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Background: As the booming of deep learning era, especially the advances in convolutional neural 
networks (CNNs), CNNs have been applied in medicine fields like radiology and pathology. However, 
the application of CNNs in dermatology, which is also based on images, is very limited. Inflammatory skin 
diseases, such as psoriasis (Pso), eczema (Ecz), and atopic dermatitis (AD), are very easily to be mis-diagnosed 
in practice. 
Methods: Based on the EfficientNet-b4 CNN algorithm, we developed an artificial intelligence dermatology 
diagnosis assistant (AIDDA) for Pso, Ecz & AD and healthy skins (HC). The proposed CNN model was 
trained based on 4,740 clinical images, and the performance was evaluated on experts-confirmed clinical images 
grouped into 3 different dermatologist-labelled diagnosis classifications (HC, Pso, Ecz & AD). 
Results: The overall diagnosis accuracy of AIDDA is 95.80%±0.09%, with the sensitivity of 
94.40%±0.12% and specificity 97.20%±0.06%. AIDDA showed accuracy for Pso is 89.46%, with sensitivity 
of 91.4% and specificity of 95.48%, and accuracy for AD & Ecz 92.57%, with sensitivity of 94.56% and 
specificity of 94.41%. 
Conclusions: AIDDA is thus already achieving an impact in the diagnosis of inflammatory skin diseases, 
highlighting how deep learning network tools can help advance clinical practice.
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Introduction

Inflammatory skin diseases refer to the skin disorder 
involving inflammatory cell infiltration and inflammatory 
cytokine dramatically elevated. Inflammatory skin diseases 
affect more than 1/5 human population in the worldwide. 
Inflammatory skin diseases include psoriasis (Pso), eczema 
(Ecz), and atopic dermatitis (AD), etc. Dermatologists 

usually diagnose these diseases by “first impression” and 
then follow pathological analysis and laboratory tests to 
confirm the “first impression”. However, less experienced 
dermatologists and young dermatologists are particularly 
susceptible to errors since Pso, Ecz and AD are very easily 
to be misdiagnosed (Figure 1). To solve this problem and 
assist dermatologists, in this study, we developed an end-
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Figure 1 The images for Pso, AD, and Ecz. Pso, psoriasis; Ecz, eczema; AD, atopic dermatitis.

to-end deep learning model, which is based on clinical skin 
images, for automated diagnosis of Pso, Ecz and AD.

Convolutional neural networks (CNNs) have shown great 
power for the analysis of clinical images, and an increasing 
number of studies have reported promising results for 
CNNs in a variety of diseases. For example, CNNs have 
been applied to assist in the early diagnosis and detection 
of Alzheimer disease from brain electroencephalogram 
(EGG) spectral images and MRIs (1,2), to predict the 
risk of osteoarthritis from knee cartilage MRIs (3), for 
segmentation of multiple sclerosis lesions from multi-
channel 3D MRIs (4), to diagnosis breast nodules and 
lesions from ultrasound images (5), and for the detection of 
diabetic retinopathy from retinal fundus photographs (6).

The development of CNNs in dermatology stem from 
the development of pioneering technologies for assisting 
in melanoma diagnosis (7,8). There are now multiple 
examples of AI tools facilitating cancer diagnosis based on 
data input from dermoscopes and from histological images 
of skin biopsy tissues (9-11). However, to the best of our 
knowledge, we are unaware of any applications of AI tools 
to assist in diagnosing skin diseases other than cancers. 

Here, we report our development of a smartphone-based 
platform to assist the Pso, Ecz and AD diagnosis. In our 
study, Ecz and AD were assigned into one group based on 
the fact that these two diseases cannot be distinguished 
by their appearance solely but by the combination of 
laboratory test results and disease history (12).

Methods

Dataset

Our dataset (all images) comes from clinical images from 
the Department of Dermatology, The Second Xiangya 
Hospital, Central South University, China. 

Data preparation

Our dataset contains sets of images corresponding to the 
same lesion but from multiple viewpoints, or multiple 
images of similar lesions on the same person. While this 
is useful for training, extensive care needs to be taken to 
ensure that these sets are not split between the training and 
validation sets. Considering the size of our datasets, we use 
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five-fold cross-validation to validate the effectiveness of 
our algorithm. In each fold, the validation set is a randomly 
chosen subset that contains around 20% of the cases. All 
images used in training and validation have been double 
checked and confirmed by experienced dermatologists 
(shown in Table 1).

All images are processed with the following procedures 
before they are stored in the database and for further 
experiments:

Step 1: data cleaning
Firstly, the originally collected images get managed into cases for 
future use. All the review and examination work (for example, 
delete duplicate case and remove blur/far-away images) will be 
executed by case instead of individual image after this step. 

Step 2: data structuring and standardization
Secondly, the information of these cases need to be 
managed properly by an established structure and labeled 
with uniformed description language. We set a series 
standard description for both images and cases from 
different dimensions.

For each case, we set three parts of information to 
describe the case in detail. 
	Upload information: including name of who, date, 

and how to upload this case and which organization it 
belongs to, etc.

	Case information: including case number/patient ID/
patient name/gender/original diagnosis, etc.

	Review information: including review status and 
which expert give the final diagnosis.

For individual image, besides the case information, we 
also set two parts of information exclusively to describe the 
image in detail. 
	Disease information: including lesion description appear 

on each image and remark record from physicians, etc.

	Picture information: including picture type, Secure 
Hash Algorithm 1 (SHA-1) number for each image, 
shooting time, picture size, etc.

Implementation details

We implemented our model with Pytorch 1.1. Our training 
and validation process was conducted via an 18 Core Intel® 
Xeon® CPU E5-2697 and 4 RTX 2080Ti NVIDIA GPUs.

Training algorithm

We utilized Google’s EfficientNet-b4 with pre-trained 
weights on ImageNet which achieved a 96.3% top-5 accuracy 
on the 2015 ImageNet dataset with 1,000 object categories 
of about 1.28 million images (13). The final fully-connected 
classification layer was replaced by with 3 output neurons. 
Besides, we also added 7 auxiliary classifiers at the end of 
each intermediate layer to make the model learn classification 
information from different levels of features. The modified 
model was retrained with our own dataset consisting of  
4,740 dermatoscope images categorized in 3 classes.

Our modified EfficientNet-b4 architecture is shown in 
Figure 2. Data flow is from left to right: a skin image is put 
into the network and finally transformed into a probability 
distribution over clinical classes of skin disease using our 
modified EfficientNet-b4 architecture.

The deep learning framework of our network is 
implemented via using Pytorch. A global learning rate of 
0.01 is used initially and it decays by 0.1 every 20 epochs. 
We use mini-batch gradient descent with momentum 0.9 as 
model parameters optimizer. During training, each image 
is resized to 380×380 pixels in RGB channels which is the 
optimized input size of EfficientNet-b4. For each epoch, 
each image will be rotated from −30 degrees to 30 degrees 
randomly, together with 50% probabilities for vertical and 

Table 1 The images for 3 categories

Categories
Fold_1 (Cases/images) Fold_2 (Cases/images) Fold_3 (Cases/images) Fold_4 (Cases/images) Fold_5 (Cases/images)

T V T V T V T V T V

Pso 532/715 133/157 532/698 133/174 532/708 133/164 532/662 133/210 532/705 133/167

AD & Ecz 759/2,617 190/709 759/2,751 190/575 759/2,646 190/680 759/2,672 190/654 759/2,618 189/708

Healthy –/433 –/109 –/433 –/109 –/434 –/108 –/434 –/108 –/434 –/108

Total 1,291/3,765 323/975 1,291/3,882 323/858 1,291/3,788 323/952 1,291/3,768 323/972 1,291/3,757 323/983

Pso, psoriasis; Ecz, eczema; AD, atopic dermatitis; T, training; V, validation.
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Figure 2 Smartphone platform and deep learning CNN layout. (A) The smartphone platform workflow for AIDDA. (B) The 
EfficientNet-b4 architecture was applied in our training and validation. CNN, convolutional neural network; AIDDA, artificial intelligence 
dermatology diagnosis assistant.

horizontal flipping.

ROC curve

We draw ROC curves with sensitivity as x-axis and 
specificity as y-axis as shown in Figure 3A, which shows the 
average performance of the five-fold models on the entire 

dataset. ROC curves represent the relation between true 
positive rate (TPR) and false positive rate (FPR). The area 
under the raw current curves (AUC) is obtained to reflect 
the overall accuracy of each model. Though the AUC of 
these different model is similar, our model has advantage in 
high sensitivity range.

TPR = true positive/true positive + false negative = sensitivity
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Figure 3 Performance of CNNs for the validation. (A) ROC curves with sensitivity as x-axis and specificity as y-axis. The ROC curves and 
the AUC value of our model, Inception V3, SE_ResNet101, and SE_ResNeXt101-32x4d have been shown. (B) The accuracy, specificity 
and sensitivity of the validation task results are shown in the following table (n=50); Acc, accuracy; Sen, sensitivity; Spe, specificity; CNN, 
convolutional neural network; AUC, area under the raw current curves.

FPR = false positive/false positive + true negative = 1− specificity

Inference algorithm

The raw output of our classifiers (7 auxiliary classifiers plus 
1 final classifier) is summarized by 3 classification neurons. 
And then argmax is used to find the most likely classification 
of the input image. The formula is as follows:

_

1

( )
Classifiers number

i
i

classification argmax output
=

= ∑
Where outputi is a 3-dimensional classification vector, 

and the sum of 8 classification vectors is the element-wise 
sum.

The formula of sensitivity, specificity and accuracy

Sensitivity = true positive/positive

Specificity = true negative/negative
Accuracy = (true positive + true negative)/(positive + negative)

In multi categories, sensitivity and accuracy is more 
important to show. 

Confusion matrices

The confusion matrix of our method over the 3 classes of 
validation strategy. Confusion matrices for the CNN for the 
test task reveal that CNN confuses AD & Ecz with Pso.

Use of human subjects

All human studies were approved by the ethics committee of 
the Second Xiangya Hospital of Central South University 
(No. GF2017040177). All human subjects took our tests 
under informed consent. Written informed consent was 
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obtained from the patients for publication of this study and 
any accompanying images. A copy of the written consent is 
available for review by the Editor-in-Chief of this journal.

Results

The preparation of artificial intelligence dermatology 
diagnosis assistant (AIDDA)

This platform, AIDDA (Figure 2A), has image-based 
diagnost ic  funct ional i ty  based on a  CNN model 
EfficientNet (https://github.com/lukemelas/EfficientNet-
PyTorch.git).  EfficientNets are a family of image 
classification models, developed based on AutoML and 
compound scaling. A simple yet higly effective compound 
scaling method is proposed to scale up a mobile-
size baseline network for better performance while 
maintaining its efficiency. EfficientNets achieve state-
of the art accuracy on ImageNet and five commonly used 
transfer learning datasets (13,14), yet having an order-of-
magnitude fewer parameters and FLOPS than previous 
networks. Considering the speed-accuracy trade-off, we 
chose EfficientNet-b4 as backbone for this skin diseases 
classification assignment. As the experiment shows, it 
outperforms other ConvNets including SE-ResNeXt101-
32x4d, SE-ResNet101 (15) and Inception-v3 (16).

In this study, we collected skin images from healthy 
people and patients with Pso, AD and Ecz (Figure 1, 
Table 1) from the Second Xiangya hospital, Central South 
University, China. The great majority of images were 
from typically exposed skin areas like the face and hands. 
Our dataset was composed of 4,740 dermatologist-labelled 
images in 3 categories, namely Pso, AD & Ecz, and healthy. 
We validated the effectiveness of the algorithm using five-
fold cross-validation. Therefore, we splitted our dataset into 
five parts by case. Each part was a disjoint subset of whole 
dataset. We used stratified sample method to ensure that 
the proportions of samples in every category are similar to 
those in the origin dataset.

The selection of CNN models based on ROC analysis

The ROC curves of our model, Inception V3, SE_
ResNet101, and SE_ResNeXt101-32x4d have been 
shown in Figure 3A. It shows the average performance of 
the five-fold models on the entire dataset. ROC curves 
represent the relation between TPR and FPR. The AUC 
is obtained to reflect the overall accuracy of each model. 

AUC for our model, Inception V3, SE_ResNet101, and 
SE_ResNeXt101-32x4d are 0.987, 0.987, 0.985 and 0.987, 
separately. The sensitivity and specificity for our model, 
Inception V3, SE_ResNet101, and SE_ResNeXt101-32x4d 
are 97.26% with 95.89%, 96.17% with 94.26%, 96.15% 
with 94.22%, and 96.61% with 94.92%. Though the AUC 
of these different model is similar, our model has advantage 
in high sensitivity and high specificity.

The performance of CNN on inflammatory disease diagnosis

The developed CNN model was used to perform diagnosis 
for each image among the 3 given categories. As a result, our 
model had an overall accuracy of 95.80%±0.09%, with the 
sensitivity of 94.40%±0.12% and specificity 97.20%±0.06% 
(mean ± SD). As shown in Figure 3B, CNN showed accuracy 
for Pso is 89.46%, with sensitivity of 91.4% and specificity of 
95.48%, and accuracy for AD & Ecz 92.57%, with sensitivity 
of 94.56% and specificity of 94.41%. For healthy skin (HC), 
the accuracy is even higher. It was 99.40% with the sensitivity 
of 99.26% and specificity of 99.86%.

T-SNE analysis and confusion matrix

We also examined the internal features learned by the 
CNN using t-distributed stochastic neighbor embedding 
(T-SNE). In these visualizations, each point represents a 
skin lesion image from the validation set, and each cluster 
shows the similar clinical features which are belong to one 
of the 3 categories (Figure 4). The 3 easily distinguishable 
clusters clearly represent the 3 dermatologist-determined 
categories. We also present a confusion matrix as shown in 
Figure 5, where the developed model confused a little on 
AD & Ecz image with Pso (18% possibility).

Conclusions

AI based smartphone medical application is occurred 
in 2017 by Bain and his colleagues (17). They used a 
smartphone’s camera to visually identify the patients with 
schizophrenia, the drug and confirm ingestion via a neural 
network computer vision algorithm. Another example is 
in the field of diabetes, in which Shao and his colleagues 
applied smartphone to control engineered cells to maintain 
semiautomatic glucose homeostasis in diabetic mice (18), 
shedding a light on the application of smartphone platform 
in management of chronic diseases. Shared with the same 
convenience, smartphone platform in our study fasted the 
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process of diagnosis within easy reach.
In this study, we demonstrate that deep learning can be 

effectively applied in dermatology outside of melanoma 
diagnosis. In particular, our work highlights that CNNs are 
able to differentiate amongst multiple diseases with skin 
conditions like Pso, AD & Ecz. Our AIDDA smartphone 
APP for this CNN is publicly available to all doctors in 

China, and more than 7,000 doctors have already registered 
this application. User data suggests that more than 100,000 
doctor-taken images have been input into the app to help in 
the diagnosis process, so AIDDA is clearly already having an 
impact in the health system. This tool helps with diagnosis 
and can help prevent omission, and AIDDA should be 
especially helpful for inexperienced younger doctors and 
doctors in under-developed areas. Its ongoing application 
will continue to test the performance of this CNN in real-
world practice, and we anticipate future improvements 
which should improve its diagnostic accuracy, selectivity, 
and specificity. Furthermore, AIDDA with results from 
biopsy and laboratory test may facilitate it as a more arcuate 
diagnostic tool, which has been proven in pediatric clinical 
study (19). Given that our system achieves a comparable 
or apparently superior performance to dermatologists for 
diagnosing inflammatory diseases, it seems obvious that 
smartphones enabled with deep learning network-developed 
APPs will continue to benefit doctors in real-world clinical 
practice in dermatological and likely many other types of 
human disorders.
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