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Background: The coronavirus disease 2019 (COVID-19) has rapidly become a pandemic worldwide. 
The value of chest computed tomography (CT) is debatable during the treatment of COVID-19 patients. 
Compared with traditional chest X-ray radiography, quantitative CT may supply more information, but its 
value on COVID-19 patients was still not proven.
Methods: An automatic quantitative analysis model based on a deep network called VB-Net for infection 
region segmentation was developed. A quantitative analysis was performed for patients diagnosed as severe 
COVID 19. The quantitative assessment included volume and density among the infectious area. The 
primary clinical outcome was the existence of acute respiratory distress syndrome (ARDS). A univariable 
and multivariable logistic analysis was done to explore the relationship between the quantitative results and 
ARDS existence.
Results: The VB-Ne model was sensitive and stable for pulmonary lesion segmentation, and quantitative 
analysis indicated that the total volume and average density of the lung lesions were not related to ARDS. 
However, lesions with specific density changes showed some influence on the risk of ARDS. The proportion 
of lesion density from −549 to −450 Hounsfield unit (HU) was associated with increased risk of ARDS, while 
the density was ranging from −149 to −50 HU was related to a lowered risk of ARDS. 
Conclusions: The automatic quantitative model based on VB-Ne can supply useful information for ARDS 
risk stratification in COVID-19 patients during treatment.
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Introduction

The coronavirus disease 2019 (COVID-19), which is caused 
by a novel coronavirus SARS-COV-2 (1,2), has rapidly 
developed into a pandemic and arisen public attention. 

Although a large number of studies has demonstrated 

the benefit of chest computed tomography (CT) in the 

diagnostic workups of COVID-19 (3-5), some expert 

consensus or guidelines still suggest that chest CT is only 
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more favorably indicated than chest x-ray radiography for 
making the early diagnosis of COVID-19 and helping the 
discharge decision of patients (6). The usefulness of chest 
CT in severe COVID-19 patients is still in controversy, 
for reasons of availability, cost, and increased risk of cross-
infection and radiation dosage.

In routine clinical practice, CT can only supply limited 
information about respiratory status using qualitative 
assessment. However, with the development of artificial 
intelligence (AI) technology, CT is far beyond a qualitative 
and basic quantitative examination. Quantitative CT has 
been widely used in many filed, including the respiratory 
system (7). As for COVID-19, some previous studies 
investigated the differential diagnosis, severity rating, and 
prognosis prediction using a qualitative CT combined with 
AI technology in COVID-19 patients (8,9). For instance, 
Li et al. (10) established a total severity score to classify the 
mild and severe type COVID-19 patients as well as Shen 
et al. (11) used some quantitative metrics, such as lesion 
volume, mean lesion density to stratify the severity of 
COVID-19. However, little is known about the potential of 
quantitative CT in monitoring the acute respiratory distress 
syndrome (ARDS) status in patients during treatment as 
which is the primary cause of ventilation use in COVID-19 
patients and attention also should be paid, especially in 
some early stage asymptomatic patients. 

Some studies suggested that density composition might 
also influence patients’ respiratory function and clinical 
outcomes besides the total volume and location of the 
infectious lesion (12). However, the existing assessment 
method, whether qualitative or quantitative, could not 
evaluate the density composition of infectious lesions 
thoroughly. Thus, the purpose of this study was to develop 
a quantitative method based on deep-learning (DL) 
segmentation to check the ARDS status in COVID-19 
patients during treatment. We present the following article 
in accordance with the STROBE reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-3554).

Methods 

DL-based segmentation network: VB-Net

Due to the significant variations of both shape and 
position across different COVID-19 patients, traditional 
segmentation methods often fail and need manual 
interaction. We developed a deep network called VB-
Net for infection region segmentation (13). This model 

a light-weighted extension of a 3-D convolutional neural 
network that combines V-Net (14) by using the bottle-neck  
structure (15). The speed of VB-Net is much faster than 
V-Net because of the bottle-neck structure (15,16).

In the bottle-net design of VB-Net, three layers using 
the 1×1×1, 3×3×3 and 1×1×1 convolution kernel was used 
to replace the original kernels. The first 1×1×1 kernel layer 
reduces the number of channels, and the 3×3×3 kernel layer 
processes the data, and the original channels of feature 
maps are restored by another 1×1×1 kernel layer. In this 
way, we not only reduce the model size and inference time 
but also use the cross-channel features, and VB-Net is more 
applicable to 3D volumetric data. The network structure of 
VB-Net is shown in Figure 1.

In addition to using the new model, the human-in-the-
loop (HITL) strategy was also adopted to update the DL 
model iteratively. The aim is to minimize the efforts of 
delineating the training data. The basic idea was to annotate 
a group of images to train the model manually and then 
apply the model to new data for further manual correction. 
Gradually increased training data can be lineated in this 
HITL strategy. Depending on the number of training 
samples, the HITL training strategy converged after 3–4 
iterations. Figure 2 illustrates the process of the proposed 
HITL training strategy.

Training dataset and image acquisition parameters

The model used in this paper was trained by 2,565 
COVID-19 cases, and 2,785 negative cases, where 
COVID-19 was diagnosed by RT-PCR of nasal and 
pharyngeal swab specimens (17), and negative cases were 
composed of pulmonary nodules cases, other pneumonia 
cases, and healthy cases. Training cases were from Shanghai, 
Jiangsu and Wuhan Province of China. In this paper, we 
applied the VB-Net model for segmenting our cohort of 
patients whose primary outcome was ARDS. Our goal is to 
quantitatively analyze the image data during the treatment 
of these patients.

Model application for application patient cohort 

This retrospective study was approved by the proper ethics 
review board. The requirement for informed consent was 
waived because the anonymized study did not alter any 
diagnosis and treatment of the patients. 

All patients diagnosed with COVID-19 by positive RT-
PCR results using nasal and pharyngeal swab specimens in 
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Figure 1 The network structure for COVID-19 infection segmentation. The dashed boxes show the bottle-neck structures inside the 
V-shaped network (14). COVID-19, coronavirus disease 2019.

our hospital from Jan to Feb 2020 were screened in the study. 
After screening the clinical and CT records, only patients 
who were classified into severe cases in their medical records 
were included for further analysis. Patients with a missing 
medical record or aged <18 years were excluded.

The non-contrast  chest CT examinations were 
performed for each patient when their competent doctors 
thought it was necessary to assess their respiratory status. 
CT examination was prohibited when the patient could 
not get rid of the ventilator. The detail of chest CT scan 
parameters was showed in Supplementary file.

A simple qualitative assessment was done by two 
independent radiologists after each CT examination, 
including the change of volume, density, location lesions. 
The respiratory assessment was estimated by arterial blood 
gas analysis after each CT examination.

Quantification assessment of COVID-19 infection

The entire pipeline for quantitative COVID-19 assessment 
includes the following steps:

(I) For each patient, a given chest CT is first fed 
into the DL-based segmentation system, which 
segments the infection regions, the whole lung, 

the lung lobes, and all the bronchopulmonary 
segments;

(II) The following quantitative metrics are then 
calculated to quantify infectious regions of the 
image of that patient:

	Volumes of infection in the whole lung, and 
volumes of infection in each lobe and each 
bronchopulmonary segment. 

	Percentage of infection (POI) in the whole 
lung, each lobe, and each bronchopulmonary 
segment. They are used to measure the severity of 
COVID-19 and the distribution of infection within 
the lung. 

 Hounsfield unit (HU) histograms within different 
infection regions. Different HU range zones or 
components are used, including (zone 1: <−750), 
(zone 2: from −750 to −650), (zone 3: −649 to 
−550), (zone 4: −549 to −450), (zone 5: −449 to 
−350), (zone 6: −349 to −250), (zone 7: −249 to 
−150), (zone 8: −149 to −50), (zone 9: >−49) inside 
the infection region. 

 Figure 3  shows the entire pipeline for the 
quantitative COVID-19 assessment. A chest CT 
scan is first fed to the DL-based segmentation 
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Figure 2 The human-in-the-loop workflow. COVID-19, coronavirus disease 2019; CT, computed tomography.

system, which generates infection areas, the whole 
lung, lung lobes, and all the bronchopulmonary 
segments, respectively. Then, the quantitative 
metrics are calculated to quantify infection regions 
of the patient. The quantification supplies the basis 
for measuring the severity of COVID-19 from 
the CT perspective and for tracking longitudinal 
changes during the treatment course.

 The primary outcome of this study is the existence 
of ARDS. It was measured by the arterial partial 
pressure of oxygen(PaO2)/oxygen fraction ratio 
of inhalation gas(FiO2) <300. Considered age 
was described as a risk factor in many previous 
study, we used age as an effect modifier in our  
study (1,4,5).

Statistical analysis

Statistical and correlation analysis methods are used to 
analyze the data and to supply the basis for measuring the 
severity of COVID-19 from the CT perspective and for 
tracking longitudinal changes during the treatment course. 

Continuous variables were reported as the mean 
(standard deviation or std) or median [interquartile range 
(IQR)]. Student’s t-test or Mann-Whitney U test was 
used to compare between-group differences (presence and 
non-presence of primary composite endpoints) based on 

distributions. Categorical variables were presented as n (%) 
and compared using χ2 or Fisher exact test. Then, a two-
step, multivariable logistic regression models was used 
to find the risk factors of CT quantitative data. First, all 
significant factors in χ2 or Fisher’s exact test will be put into 
univariable logistic regression. Then, a second multivariable 
logistic regression was done with the significant factors in 
the first regression. Statistical significance was set at 2-tailed 
P<0.05. All analyses were performed on the R software 
(Version 3.6.3).

Results

Training of the model

Based on the segmentation model was evaluated by 300 
separate image datasets. It turned out that the average Dice 
similarity coefficient is 91.6%±10.0% (median 92.2%, 
IQR 89.0–94.6%; range, 9.6–98.1%). The average volume 
error is 10.7±16.7 cm3 (median 5.9 cm3, IQR 1.8–13.9 cm3;  
range, 0.0–89.6 cm3). The mean POI estimation errors 
are 0.3% for the whole lung, 0.5% for lung lobes, and 
0.8% for bronchopulmonary segments. Eighty-six 
point seven percent of lung-lobe POIs and 81.6% of 
bronchopulmonary-segment POIs are accurately estimated 
with differences equal or less than 1%. The result of the full 
evaluation was showed in Table S1.
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Clinical application

Eighty-six patients were enrolled in our study. After 
screening and exclusion, 27 patients were finally included in 
the analysis. Three, 55 and 4 patients were excluded because 
of age, not severe type and incomplete medical records. The 
mean age of patients was 60.3 [37–87], the median age of 
patients was 59 (IQR =33.5), and the male proportion was 
66.67% (18/27). The median time from the first symptom 
to admission was six days (IQR =3.5), while the median time 
from the admission to classification into the severe patient 
was one day (IQR =2.5). The most common first symptom of 
these patients was fever (24/27, 88.89%) and cough (21/27, 
77.78%), the most common comorbidity of these patients 
was hypertension (13/27, 48.15%). One hundred twenty-
three CT scans were performed on these patients. The 
median time from admission to the first CT scan was three 
days (IQR =5.5), while the median of times of CT scans for 
each patient was four times (IQR =2). The median time of 
the gap between the two CT scans was five days (IQR =3).

Qualitative assessment results and the quantitative results 
of each CT scan were matched with its corresponding 
respiratory record. Among the 117 CT scans, 29.06% 
(34/117) of the clinical records of the day showed patients 
had ARDS. Eighty-seven point two percent (102/117) of 
CT scans were done with oxygen therapy. Notably, there 
were two times when patients finished the CT without 
oxygen therapy, which means patients were asymptomatic, 
but the arterial blood gas analysis showed that patients had 
ARDS. 

The median area proportion of the infectious area 
was 10.2% (IQR =14.8%), while the mean density of the 
infectious area was −557.83±150.38 HU. The highest 
proportion of different density interval was zone 1, which 
composed 57.54%±30.58% area of the whole infectious 
region on average. 

We analyzed the relationship between the age of 
patients, the area proportion of total infectious area (V), 
the average density of the whole infection (ρ), the area 
proportion of infection area in inner lung zone (Vi) and 
in the peripheral lung zone (Vp), the area proportion of 
specific region among the whole infection region of zone 
1 (n1), zone 2 (n2), zone 3 (n3), zone 4 (n4), zone 5 (n5), 
zone 6 (n6), zone 7 (n7), zone 8 (n8) and zone 9 (n9) with 
the ARDS existence risk respectively. The single logistics 
regression result showed that age, V (estimate =0.035, 
P<0.001), ρ (estimate =0.004, P<0.001), Vi (estimate =0.087, 
P<0.001), Vp (estimate =0.044, P<0.001), zones 1–9 (zone 

1: estimate =−2.111, P=0.038, zone 2: estimate =−1.848, 
P=0.035, zone 3: estimate =1.326, P=0.048, zone 4: estimate 
=7.114, P=0.008, zone 5: estimate =13.585, P=0.014, zone 
6: estimate =19.066, P=0.004, zone 7: estimate =18.1540, 
P=0.005, zone 8: estimate =12.637, P=0.013, zone 9: 
estimate =5.236, P=0.033) were related to ARDS existence. 
Then, a multivariate logistics regression was performed with 
all the above positive factors (P<0.05) and age, which was 
reported as a risk factor for ARDS existence in COVID-19 
in many previous studies (1,4,5). The multivariate logistics 
showed that only age (P=0.0118), the area proportions 
of zone 4 (P=0.003), zone 8 (P=0.021) were significantly 
related to ARDS existence independently (Table 1).

Discussion

We presented a new deep learning-based model to assess 
the density and location of the infectious region precisely 
and comprehensively. The result of the primary clinical 
application also showed that our model was effective and 
stable in monitoring COVID-19 patients with severe 
infection. 

In this work, we explored deep learning to segment 
COVID-19 infectious regions within lung fields on CT 
scans. With the proposed algorithm integrated, our system 
showed advantages from two aspects. First, our system 
supplies fast and correct segmentation for COVID-19 
infectious regions, compared to manual contouring. 
Second, with exact segmentation, our system supplies 
quantitative information that is necessary to track disease 
progression and analyze longitude changes of COVID-19 
during the entire treatment period. Besides, compared with 
traditional qualitative method, our system could provide a 
more objective assessment of the infectious lesions because 
it was not dependent on the experience of radiologist. Thus, 
we believe that this deep learning system for COVID-19 
quantification will open many new research directions of 
interest in this community. The first potential research 
application of this system is to quantify longitudinal 
changes in the follow-up CT scans of COVID-19 patients. 
Another research application of our system is to explore 
the quantitative lesion distribution specifically related to 
COVID-19.

The clinical application provided evidence of some 
hypotheses on COVID-19 treatment from physicians. The 
regression result showed that after adjusting the age, which 
was a definite risk factor of a bad outcome in COVID-19 
patients, the total volume and average density of the whole 
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infectious region were not related to the ARDS existence. 
This result explained the poor efficiency of manual 
assessment to predict the disease progression, where the 
V and ρ was the main content of observation. However, a 
relationship between the area of specific densities and the 
location of the infectious segments with the risk of ARDS 
existence was observed. For example, our results showed 
with the increase of the proportion of the zone 4 area in 
the infectious region, the risk of ARDS existence becomes 
higher, while the increase of zone 8 was related to the 
lower risk of ARDS existence. From our experience, the 
possible mechanism of such a result was that the regions 
with CT values located in zone 4 intervals were considered 
as the tissue between ground-glass opacity (GGO) and 
consolidation (as shown in Figure 4A,B,C). The increase 
of such regions’ area usually means the GGO region in 
the infection was turned into consolidation rapidly, which 
was related to the deterioration of the disease. While the 
region with CT values located in the zone 8 interval was 
considered as consolidation tissues that were turned into 
fibrous tissue, which could indicate the disease was on the 
mend (as shown in Figure 4D,E,F).

Based on this result, we recommend a quantitative 
evaluation of some specific density infectious segment 
rather than the assessment of the whole volume or density 
of the infectious region. However, it was difficult for 
radiologists to distinguish the adjacent interval manually. 
Thus, an automatic density segmentation was necessary. 
Besides, although not significantly, our result showed that 
the increase of infection is found in the inner zone of the 
lung could lead to a higher risk of ARDS existence. The 
current experience showed that the initiation of COVID-19 
infection mostly found in the peripheral zone of the lung. 
In other words, when the inner zone gets infected, it means 
the infection is progressing rapidly. 

The most important benefit of quantitative assessment is 
the physicians could be conscious of the disease progression 
earlier than the onset of related symptoms. For instance, a 
79-year-old female was diagnosed with severe COVID-19. 
After seven days of treatment, her symptoms relieved. The 
quantitative assessment showed that the area of infection 
increased rapidly and obvious zone 4 interval density 
in her infectious area (Figure 4A,B,C). Her symptoms 
deteriorated the next day, and the gas arterial blood gas 

Table 1 Multivariate logistic regression result of the quantitative variates on the ARDS existence

Variables  Estimate Std. Std. Error Z value Pr (>|z|)

Intercept 2.03 7.433 0.274 0.783

Age 0.04 0.016 2.781 0.005

V −0.07 0.074 −1.014 0.310

Vi 0.10 0.066 1.644 0.100

Vp 0.03 0.035 0.883 0.377

ρ 0.01 0.010 0.942 0.346

n1 0.24 3.240 0.076 0.393

n2 16.95 15.990 1.060 0.288

n3 −95.00 51.710 −1.837 0.066

n4 237.79 109.410 2.173 0.029

n5 −250.25 142.200 −1.760 0.078

n6 1.99 124.580 0.016 0.987

n7 195.11 116.940 1.668 0.095

n8 −164.73 71.400 −2.307 0.021

n9 27.08 19.160 1.413 0.157

ρ, the average density of whole infection; V, area proportion of total infectious area; Vi, he area proportion of infection area in inner lung 
zone; Vp, the area proportion of specific region among the whole infection region; nx, the area proportion of Zx among the whole infection 
region.
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Figure 4 A 79-year-old female was diagnosed with severe COVID-19. After seven days treatment, her symptoms relieved. (A,B,C) However, 
the chest CT showed that the area of infection increased rapidly. The quantitative analysis result showed several zone 4 area interval density 
in her infectious area. Her symptoms deteriorated the next day, and the gas arterial blood gas analysis showed ARDS. (D,E,F) After 12 days’ 
treatment, another Quantitative CT analysis result showed the area of Zone4 decrease while the area of zone 8 increase (the zone 8 density 
mainly distributed in fibrous tissue area, black arrow in D), which could indicate the disease was on the mend. COVID-19, coronavirus 
disease 2019; CT, computed tomography.

analysis showed ARDS. There were many studies indicated 
that patients could have a large area of infection before 
symptom onset (18,19), but only some of them needed 
ventilation. For example, Figure 5 showed another case with 
extensive infection in the bilateral lung. Interestingly, his 
respiratory status stayed fine during the whole treatment. 
After a quantitative assessment, we found the density and 
location of his infection distributed in the minimal risk 
intervals of our analysis. The above two cases showed that 
the application of automatic CT assessment could help 
physicians discriminate those who were at higher risk 
better. In this study, we explored the relationship of chest 
CT imaging findings with the risk of ARDS in COVID-19 
patients using an automatic quantitative assessment model, 
and the preliminary observations were quite encouraging. 
However, there are several limitations to our study. Due to 
the relatively small number of included patients and chest 
CT data, the power of statistical analysis may be influenced, 
and its stability might be a concern. Further multicenter 

prospective validation study with a large size cohort is 
needed. The second limitation is that the novelty of the 
algorism of the quantitative assessment model may not be 
very extraordinary compared to previously reported ones. 
However, the functionalities of this model are diverse and 
suited well for the application in various clinical scenarios 
of COVID-19, especially in supporting treatment decisions. 
Thirdly, the imaging data acquired by CT is quantitatively 
analyzable, although there are still some disputes about the 
role of chest CT over X-ray radiography in the diagnostic 
and therapeutic workups for COVID-19 patients. 
Further, the quantified imaging biomarkers can provide 
us with unique insights into the pathological changes and 
progression of this cunning viral pneumonia, helping both 
the diagnosis and treatment.

Conclusions

In this study, we explored the relationship of chest CT 
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Figure 5 A 56-year-old male was diagnosed with serve COVID-19, which had an extensive infection in the bilateral lung. Interestingly, his 
respiratory status stayed fine during the whole treatment. (A,B,C) was the first CT scans after admission. (D,E,F) was the CT scans after 
seven days treatment. In both CT scans’ quantitative analysis, zone 4 only composed of a limited proportion of the whole infection area. 
COVID-19, coronavirus disease 2019; CT, computed tomography.

imaging findings with the existence of ARDS in COVID-19 
patients using an automatic quantitative assessment model, 
and our results found that the model was sensitive and stable 
for the lesion segmentation. The preliminary application 
of the model showed that the quantitative analysis of the 
density and location of infectious regions was related to 
the risk of ARDS existence in severe COVID 19 patients. 
Our assessment model supplies an excellent prospect of 
the quantitative CT application during the COVID-19 
treatment, but a further prospective study was needed to 
draw a definite conclusion.
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GE Healthcare CT scanner protocol: tube voltage, 120 kV 
(automatic adjustment); tube current, 200–500 mAs; rotation 
time, 0.5 second; section thickness, 0.625 mm; collimation,  
0.625 mm; pitch, 1; matrix, 512×512; and inspiration breath 
hold. Reconstruction was performed with a bone algorithm 
with a thickness of 1 mm and an interval of 1 mm.

Siemens CT protocol: tube voltage, 120 kV; tube current,  
110 mAs (automatic adjustment); rotation time, 0.5 second; 
section thickness, 0.75 mm; collimation, 0.6 mm; pitch, 1; 
matrix, 512×512; and inspiration breath hold. Reconstruction 
was performed with a bone algorithm with a thickness of 1 mm 
and an interval of 1 mm.

Table S1 Quantitative evaluation of the deep learning segmentation system on the validation dataset. The Dice coefficients, volume estimation 
error and POI estimation error in the whole lung, lung lobes, and bronchopulmonary segments were calculated to assess the automatic 
segmentation accuracy 

Accuracy metrics Mean Standard deviation Median 25% IQR 75% IQR Number of infected samples

Dice similarity coefficient 91.6% 10.0% 92.2% 89.0% 94.6% 300

Volume estimation error (cm3) 10.7 16.7 5.9 1.8 13.9 300

POI (the whole lung) 0.3% 0.4% 0.1% 0.0% 0.4% 300

POI (left upper lobe) 0.4% 1.0% 0.1% 0.0% 0.4% 233

POI (left lower lobe) 0.7% 1.6% 0.3% 0.1% 1.0% 267

POI (right upper lobe) 0.3% 0.7% 0.1% 0.0% 0.5% 213

POI (right middle lobe) 0.3% 0.7% 0.1% 0.0% 0.5% 204

POI (right lower lobe) 0.6% 1.1% 0.3% 0.1% 0.9% 275

POI (left upper lobe/posterior tip) 0.5% 1.0% 0.1% 0.0% 0.5% 189

POI (left upper lobe/anterior) 0.5% 1.2% 0.2% 0.0% 0.5% 158

POI (left upper lobe/upper tongue) 0.7% 1.7% 0.2% 0.0% 0.9% 192

POI (left upper lobe/lower tongue) 0.7% 1.8% 0.2% 0.0% 0.8% 175

POI (left lower lobe/dorsal) 0.9% 2.1% 0.4% 0.1% 1.2% 224

POI (left lower lobe/anterior medial 
basal)

0.6% 1.4% 0.2% 0.0% 0.8% 209

POI (left lower lobe/outer basal) 1.1% 2.5% 0.5% 0.1% 1.7% 228

POI (left lower lobe/posterior basal) 1.1% 2.4% 0.5% 0.1% 1.6% 233

POI (right upper lobe/apical) 0.4% 1.1% 0.1% 0.0% 0.5% 142

POI (right upper lobe/back) 0.7% 1.7% 0.2% 0.0% 0.8% 186

POI (right upper lobe/anterior) 0.4% 1.1% 0.1% 0.0% 0.9% 151

POI (right middle lobe/lateral) 0.6% 1.5% 0.1% 0.0% 0.6% 183

POI (right middle lobe/medial) 0.3% 0.8% 0.1% 0.0% 0.4% 167

POI (right lower lobe/dorsal) 0.9% 1.9% 0.4% 0.1% 1.4% 233

POI (right lower lobe/inner basal) 0.6% 1.4% 0.3% 0.1% 0.9% 162

POI (right lower lobe/anterior basal) 0.6% 1.4% 0.1% 0.0% 0.9% 210

POI (right lower lobe/outer basal) 0.9% 1.8% 0.4% 0.1% 1.2% 236

POI (right lower lobe/posterior basal) 1.0% 2.0% 0.5% 0.1% 1.6% 249

IQR, interquartile range; POI, percentage of infection.
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