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RNA interference therapy: a new solution for intracranial 
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Abstract: Intracranial atherosclerotic stenosis (ICAS) of a major intracranial artery, especially middle cerebral 

artery (MCA), is reported to be one leading cause of ischemic stroke throughout the world. Compared with other 

stroke subtypes, ICAS is associated with a higher risk of recurrent stroke despite aggressive medical therapy. 

Increased understanding of the pathophysiology of ICAS has highlighted several possible targets for therapeutic 

interventions. Both luminal stenosis and plaque components of ICAS have been found to be associated with 

ischemic stroke based a post-mortem study. Recent application of high-resolution magnetic resonance imaging 

(HRMRI) in evaluating ICAS provides new insight into the vascular biology of plaque morphology and component. 

High signal on T1-weighted fat-suppressed images (HST1) within MCA plaque of HRMRI, highly suggested of 

fresh or recent intraplaque hemorrhage, has been found to be associated with ipsilateral brain infarction. Thus, 

the higher prevalence of intraplaque hemorrhage and neovasculature in symptomatic patients with MCA stenosis 

may provide a potential target for plaque stabilization. We hypothesize that RNA interference (RNAi) therapy 

delivered by modified nanoparticles may achieve in vivo biomedical imaging and targeted therapy. With the rapid 

developments in studies about therapeutic and diagnostic nanomaterials, future studies further exploring the 

molecular biology of atherosclerosis may provide more drug targets for plaque stabilization.
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Atherosclerosis accounts for most kinds of cardiovascular 
disease, including myocardial ischemia, acute myocardial 
infarction, heartfailure, and stroke. It is a lifetime disease 
that often begins in childhood, but symptoms are not 
usually evident until middle age or later. According to the 
literature, aortic lesions are first evident with fatty streaks 
in the first decade and that coronary lesions become evident 
in the second decade and cerebral vessel involvement in 
the third or later (1). Intracranial atherosclerotic stenosis 
(ICAS) of major intracranial arteries reported to be a 
leading cause of ischemic stroke (2-4), which causes about 
5-10% of strokes in white people, 15-29% of transient 
ischemic attacks or strokes in black people, and up to 30-
50% of strokes in Asian people (5-7). Compared with other 

stroke subtypes, ICAS is associated with a higher risk of 
recurrent stroke (8). New therapeutic approaches to treat 
this high-risk disease include dual antiplatelet treatment, 
intensive management of risk factors, and endovascular 
therapy. Nevertheless, there are subgroups of patients who 
remain at high risk of stroke despite aggressive medical 
therapy. Further research is needed to identify these high-
risk subgroups and to develop more effective treatments.

During recent decades there have been remarkable 
advances in biology, in which one of the most important 
discoveries is RNA interference (RNAi). RNAi is a post-
transcriptional regulatory pathway that can result in efficient 
and specific silencing gene functions, which is a major 
advantage of targeted therapy. Comparably, the inhibitory 
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effects of conventional pharmaceuticals are mainly achieved 
by blocking their targets’ function. However, some disease-
related molecules, primarily proteins, do not have an 
enzymatic function or have a conformation that is hardly 
accessible to conventional drugs, therefore are considered 
as “non-druggable” targets. The newly-development RNAi 
approach can overcome the barrier and target the previous 
“non-druggable” targets by gene silencing (9). Efforts 
have been done to translate this new discovery into clinical 
applications for disease treatment. Currently, there are 
some ongoing or partially completed clinical trials of RNAi 
therapies in treating cancer, cardiovascular diseases, and 
eye disease etc. (10). In this review, we will briefly discuss 
the therapeutic potentials of gene silencing by RNAi in 
preventing stroke caused by ICAS, which may represent a 
promising direction in the future.

The pathophysiology of intracranial atherosclerosis

Atherosclerosis is a chronic inflammatory disease of the 
arterial wall resulting from a lipid dysfunction and a 
maladaptive inflammatory response. In the last few years, 
the pathology and pathogenesis of atherosclerosis in 
coronary arteries have been well studied due to its high 
incidence and its devastating effects on human beings (11). 
Atherosclerosis is initiated from endothelial dysfunction 
due to hypercholesterolaemia and inflammation, followed 
by smooth muscle proliferation and thickening of the 
arterial wall. The first atherosclerotic change in the artery 
is called a fatty streak, characterized by the adhesion of 
monocytes to the endothelium and their migration to 
subendothelial portions of the arterial wall. In this location, 
lipids accumulate intracellularly and develop a foamy 
appearance microscopically. The most common locations 
for the development of fatty streaks are vascular bifurcations 
or other areas with turbulent blood flow. As a person ages, 
the fatty streak is transformed into a fibrous plaque. It 
consists of a core of cellular debris, free extracellular lipid, 
and cholesterol crystals, lymphocytes, and connective tissue. 
The plaque grows insidiously over many years as a result 
of the elaboration of cytokines and factors released by 
endothelial cells, macrophages, platelets, and smooth muscle 
cells. Areas of calcification or hemorrhage also can occur 
within the plaque. Based on the knowledge from coronary 
arteries, in recent years the pathology of atherosclerosis in 
carotid arteries has become a hot topic, partly due to the 
researchers’ interest in the value of carotid endarterectomy 
in symptomatic and asymptomatic individuals with carotid 

artery stenosis (12). Carotid endarterectomy provides us 
with proper specimens of carotid artery to learn more 
about its morphology. However, intracranial vessels are 
not accessible to pathology sampling in live patients, which 
partly contributes to lacking of pathological knowledge of 
ICAS.

Traditional investigations of ICAS focus on the degree 
of arterial luminal stenosis. Digital subtraction angiography 
(DSA) is the only reliable standard in assessing luminal 
stenosis, which is an invasive procedure requiring injection 
of iodinated contrast. Other luminal angiography techniques 
such as computed tomography angiography (CTA) and 
magnetic resonance angiography (MRA) or transcranial 
Doppler (TCD) make it feasible to assess ICAS noninvasively. 
The focus on severity of stenosis has been reinforced because 
severe (70-99%) atherosclerotic stenosis was demonstrated 
as an independent predictor for stroke recurrence in the 
territory of the stenotic artery, with the risk of ~20% at 
1 year, in the Warfarin versus Aspirin for Symptomatic 
Intracranial Disease (WASID) trial (3). However, the role 
of percent stenosis in predicting subsequent stroke risk has 
been superseded by collateral flow and hemodynamics in the 
same patient cohort (13). Thus, beyond luminal stenosis, 
many other features may reflect the characteristics of ICAS, 
such as plaque morphology and components, which might 
also be promising markers in risk stratification of patients 
with symptomatic ICAS (14).

High resolution magnetic resonance imaging (HRMRI) 
is a novel technique that is able to visualize vessel wall 
pathology (15-17). In patients with extracranial carotid 
stenosis, the components identified by HRMRI correlates 
well with pathological specimens (18), and also associated 
with stroke symptoms (16,19-23). In ICAS, Xu et al. 
compared vessel wall properties between symptomatic 
and asymptomatic atherosclerotic middle cerebral arteries 
(MCAs) and demonstrated that symptomatic MCA stenosis 
had a larger wall area, greater remodeling and higher 
prevalence of expansive remodeling (24). They also found 
that ipsilateral stroke is closely associated high signal on 
T1-weighted fat-suppressed images (HST1) within MCA 
plaque of HRMRI, which is highly suggested of fresh or 
recent intraplaque hemorrhage (25). Thus, the application 
of HRMRI in evaluating ICAS provides new insight into 
the vascular biology of plaque morphology and component, 
but lacking histological validation (18). To break through 
the limitation of “blind assessment” of ICAS in human, we 
performed a post-mortem study exploring the contributions 
of plaque characteristics to the occurrence of brain 
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infarction (26). Seventy-six autopsy cases of Chinese cases 
aged 45 years were recruited and intracranial large arteries 
were removed for histological staining and evaluation. 
Our histological findings demonstrated that both luminal 
stenosis and plaque components (percentage of lipid area 
and presence of intraplaque neovasculature) may play a 
key role in leading to ischemic stroke (26), which for the 
first time provides direct histological evidence of plaque 
characteristics in causing brain infarction. The higher 
prevalence of intraplaque hemorrhage and neovasculature 
in symptomatic patients with MCA stenosis may provide 
a potential target for plaque stabilization. Further studies 
will be performed by using our acquired intracranial artery 
specimen to explore other cellular or molecular regulators, 
which may account for plaque instability.

Plaque neovascularization and hemorrhage: a 
potential target for plaque stabilization?

Angiogenesis or the growth of new blood vessels from 
existing host vessels is increasingly being recognized as 
important in the growth and progression of atherosclerosis. 
According to the literature (27), hypoxic conditions lead to 
upregulated expression of hypoxia inducible factor alpha 

(HIF-1α), a transcription factor, which promotes hypoxia 
dependent neovascularization in human atherosclerotic 
plaques. Vascular endothelial growth factor (VEGF) is a well-
known regulator of angiogenesis and also closely related with 
neovascularization within atherosclerotic plaque (28,29). 
The Tie receptors, Tie1 and Tie2, and two ligands for Tie2, 
angiopoietin1 (Ang1) and Ang2 are also critical for vessel 
formation and maturation (30). The angiopoietins represent 
a relatively new family of related angiogenic growth factors, 
among which Ang1 and Ang2 are derived from mural cells 
and ECs, respectively and major regulators of angiogensis. 
Ang1 is known to stabilize nascent vessels and make them 
leak-resistant, presumably by facilitating communication 
between ECs and mural cells. Ang-2 is the natural 
antagonist of Ang-1 and its role appears to be contextual: 
(I) in the absence of VEGF, Ang2 acts as an antagonist of 
Ang1 and destabilizes vessels, ultimately leading to vessel 
regression; (II) in the presence of VEGF, Ang2 facilitates 
vascular sprouting. A high Ang2/Ang1 ratio has been found 
in vulnerable neo-vascularized plaques (31). Figure 1 shows 
the contributions of VEGF-Tie2 pathway in the process of 
atherosclerosis formation. Studies in atherosclerotic plaques 
removed from carotid endarterectomy demonstrated that 
overexpression of VEGF and its induced neovascularization 

Figure 1 Contributions of VEGF-Tie2 pathway in the process of atherosclerosis formation. VEGF, vascular endothelial growth factor.
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may expedite the occurrence of ischemic symptoms 
(31,32). In ICAS, our previous post-mortem study also 
found that intraplaque hemorrhage and neovascularization 
might account for the occurrence of ischemic stroke 
(26,33). Intraplaque neovascularization is thought to 
be directly led to subsequent intraplaque hemorrhage 
(34,35), although further studies are required to delineate 
the causal relationship between neovascularization and 
intraplaque hemorrhage. Considering that intraplaque 
neovascularization and hemorrhage may predict subsequent 
ischemic event, strategies to “normalize” intraplaque neo-
vessels to prevent the hemorrhage may be promising new 
avenues for prevention of ischemic stroke.

Similar strategies of anti-angiogenesis have been 
testing in tumor and eye disease. As stated, dysregulation 
of angiogenesis occurs in various pathologies and is one 
of the hallmarks of cancer. In tumors, the imbalanced 
regulation of pro- and anti-angiogenic signaling lead to an 
abnormal vascular network. With the discovery of VEGF as 
a major driver of angiogenesis, novel therapeutics aimed at 
inhibiting VEGF activity are developed to regress tumors 
by starvation. Preclinical studies have shown that anti-
VEGF therapy changes tumor vasculature towards a more 
“mature” or “normal” phenotype (36). Besides in cancer, 
anti-VEGF agents such as ranibizumab and aflibercept are 
becoming increasingly well-established therapies and have 
replaced earlier approaches such as laser photocoagulation 
or photodynamic therapy in age-related macular 
degeneration (AMD). According to the previous experiences 
of anti-VEGF therapy in treating tumor and retinal disease, 
anti-VEGF or other anti-angiogenesis agents may provide 
a promising direction in preventing ischemic events due to 
atherosclerosis.

Plaque stabilization by targeted inhibiting 
neovascularization by RNAi

As we all know, atherosclerosis is a systemic chronic 
inflammatory disease, while angiogenesis is a physiological 
process in growth and development, as well as in wound 
healing. The potential beneficial effects of angiogenesis 
and its feature of generalization impede the systemic 
administration of anti-VEGF or other anti-angiogenesis 
agents. Thus, local targeted inhibition of intraplaque 
neovascularization is an optimal method that may meet our 
requirements. RNAi is defined as a mechanism of specific 
post-transcriptional gene-silencing mediated by small RNAs, 
including endogenous microRNA (miRNA) and exogenous 

small interfering RNA (siRNA) or short hairpin RNA 
(shRNA) (37). Double-stranded small RNAs incorporate 
into the RNA-induced silencing complex (RISC), where 
the strands are separated, and one strand guides RISC to 
the complementary or near-complementary region of target 
mRNA, suppressing the gene expression either by degrading 
mRNA or blocking mRNA translation (38,39).

For siRNA, it has a well-defined synthesized structure, 
a short (usually 21-bp) double-stranded RNA with 
phosphorylated 5' ends and hydroxylated 3' ends with two 
overhanging nucleotides. Since the half-life of siRNA is 
short, shRNA has been developed as an alternative RNA 
molecule. ShRNA is transcribed in the nucleus from an 
external expression vector bearing a short double stranded 
DNA sequence with a hairpin loop by RNA polymerase II or 
III. Comparing with siRNA, shRNA is constantly synthesized 
in host cells, leading to more durable gene silencing. 
Moreover, an shRNA expression vector cost less than the 
bulk manufacturing of siRNA (40). MiRNA is a class of small 
non-coding endogenous RNAs which play an important 
role in regulating cellular functions both physiologically 
and pathologically. Among three kinds of RNAi, shRNA 
is considered more potent in mediating gene silencing and 
more effective than either siRNA or miRNA (10).

In human tumors, angiogenesis is a key factor for 
neoplasia and tumor metastasis. The VEGF pathway is 
the hottest target of tumor angiogenesis (41). Thus, by 
selectively silencing VEGF pathway, RNAi technology 
has been used to inhibit angiogenesis. In a pancreatic 
tumor xenograft model, shRNAs against VEGF was 
intravenously and intratumorally delivered to inhibit 
cancer cell proliferation and tumor growth. The findings 
demonstrated down-regulated expression of VEGF-C 
mRNA and reduced microvessel density (MVD) in tumor, 
although shRNA showed a weaker inhibitory effect on 
tumor growth compared to the standard treatment for 
pancreatic cancer (42). Similar to VEGF, basic fibroblast 
growth factor (bFGF) is also an important pro-angiogenic 
growth factor. Another experiment indifferent pancreatic 
carcinoma cells, siRNA against bFGF reduced the amount 
of bFGF mRNA and inhibited endostatin secretion (43). 
Thus, the experiences in tumor therapy demonstrate that 
antiangiogenic treatment can be developed as therapeutic 
targets for angiogenesis-related disease. Based on recent 
pathological knowledge of ICAS and its molecular 
regulators, we will explore more and more target gene for 
RNAi therapy.
Local delivery of siRNA by nanoparticle carrier
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RNAi delivery systems consist of viral delivery systems 
and non-viral delivery systems (chemical modification, 
liposomes and nanoparticles). Nanoparticles are particulate 
dispersion or solid particles with a size of 10-100 nm. A 
polymeric nanoparticle for gene delivery is considered 
more stable with larger capacity as nanosized entities enable 
a very limited volume to provide an enormous surface 
area for transport, chemical reactions, and interaction 
with biological systems. Compared to traditional delivery 
system, the unique advantage of nanoparticles involving 
metallic core is its capability to study in vivo distribution of 
siRNAs by using magnetic resonance imaging (MRI) (10). 
Advances in biomedical imaging allow the study of plaque-
targeting nanoparticles in a dynamic fashion (44). At the 
same time, nanoparticle delivery system can be modified 
for targeting specific cells or molecules. We hypothesize 
that RNAi therapy delivered by modified nanoparticle 
carrier can achieve in vivo imaging and anti-angiogenesis 
within atherosclerotic plaques, which may help to evaluate 
plaque morphology and to stabilize plaques at a high risk 
of rupture. With the rapid developments in studies about 
therapeutic and diagnostic nanomaterials, future studies 
further exploring the molecular biology of atherosclerosis 
may provide more drug targets for plaque stabilization.
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