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Circulating CX3CR1+CD163+ M2 monocytes markedly elevated and 
correlated with cardiac markers in patients with acute myocardial 
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Background: Vulnerable plaques have been generally recognized to play a role in the pathogenesis of acute 
myocardial infarction (AMI), however, the role of circulating CX3CR1+CD163+ M2 monocytes has not been 
studied properly. We aim to evaluate the features of CX3CR1+CD163+ M2 monocytes and its relationship 
with cardiac specific markers in AMI patients.
Methods: The circulating M2 monocytes were identified in AMI patients (n=35) and healthy controls 
(HCs, n=10) by flow cytometry using two staining methods: CD68+CD163+ (cytoplasmic staining) and 
CX3CR1+CD163+ (surface staining). CX3CR1+ monocytes were purified by magnetic cell sorting. The 
expression level of peroxisome proliferator-activated receptor γ (PPARγ) and arginase-1 (Arg-1) were 
measured by real-time quantitative PCR and Western Blot in CX3CR1+ monocytes.
Results: Circulating M2 monocytes extremely expanded in AMI patients compared with HCs (P<0.01). 
Positive linear correlation was confirmed between CD68+CD163+ and CX3CR1+CD163+ cell populations in 
AMI patients (r=0.39, P=0.02). The percentage of circulating CX3CR1+CD163+ M2 monocytes positively 
correlated with cardiac specific markers (cTNT, CK-MB) and acute phase markers (glucose, hs-CRP) (cTNT, 
r=0.63, P<0.01, CK-MB, r=0.54, P<0.01, glucose, r=0.62, P<0.01, hs-CRP, r=0.58, P<0.01). CX3CR1+ 
monocytes in AMI patients expressed higher levels of PPARγ and Arg-1 than those in HCs (P<0.01).
Conclusions: Circulating M2 monocytes increased in AMI patients and positively correlated with the 
elevation of both cardiac specific and acute phase markers. CX3CR1+CD163+ M2 monocytes might have 
application value for the early diagnosis of AMI.
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Introduction

Acute myocardial infarction (AMI) is the direst form of 
coronary artery diseases, which primarily results from 
vulnerable atherosclerotic plaques (1). Its prompt and 
accurate diagnosis are critical for the initiation of effective 
evidence-based medical management. Cardiac troponin 
(cTn) is one of the diagnostic biomarkers for the evaluation 
of AMI. However, serial blood sampling is required for the 
diagnosis of non-ST-elevation myocardial infarction (2). 
The delayed rule-in increases mortality. Given the fact that 
nonspecific inflammation plays a critical pathogenic role in 
plaque disruption (3,4) and macrophages are the primary 
source of inflammation effectors, the role of macrophages 
in atherosclerosis have enticed scientists to explore for 
decades.

Depending on the remarkable plasticity, macrophages can 
be polarized to either classical M1 macrophages or alternative 
M2 macrophages. M1 macrophages are pro-inflammatory 
macrophages exhibiting increased phagocytic activity while 
M2 macrophages mitigate over exuberant inflammation and 
play a vital role in promoting cardiac healing and remodeling 
process after myocardial infarction (5). Although M1 and 
M2 coexist in the atherosclerotic lesions, growing body of 
evidence have highlighted the central role of M1 in exuberant 
inflammation thus driving the destabilization of internal 
atheromatous plaques (6,7). However, pathological intraplaque 
angiogenesis has recently been reported to contribute to the 
plaque destabilization (8). Neovessels in vulnerable plaques 
are characterized by discontinuous basement membrane, 
low number of tight junctions between the endothelial cells 
and poor pericyte coverage, which are highly susceptible 
to the leakage of circulating cell thus inducing intraplaque 
haemorrhage (9-11). Therefore, M2 macrophages might 
be of clinical importance as it could regulate intraplaque 
vessel sprouting and function in angiogenesis (12,13). M2 
macrophages have not been studied clearly in AMI patients.

CD163 and Chemokine-X3C-receptor-1 (CX3CR1) 
have already been generally recognized as the typical M2 
markers. CX3CR1+CD163+ monocytes were also precisely 
defined as M2 monocytes (14,15). CX3CR1+ cells have been 
found markedly upregulated and facilitated inflammatory 
infiltration in atherosclerosis lesions (16). However, the 
presence of circulating CX3CR1+CD163+ M2 monocytes 
and their association with inflammation remains largely 
unknown in AMI.

Macrophages phenotype is heterogeneous, and transcription 
factors are important for its polarization by inducing epigenetic 

changes. Peroxisome proliferator-activated receptor γ (PPARγ) 
held potent anti-inflammatory properties that could skew 
human monocytes towards M2 macrophages (17). Arginase-1 
(Arg-1), predominantly expressed by M2 macrophages, could 
alter the magnitude and duration of the immune response (18). 
The present study aimed to study the correlation between 
circulating M2 monocytes and cardiac specific and acute-phase 
markers in AMI patients. We further looked into the function 
of circulating M2 monocytes by investigating the expression of 
PPARγ and Arg-1. These insights may provide glimpses into 
potential clinical significance of M2 monocytes in AMI.

Methods

Patients and clinical parameters

Thirty-five patients diagnosed with AMI scheduled for 
percutaneous coronary intervention (PCI) were enrolled 
in the study between April and July 2018. All patients met 
the international diagnosis criteria of AMI (1). Clinically 
unstable patients with cardiac arrest, cardiogenic shock or 
uncontrolled hypotension, as well as cases with stable angina 
pectoris, acute malignant disease, and chronic inflammatory 
diseases were excluded. Patient age, gender and the clinical 
parameters were recorded. Age matched controls consisted 
of ten healthy volunteers. The present study was conducted 
in accordance with the Declaration of Helsinki. The study 
protocol was approved by our Institutional Review Board, 
signed informed consent was obtained from all patients.

Isolation of peripheral blood mononuclear cells

EDTA-anticoagulated venous blood samples were 
immediately drawn from AMI patients before PCI and from 
healthy controls (HCs). PBMCs were isolated by Ficoll 
density-gradient centrifugation and resuspended in cell 
freezing medium (10% DMSO in fetal bovine serum) at 
5×105 cells/mL. The cell pellets were frozen at –80 ℃ and 
thawed for testing on separate occasions.

Flow cytometry analysis

Two methods  were  used  to  ident i fy  c i rcu la t ing 
M 2  m o n o c y t e s :  i n t r a c e l l u l a r  s t a i n i n g  m e t h o d s 
(CD68+CD163+) (19) and cell surface staining methods 
(CX3CR1 +CD163 +)  (14 ,15) .  CD68 (Y1/82A;  BD 
Biosciences, San Jose, CA, USA) and CD163 (GHI/61; 
BD Biosciences) were intracellularly stained after fixing 
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with 4% paraformaldehyde and permeabilizing by FACS 
permeabilizing solution (BD PharMingen, San Diego, CA, 
USA). The cell-surface staining was performed to assess 
CX3CR1 (2A9-1; BioLegend, San Diego, CA, USA) and 
CD163 (GHI/61; BD Biosciences) expression, according 
to the manufactures’ instructions. The PBMCs were gated 
by FSC × SSC (Figure S1). Flow analysis was performed on 
a FACS Aria II flow cytometer (BD Biosciences) and data 
were analyzed using FlowJo 7.6.1 (Tree Star, San Carlos, 
CA, USA) software.

Magnetic cell separation of CX3CR1+ monocytes

From the PBMCs, pure CX3CR1+ monocytes were 
separated by positive selection, using CX3CR1 MicroBeads 
and a magnetic cell sorting (MACS) separator (Miltenyi 
Biotech, Bergisch Gladbach, Germany) according to the 
manufacturer’s instruction. The purity of the cells after 
sorting was >98% (Figure S2).

Real-time quantitative PCR

Total RNA was extracted from CX3CR1+ monocytes 
using TRIzol Reagent (Invitrogen, Carlsbad, USA) 
and converted into cDNA using PrimerScript RT 
Master Mix (Takara, Tokyo, Japan), then was performed 
using SYBR Premix Ex Taq (Takara, Tokyo, Japan) 
on an Applied Biosystems 7500 Fast Real-Time PCR 
System. Expression of GAPDH was used as internal 
reference. The following primer sequences were used: 
GAPDH forward: AACAGCCTCAAGATCATCAG, 
rever se :  AGTCCTTCCACGATACCAA;  PPARγ 
f o r w a r d :  A C C A A A G T G C A AT C A A A G T G G A , 
reverse: ATGAGGGAGTTGGAAGGCTCT; Arg-1 
forward: GTGGAAACTTGCATGGACAAC, reverse: 
AATCCTGGCACATCGGGAATC.

Western blot

CX3CR1+ monocytes were homogenized in ice-cold lysis 
and then were clarified by centrifugation (12,000 g, 4 ℃,  
30 min). Equivalent protein (20 μg) was subjected to 
a 10% sodium dodecyl sulfate-polyacrylamide gel and 
then transferred to polyvinylidene fluoride membranes 
(Millipore, Bedford, USA). Membranes were blocked for 
1 h at room temperature with Tris-buffered saline + 0.1% 
Tween 20 (TBST) containing 5% bovine serum albumin 
and incubated overnight with primary antibodies against 

PPARγ, Arg-1 and GAPDH (Cell Signaling Technology, 
Beverly, USA) at 4 ℃. The next day, membranes were 
incubated with secondary antibody (Cell Signaling 
Technology, Beverly, USA) for 1 h after three washes by 
TBST. The antigen-antibody complexes were detected 
using an enhanced chemiluminescence kit (Thermo Fisher 
Scientific, San Jose, USA).

Statistical analysis

Results were expressed as mean ± standard deviation or 
median (interquartile range) as appropriate for continuous 
variables and as percentages for categorial variables. All 
data were analyzed using the SPSS 13.0 software (SPSS, 
Chicago, IL, USA). Two-tailed Student’s non-paired t-test 
was applied for evaluating statistically significant differences 
between two independent groups. The correlation analysis 
was accessed by Pearson’s correlation coefficient. Two-tailed 
P<0.05 was considered to be statistically significant.

Results

Clinical characteristics of AMI patients

Among 35 AMI patients enrolled in the present study, the 
median age was 70 years (range, 39–87 years). Clinical 
characteristics were presented in Table 1. This group showed 
a higher proportion of patients with STEMI and multiple 
vessel involvement. The healthy control group consisted of 
4 women and 21 men, with a median age of 70 years (range, 
38–88 years) (Table S1).

Circulating CD68+CD163+ and CX3CR1+CD163+ M2 
monocytes expanded and correlated positively in AMI

The presence of CD68+CD163+ and CX3CR1+CD163+ 
M2 monocytes were explored in HC and AMI patients 
(Figure 1). CD68+CD163+ M2 monocytes were found 
significantly elevated in AMI patients as compared with HC 
(20.68±1.40 vs. 8.08±0.26, P<0.01, Figure 1A,B). Similarly, 
the expansion of CX3CR1+CD163+ M2 monocytes were 
dramatically accentuated in AMI patients (4.67±0.49 vs. 
0.58±0.08, P<0.01, Figure 1A,C). A significant positive linear 
correlation between CD68+CD163+ and CX3CR1+CD163+ 
M2 monocytes was noted in AMI patients (r=0.39, P=0.02, 
Figure 1E), but not among HCs (r=0.09, P=0.13, Figure 1D).  
These results furnished evidence that the percentage of 
CX3CR1+CD163+ M2 monocytes dramatically elevated and 
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Table 1 Clinical characteristics of AMI patients

Characteristics
AMI patients (n=35)

No. %

Gender

Female 7/35 20

Male 28/35 80

Age, years 70 (39, 87) –

History of smoking 17/35 49

Comorbidity

Diabetes 14/35 40

Dyslipedemia 6/35 17

Hypertension 18/35 51

Laboratory findings

WBC count, ×109/L 7.8 (6.29, 9.08) –

cTNT, ng/mL 0.74 (0.21, 2.07) –

CK-MB, U/L 23 (13.5, 48) –

hs-CRP, mg/L 14 (6.5, 32.45) –

Glucose, mmol/L 6.8 (5.55, 9.15) –

BNP, pg/mL 1537 (454.6, 3501) –

LDL 2.06 (1.19, 3.44) –

HDL 0.96 (0.41, 1.57) –

TG 1.46 (0.48, 3.35) –

HbA1c, % 16.8 (12.9, 33) –

LVEF, % 55 (47, 61) –

Coronary vessel involvement

LAD 5/35 14

RCA 3/35 9

LAD + LCX 7/35 20

LAD + RCA 6/35 17

LAD + LCX + RCA 6/35 17

LM 8/35 23

STEMI presentation 21/35 60

Data are presented as number (%), median (interquartile range) of subjects. WBC, white blood cell; cTNT, troponin T; CK-MB, creatine 
kinase-MB; hsCRP, high sensitivity C-reactive protein; BNP, brain natriuretic peptide; LDL, low-density lipoprotein; HDL, high density 
lipoprotein; TG, triglyceride; HbA1c, hemoglobin A1c; LVEF, left ventricular ejection fraction; LAD, left anterior descending artery; LCX, left 
circumflex artery; LM, left main; RCA, right coronary artery; STEMI, ST segment elevation myocardial infarction.
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Figure 1 Circulating CD68+CD163+ and CX3CR1+CD163+ M2 monocytes expanded and correlated positively in patients with AMI. A 
Representative dot plots of CD68+CD163+ and CX3CR1+CD163+ M2 monocytes in the PBMCs of AMI patients (n=35) and HCs (n=25). 
Peripheral CD68+CD163+ (B) and CX3CR1+CD163+ (C) M2 monocytes were significantly elevated in AMI patients. Correlation between the 
percentage of CD68+CD163+ and CX3CR1+CD163+ M2 monocytes in HC (D) and AMI patients (E). P<0.01, compared to HCs in two-tailed 
Student’s non-paired t test. Data were determined by Pearson’s correlation test. AMI, acute myocardial infarction; HC, healthy control.

correlated positively with CD68+CD163+ M2 monocytes in 
AMI patients.

Cardiac specific biomarkers and acute-phase markers 
correlated positively with M2 monocytes

Significant positive linear correlations were found between 
CX3CR1+CD163+ M2 monocytes and CK-MB (r=0.54, 
P<0.01, Figure 2A) and cTNT (r=0.63, P<0.01, Figure 2A), 
while only cTNT was observed positively correlated with 

CD68+CD163+ M2 monocytes (r=0.37, P=0.03, Figure 2B). 
In view of the notion that macrophages, hsCRP and glucose 
participate in acute-phase reaction, glucose (r=0.62, P<0.01, 
Figure 2A) and hsCRP (r=0.58, P<0.01, Figure 2A) were 
further tested and revealed that they were both positively 
correlated with CX3CR1+CD163+ M2 monocytes.

CX3CR1+ monocytes had upregulated PPARγ and Arg-1

After magnetic cell separation of CX3CR1+ monocytes, 
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Figure 2 Cardiac specific biomarkers and acute-phase markers correlated positively with M2 monocytes. Correlation between cardiac 
specific biomarker (CK-MB and cTNT), acute-phase marker (glucose and hsCRP) and the percentages of circulating CX3CR1+CD163+ (A) 
and CD68+CD163+ (B) M2 monocytes in AMI patients (n=35). Data were determined by Pearson’s correlation test.

the percentage of CD68+CD163+ M2 monocytes was 
significantly elevated when compared with the whole 
PBMCs (18.26±2.46 vs. 48.33±2.16, P<0.01, Figure 3A). 
Thus, the CX3CR1+ monocytes could be considered 
to share the phenotype of M2 macrophages. To further 
examine the function of CX3CR1+ monocytes, we accessed 

the expression level of PPARγ and Arg-1 in CX3CR1+ 
monocytes. The relative quantitative mRNA level of PPARγ 
(1.45±0.11 vs. 1.09±0.07, P=0.01) and Arg-1 (1.97±0.26 
vs. 1.09±0.08, P<0.01) were significantly higher in AMI 
patients than those in HC, the same was true for the 
expression of the corresponding protein (Figure 3B,C). 
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Figure 3 The upregulation of PPARγ and Arg-1 in CX3CR1+ monocytes. Representative dot plots of CD68+CD163+ M2-like macrophages 
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These results further validated these CX3CR1+ monocytes 
to have features of polarized M2 macrophages.

Discussion

In the present study, the cell surface staining method 
(CX3CR1 and CD163) were used to identify the M2-like 
macrophages among circulating monocytes. The circulating 
CX3CR1+CD163+ M2 monocytes dramatically expanded 
and positively correlated with CK-MB, cTNT, hs-CRP and 
glucose among AMI patients. Moreover, the expression level 
of PPARγ and Arg-1 were higher in CX3CR1+ monocytes 
of AMI patients compared with those in HCs. These 
observations indicated that circulating CX3CR1+CD163+ 

M2 monocytes might play a potential role in the early 
diagnosis of AMI.

Previous studies have highlighted that the increased 
total WBC count was positively associated with the adverse 
outcome in patients of ST segment elevation myocardial 
infarction and was predictive of higher six-month mortality 
in AMI (20,21), however which leukocyte subtypes carry 
this risk is uncertain. We here found the extremely elevated 
circulating CX3CR1+CD163+ M2 monocytes among AMI 

patients. Unlike our previous intracellular staining methods 
(CD68 and CD163) (19), both CX3CR1 and CD163 
expressed on the surface of monocytes, indicating that these 
cells exhibited more monocyte chemotactic ability. These 
findings sparked our great interest to speculate that the 
increased circulating CX3CR1+CD163+ M2 monocytes may 
be retained as the risk factor in WBC for cardiovascular risk 
prediction.

Intriguingly,  we found the elevated circulating 
CX3CR1+CD163+ M2 monocytes positively correlated with 
the cardiac specific biomarkers, including cTNT and CK-
MB, indicating that the circulating CX3CR1+CD163+ M2 
monocytes might play a detrimental role in myocardial 
injury. The causes of plaque destabilization from an 
asymptomatic fibroatheroma plaque to high-risk unstable 
lesions remain largely unknown. Recent studies have 
revealed that intraplaque haemorrhages could accelerate 
the plaque destabilization, ultimately leading to acute 
cardiovascular events (8). Emerging data have indicated that 
the enhanced expression of CD163 positively correlated 
with intraplaque haemorrhages (22-24). Considering the 
significantly increased CX3CR1+ CD163+ M2 monocytes 
in AMI, we would venture to speculate that they might 
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contribute to intraplaque haemorrhage.
Many studies have clarified that progressive inflammation 

predisposes to plague rupture. CX3CR1 has been 
unveiled to augment the inflammatory via the crosstalk 
between smooth muscle cells and monocytes (25). The 
expression of CD163 in monocytes has been identified to 
be associated with intraplaque angiogenesis during the late 
inflammation (26). In agreement, the intriguing finding 
of the present study was the positive correlation between 
CX3CR1+CD163+ M2 monocytes and the typical acute-
phase marker, hs-CRP and glucose. Since inflammation 
and intraplaque angiogenesis often coexist at the base 
of advanced plaques, CX3CR1+CD163+ M2 monocytes 
might act as an inflammatory link between intraplaque 
angiogenesis and myocardial injury.

Notably, the cells we tested here were the populations 
circulating in the peripheral blood, not the polarized 
macrophages localized in the plaques. Although the tissue-
resident macrophages have been generally recognized as the 
main source of polarized-macrophages in myocardial tissue, 
circulating monocytes have been considered to be able to 
replenish the pool of tissue macrophages (27). Recently, a 
wealth of studies has existed on the role of monocyte-derived 
macrophages in plaque destabilization, shedding new light on 
the role of monocytes in intraplaque neoangiogenesis (28). 
CD14+CD16++ cells, the non-classical monocytes, were found to 
patrol the vessel wall and expressing high level of CX3CR1 (29).  
The circulating CX3CR1+ monocytes have been shown to 
be positively corelated with angiographic late lumen loss 
in AMI patients (30). Therefore, we speculated that the 
elevated circulating CX3CR1+CD163+ M2 monocytes might 
beget myocardial injury through patrolling the vessel and 
infiltrating in the plaque, and then differentiating into M2 
macrophages.

Given the fact that circulating CX3CR1+CD163+ M2 
monocytes positively correlated with cardiac specific and 
acute-phase markers in AMI, the CX3CR1+ monocytes were 
readily available, and the separated CX3CR1+ monocytes 
expressed higher M2 specific marker (CD68 and CD163), 
we then analyzed the function of the CX3CR1+ monocytes 
to further our understanding this particular cell population. 
Despite functioned as a transcriptional regulator of genes 
linked to lipid metabolism, mounting evidence have 
suggested that PPARγ also plays an essential role in M2 
macrophages polarization (31,32). Also, the expression of 
Arg-1 has generally been recognized to precisely reflect the 
overall M2 polarization (18). It was intriguing to note that 

the expression level of both PPARγ and Arg-1 in CX3CR1+ 
monocytes of AMI patients were higher than those in HCs, 
indicating that CX3CR1+ monocytes have the potential 
for polarized M2 macrophages. Finally, the circulating 
CX3CR1+CD163+ M2 monocytes might act as the valuable 
biomarker for plaque vulnerability in AMI.

Limitations

The finding in our study should be viewed in light 
of the l imitation about the relatively small  study 
population. It’s still hard to claim an exact deduction to 
elucidate the contribution to angiogenesis of circulating 
CX3CR1+CD163+ M2 monocytes as we didn’t examine the 
angiogenic growth factors and intraplaque haemorrhage 
in human coronary unstable plaques. Further tissue-
based study and the cell function of the circulating 
CX3CR1+CD163+ M2 monocytes would be exciting to 
explore in AMI patients. More speculatively, these cells 
might be further applied to predict the risk of stable 
coronary heart disease.

Conclusions

Collectively, the increased circulating CX3CR1+CD163+ 
M2 monocytes shared some vital characteristics of polarized 
M2 macrophages. Those positive correlation with cardiac 
specific biomarkers and acute-phase markers may open 
new avenues for their clinical application. Further studies 
will shed light on the prognostic value and more detailed 
molecular mechanism of the circulating CX3CR1+CD163+ 
M2 monocytes in AMI.
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Figure S1 The FSC × SSC gate of PBMCs for gating CD68+ CD163+ (A) and CX3CR1+ CD163+ (B) M2 monocytes.
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Table S1 Clinical characteristics of healthy controls

Characteristics
Healthy controls (n=25)

No. %

Gender

Female 4/25 16

Male 21/25 84

Age, years 70 (38, 88) –

History of smoking 11/25 44

Comorbidity

Diabetes 0/25 0

Dyslipedemia 5/25 20

Hypertension 2/25 8

Laboratory findings

WBC count, ×109/L 6.95 (3.99, 9.2) –

cTNT, ng/mL 0.018 (0.003, 0.029) –

CK-MB, U/L 14 (7, 23) –

hs-CRP, mg/L 1.5 (0.3, 3.1) –

Glucose, mmol/L 4.6 (3.5, 5) –

BNP, pg/mL 105 (46, 246) –

LDL 2.14 (1.19, 3.98) –

HDL 1.57 (1.02, 3.42) –

TG 1.05 (0.12, 1.99) –

HbA1c, % 5.5 (4, 6) –

Data are presented as number (%), median (interquartile range) of subjects. WBC, white blood cell; cTNT, troponin T; CK-MB, creatine 
kinase-MB; hsCRP, high sensitivity C-reactive protein; BNP, brain natriuretic peptide; LDL, low-density lipoprotein; HDL, high density 
lipoprotein; TG, triglyceride; HbA1c, hemoglobin A1c.


