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Over the last decade, stereotactic body radiation therapy 
(SBRT) has rapidly become the new standard of care for the 
management of inoperable early-stage non-small cell lung 
cancer (NSCLC) (1,2). In parallel, there has been growing 
interest in utilizing proton beam therapy (PBT) as means 
to further enhance the therapeutic ratio by reducing the 
dose to surrounding normal tissue (3). In particular, there 
has been a concerted effort to develop this technology for 
thoracic malignancies (4-8). Thoracic PBT is more prone 
to the inherent uncertainties of thoracic radiotherapy due 
to tissue heterogeneity along the beam path, target/organ 
motion, and its consequent interplay effect (2,5,9-12).  
Despite these potential limitations, dosimetric studies 
comparing SBRT delivered with protons versus photons 
showed substantial benefits in reducing heart and lung 
doses particular for larger and central tumors (13-17). 
While similar dosimetric data suggested benefit in locally 
advanced setting corresponding clinical data thus far have 
not conclusively demonstrated significant advantages for 
PBT over photon-based intensity-modulated radiation 
therapy (IMRT) (18,19). Analogous clinical data for PBT in 
early stage lung cancer is even more limited.

The juxtaposition of the dosimetric advantage and 
uncertainty regarding true clinical benefit in the locally 
advanced NSCLC setting suggest the presence of 
unaccounted factors. One consideration would be a 
differential biological effect of protons and photons in 
normal tissues. This hypothesis was explored by Shusharina 
et al. as they studied imaging surrogates of normal lung 

toxicity in patients from the randomized proton vs. photon 
clinical trial (20). The authors utilized post-treatment 
18F-FDG PET-CT images, which they co-registered to pre-
treatment planning CT scans to correlate dose to normal-
tissue and 18F-FDG uptake. Despite wide variability in 
delivered normal tissue doses, the relationship between 
tracer uptake and dose did not differ between protons and 
photons (20). In a separate analysis of data from the same 
clinical trial, they also demonstrated that post-treatment lung 
18F-FDG uptake correlated well with the severity of radiation 
pneumonitis within 6 months of completing chemoradiation 
(regardless of radiation treatment modality) (21).  
Another approach to compute lung inflammation through 
18F-FDG PET-CT involves quantification of pulmonary 
parenchymal glycolysis (PG), measured as the summation 
of uptake values throughout the lung fields. This technique 
was utilized in a small retrospective study from the 
University of Pennsylvania (22), in which the authors 
compared the levels of inflammation in 9 patients treated 
with photons vs. 9 patients treated with protons. Contrary 
to the prior study, the authors found a small change in 
PG values with photon therapy, but no analogous changes 
were noted after proton therapy. Furthermore, unlike the 
prior study, the authors could not correlate the quantitative 
changes in lung inflammation to radiation pneumonitis. 

While the initial exploratory work has been performed 
in the locally advanced NSCLC setting, corresponding 
data for SBRT was notably absent. As such, we read with 
great interest the work by Li et al. exploring an imaging 
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surrogate of differential inflammatory response in normal 
lung after SBRT with both protons and photons (23). 
Unlike the locally advanced setting where patients often 
receive post-treatment PET scans, SBRT patients usually 
undergo surveillance with serial CT scans alone (24). As 
such, the authors used a previously validated CT based 
biomarker of lung damage (25). The authors undertook 
a single-institution matched-pair retrospective analysis 
across 46 patients treated at the Massachusetts General 
Hospital. Notably, 5 patients received both proton and 
photon treatments and as such were also analyzed as part of 
an internal control cohort. The authors found that patients 
treated with proton therapy demonstrated a significant 
change in lung density during the early time period (defined 
as <6 months), which often subsequently stabilized in the 
late period. This was different than the effect noted in 
patients treated with photons where similar early changes 
were noted, but progressive significant changes were noted 
at later time points as well. Significantly, more patients in 
the proton arm had “severe” inflammatory responses on 
imaging (5 Proton vs. 3 photon patients). Furthermore, 
among the patients deemed “sensitive”, i.e., patients who 
demonstrated large density changes per unit of radiation 
dose, the differential density changes between proton and 
photon-treated patients from the early to late time period 
was magnified. Similar results were also noted among the 
patients in the internal control cohort of 5 patients who 
received both proton and photon treatments. Interestingly, 
the test for variability in maximum lung response by this 
technique did not reach statistical significance but did trend 
toward the proton arm. Secondarily, in an exploratory 
analysis restricted to areas of the lung receiving low-dose 
radiation, there was a weak trend toward increased dose-
response for protons versus photons. Finally, the authors 
also performed a blinded qualitative analysis which did 
agree well with their quantitative results.

This study has numerous strengths, including the patient 
selection which was performed via matching pairs across 
multiple tumor characteristic, demographic, and treatment 
domains thereby minimizing selection bias as much as 
reasonably possible. The authors also utilized a well-
defined, previously validated methodology for isolating the 
lung region of interest and quantifying dose and density. 
Some weaknesses include the retrospective nature and all of 
its inherent susceptibilities to potential bias. Furthermore, 
the authors do not specify the uncertainties in their 
deformable image registration. Given that the follow-up 
CT scans are rarely done in treatment position often time 

using breath-hold, and are potentially acquired at a different 
resolution than the treatment-planning CT, the analyses will 
be associated with registration-related uncertainties, which 
may impact the interpretation of this comparative study. 
Additionally, the treatments were performed with passive 
scatter technology and dose calculations were based on a 
pencil-beam model. These are increasingly being replaced 
by pencil-beam scanning delivery techniques and also with 
more computationally intensive but reliable Monte-Carlo 
dose calculation algorithms. As both of these could impact 
estimates of dose deposition, their analyzed results could be 
impacted which may make the study less generalizable. 

The authors did not report on systemic steroid/and 
anti-inflammatory medication use in this population or 
symptomatic implications of these radiological changes, 
which could certainly confound the data particularly 
between the early and late phases. An older retrospective 
experience of 3–5 fraction proton SBRT (42–50 Gy) from 
the same institution showed grade 1 pneumonitis in 30% 
patients, with grade 2/3 event seen only in 1 patient (26).  
A four-fraction carbon-ion based SBRT series of 79 patients 
from another Japanese center revealed acute RTOG 
grade 1/2 events in 1 patient, and with no other grade 3/4 
events (27). Late grade 1 respiratory event was noted in 
88% of the patients. In the current series, one-third of the 
patients showed no distinct or low responses in normal 
lung, suggesting the other two-third of patients did have 
radiographic changes. Extrapolating information from 
both their own and the Japanese experience, only a small 
proportion of these patients may have experienced high-
grade/symptomatic events. As such, the clinical utility of 
their work would be augmented if the rate of development 
of radiological changes could be correlated with symptom 
evolution. 

Another factor relates to the inherent differences in 
planning techniques between proton (SBPT) and photon-
based (SBRT) regimens and its impact on outcomes. 
While multiple dosimetric studies have demonstrated these 
differences, a randomized phase II trial comparing SBRT 
vs. SBPT for high-risk early stage NSCLC conducted at the 
host institution in collaboration with MD Anderson Cancer 
Center showed that the volume of PTV was much larger 
in the SBPT group (44.4 vs. 17.2 cc); and the median PTV 
maximum dose was higher in SBRT group (68.4 vs. 57.3 Gy  
RBE) (28). Such dosimetric data was not provided in the Li 
et al. study. While the randomized study was closed early 
due to poor accrual, acute grade 1/2 dyspnea and/or cough 
were seen in 4 of the 10 SBPT patients, versus 0 (none) of 
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the 9 SBRT patients. No grade 3 respiratory toxicity was 
seen, and late lung fibrosis was similar in both cohorts. 
These differences in planning approaches could impact 
biological impact between volume effect versus dose-per 
fraction. Many modern intensity-modulated proton therapy 
(IMPT)-based centers now have advanced IGRT abilities 
which raise the possibility of reducing PTV volumes, 
while still allowing central dose escalation within GTV 
akin to photon-SBRT—a future research and clinical trial 
direction. It remains to be seen if similar trend of differing 
radiological responses as seen the analysis by Li et al. can 
be observed in such future studies with improved proton-
SBRT planning. Selected centers in the United States have 
also developed linear energy transfer (LET) and relative 
biological effectiveness (RBE)-based algorithms for robust 
proton treatment planning (29). 

In summary, Li et al. help establish a differential response 
of both protons and photons in normal lung parenchyma 
using radiological differences by Hounsfield Unit changes 
in CT scan per unit change in the SBRT dosing. In the 
future, such work can be augmented by incorporating pre-
treatment regional heart and lung function information 
(such as ventilation-perfusion scan and echocardiogram 
data) into the post-treatment sensitivity analysis, along with 
inclusion of clinically relevant end-points. Supporting data 
on circulatory biomarkers of inflammation could further 
bolster our understanding of these temporal patterns 
observed clinically. Incorporating complimentary imaging 
data including 18F-FDG PET-CT, SPECT, PET-MR, or 
Dynamic Contrast Enhanced Magnetic Resonance Imaging 
could additionally provide multiparametric assessments of 
normal tissue dysfunction and potentially strengthen the 
observed clinical correlation to radiation-induced normal 
tissue injuries. Future IMPT studies should also focus on 
refining treatment planning methods which account for 
breathing-motion related interplay effects; these can be 
accomplished by improving Monte-Carlo based calculation 
methods, novel fast computing and artificial intelligence 
tools, and improved robust motion-based optimization 
techniques. An understanding of differences in dosimetric 
parameters and the possible biological effect consequences 
by IMPT technologies will be critical in being able to 
understand the full potential of proton-based SBRT which 
will help in the design of pragmatic clinical trials looking 
at relevant end-points (30). From a clinical practicality 
standpoint, based on the data from dosimetric studies and 
early clinical experiences so far (which are limited), proton-
based SBRT may play a key role for higher-risk settings 

including larger and/or central tumors wherever photon-
based SBRT techniques are limited by excess dose to 
lungs and other centrally located mediastinal structures 
(e.g., heart, esophagus and spine). Integration of immune 
modulators with proton therapy taking advantage of any 
differing biological effects (from better normal tissue 
sparing or from in-field immune response) will need to be 
studied further. Using more modern delivery technologies 
and with better understanding of biology the future of 
thoracic proton radiotherapy continues to show promise. 
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