metabolic pattern called PDRP, which is highly 
reproducible across multiple imaging centers worldwide 
(5,10,11). It is worth noting that subject sores of PDRP 
demonstrated much stronger clinical correlations in early 
stage PD (11,12) than those with radiomic features as 
reported in the study by the authors (6). To this end it 
would be straight-forward to compare the performance 
of discriminating PD patients from healthy controls by 
using features obtained from subject scores of PDRP in 
the Chinese population (13) and determine whether this 
network biomarker could be incorporated in the predictive 
models to further increase the diagnostic accuracy. 
Another topic of growing interest was to examine whether 
the diagnostic methods proposed by the authors could 
help predict the onset of PD in prodromal patients with 
rapid eye movement sleep behavior disorder as reported 
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previously by subject scores of PDRP (14,15).

Early differential diagnosis

In clinical practice it is less a challenge to distinguish 
patients with PD from NC subjects by itself than from 
patients with APD. Typically, patients with uncertain 
diagnosis of parkinsonian disorders at early-stage consist 
of approximately 80% with PD and 20% with APD; 
some of whom may have never been treated with any 
antiparkinsonian medications. This study revealed relatively 
high performance in diagnosis given variable clinical stage 
and disease severity in patient cohorts across both centers (6).  
Nevertheless, the finding was limited by the absence of 
APD subjects and the retrospective nature of the study. 
The authors could test the specificity of their diagnostic 
methods by simply including APD subject as an additional 
test cohort. 

Down the road the present studies could be extended to 
extract other disease-specific radiomic features associated 
with MSA, PSP and CBD. Diagnosis for each clinical 
phenotype of parkinsonism can be realized by a binary 
classification of PD versus APD and a multi-category 
classification among APD themselves. The primary premise 
of this approach is that diagnostic accuracy for PD would 
be higher by merely identifying and excluding APD. 
The performance of such a diagnosis at baseline must be 
confirmed prospectively until a final diagnosis is made after 
several years of clinical follow-up. Indeed, one study with 
FDG PET reported previously that the accuracy was high 
in discriminating PD from APD but poor for diagnosing 
each phenotype of APD with voxel-based features derived 
using relevance vector machine (16). By contrast, this 
strategy has produced superior differential diagnosis in 
terms of excellent specificity and positive predictive value 
even at early stage, by using multi-disease metabolic 
patterns as diagnostic features along with novel classification 
methods based on multivariate regression (1). The key input 
is subject scores computed in a large cohort of clinically 
undiagnosed parkinsonian subjects for metabolic brain 
networks associated specifically with PD, MSA and PSP. 
These disease-related brain networks had been identified 
previously in clinically established American patients by 
pattern recognition with supervised PCA based on brain-
wide volumetric variance information of regional glucose 
metabolism (17,18). Subsequently, this robust method for 
differential diagnosis was cross-validated prospectively in 
a completely independent cohort in India (19), and proved 

highly valuable in helping select PD patients for a successful 
multi-center clinical trial of gene therapy (20). It would be 
important to compare these methods with other related ML 
algorithms based on radiomic signatures extracted from 
independent component analysis (21) as well as partial least 
squares (22). 

One major limitation commonly seen in the design 
of supervised ML algorithms is that training is mostly 
performed using homogeneous dataset at one site followed 
by testing using mixed dataset across multiple sites. More 
rigorous cross-validation in truly independent medical 
centers is warranted in light of differences in PET camera 
systems, imaging protocols, attenuation correction methods, 
image reconstruction algorithms, and any pre- or post-
processing procedures (23,24). This will provide unique 
opportunity to refine ML models of learning and testing 
that can fully account for these technical factors as well 
as inevitable variability in patient populations and clinical 
expertise in multi-center settings. It would be necessary to 
evaluate whether prognostic outcomes can be improved by 
including baseline independent clinical variables such as 
disease profiles, medication status and chronic exposure.

Roadblock to clinical implementation 

The work described in this article represents the important 
first step prior to implementing more comprehensive 
and rigorous radiomic approaches of this kind that can 
leverage novel methods for feature extraction and adaptive 
ML algorithms in the fields of artificial intelligence and 
biostatistics decision-making. It would be more challenging 
to extend the innovative methods put forward in this 
study in the context of early and differential diagnosis 
of parkinsonism. For instance, some of the top radiomic 
features selected by the authors may be highly variable and 
not replicable in prospective and independent validation 
across multiple centers (24). Any new techniques developed 
with this approach in the future should be compared with 
the established methods that have already shown great 
promise for early differential diagnosis of PD in more 
rigorous studies.

There is still a long way to go before radiomic approaches 
can find widespread applications in clinical practice. This is 
mainly due to major deficiencies in the experimental design 
and pitfalls in the assessment methodology that limit the 
reliability and reproducibility of most ML methods (23,24). 
There is also a lack of consensus among imaging specialists 
and clinicians regarding different radiomic features and a 
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wide array of classification algorithms. This issue may be 
resolved by directly comparing different methods and using 
the same outcome measures in large samples of parkinsonian 
patients whose clinical diagnoses are uncertain initially but 
confirmed subsequently. To ensure the total impartiality of 
the outcomes in such endeavors it is essential to maintain a 
double-blind study between imaging analysts and clinicians. 
It is important to bear in mind that the maximum accuracy 
that can be achieved by any means of diagnosis will be 
limited given the heterogeneity of PD or each major form 
of APD due to clinical subtypes, genetic variants and other 
coexisting conditions (25). More concerted efforts are 
necessary on standardization, optimization and approval of 
easily accessible ML diagnostic tools in conjunction with 
aligned professional societies, government regulators and 
commercial vendors. This process can be accelerated by 
sharing databases and analytical tools in public domain, with 
the ultimate goal of achieving excellent generalizability of 
the techniques and a high degree of agreement among stake 
holders.

Going forwards there is an urgent need to develop 
standardized radiomics methodology and diagnostic 
criteria based on prospective national and international 
clinical trials in real world patients suspected to have 
any form of parkinsonian disorders, with longitudinal 
evaluation of eventual clinical outcomes and preferably 
with pathologic confirmation (1). It would be of greater 
value to improve diagnostic accuracy by combining 
unique features corresponding to region- or network-
based imaging biomarkers with FDG PET. There is also 
general consensus that accuracy for early and differential 
diagnosis can be further enhanced by including any 
addit ional  demographic and cl inical  information 
available. Ultimately, such collective endeavors in 
the field will establish the true accuracy and error 
bounds of differential diagnosis in light of inherent 
and sometimes large variability in both biomarkers 
and clinical examination. The continued improvement 
in the performance of advanced ML diagnostic tools 
would promote the delivery of personalized medicine 
in parkinsonism and optimize the subject selection in 
clinical trials of targeted therapies. 
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