

# Human papilloma virus (HPV) profiles in breast cancer: future management

#### Md. Saimul Islam, Balarko Chakraborty, Chinmay Kumar Panda

Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India

*Contributions:* (I) Conception and design: MS Islam, CK Panda; (II) Administrative support: CK Panda; (III) Collection and assembly of data: MS Islam, B Chakraborty; (IV) Data analysis and interpretation: MS Islam, B Chakraborty; (V) Manuscript writing: All authors; (VI) Final approval of manuscript: All authors.

*Correspondence to:* Chinmay Kumar Panda. Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700026, India. Email: ckpanda.cnci@gmail.com.

**Abstract:** Breast cancer (BC) is frequent among women in worldwide as well as in India. Several studies have reported a wide variation (1.6–86.2%) in the frequency of incidence of human papillomavirus (HPV) infection in BC with high prevalence of high risk HPV16 subtype. HPV infection in breast can occur through different routes like body fluid or by micro-lesion of breast skin from genital/agential sites, though the actual mode of HPV transmission is not yet known in details. Frequent integration and sequence variation with low copy number of HPV16 were seen in this tumour. In addition, high frequencies of methylation in p97 promoter region of HPV16 were evident in this tumour. Novel splice variants of E6/E7 along with other common variants and their protein expression were seen in the tumour. This indicates the importance of HPV in this tumor, its early diagnosis and prognosis. Thus, HPV may be targeted through vaccination to control the disease. However, detailed analysis of HPV associated molecular pathogenesis of BC is warranted for proper therapeutic intervention.

Keywords: Breast cancer (BC); human papillomavirus (HPV); HPV transmission; management

Submitted Sep 20, 2019. Accepted for publication May 07, 2020. doi: 10.21037/atm-19-2756 View this article at: http://dx.doi.org/10.21037/atm-19-2756

#### Introduction

1

2 Globally, breast cancer (BC) is the most common cancer 3 4 among the women registering a total of 2.08 million new 5 cases (11.6% of all new cases among females) in the year 2018 alone (1). Accounting for 15% of the total cancer-6 7 related deaths, it is the first most common cause of cancer deaths among women, worldwide (1). In Indian context, BC 8 9 remains the most frequent (27.7%) cancer among women with the urban and metropolitan regions reporting high 10 11 rates of incidence than rural region (1,2). Going by the numbers, in 2018 about 87,090 women died due to BC in 12 India (11.1% of total women cancer) (1). 13

The BC has several etiological factors like prolonged or elevated exposure to estrogen due to early age of menarche

(younger than 12 years), nulliparity, late age of menopause 16 (over 55 years), exposure to high doses of ionizing radiation, 17 regular alcohol consumption and high fat diet (3). Among 18 the different etiological factors, infection with several 19 viruses has also been reported in BC (4). However, these 20 etiological factors were involved in only 20-50% of BC 21 cases (5). Recently, different studies suggested association of 22 human papillomavirus (HPV) with BC (6). But, frequency 23 of HPV infection in BC varied widely (1.6-86%) among 24 different studies (7,8). Inconsistent HPV infection was also 25 reported in different molecular subtypes of BC (9,10). The 26 possible mode of HPV transmission in breast and its role 27 in breast carcinogenesis are not well studied. In this review 28 our aim is to discuss the role of HPV infection in breast 29 carcinogenesis and its future management. 30

#### 31 Association of HPV infection with BC

## <sup>32</sup> Prevalence of HPV infection in breast

33 34 Recently, HPV infection in BC in different population around the world was reported by several authors (Table 1). 35 However, many of them have not identified any HPV DNA 36 in breast tumour. The prevalence of HPV in BC varied 37 widely from 1.6-86.2% among the different continents 38 39 of the world (7,8). According to screening methods, comparatively high frequency of HPV was detected in 40 polymerase chain reaction (PCR) with sequencing or in-41 situ hybridization than only PCR method alone (Figure 1A). 42 While a comparatively lower frequency of HPV DNA was 43 found when the tissue source was formalin fixed paraffin-44 embedded tissue (PET) than the cryo-preserved tissue 45 (CPT), the reason can be attributed towards the fact that 46 the total DNA is severely degraded during the whole 47 process of formalin fixation and paraffin embedding (47). 48 So, this detection based difference in results might account 49 partly for the wide range of frequency of HPV infection in 50 BC, as reported by several studies (Figure 1B). On the other 51 hand, HPV infection did not show significant variation 52 among the different continents of the world (Figure 1C). 53 To date, nine HPV types (HPV6, 11, 16, 18, 31, 33, 35, 45 54 and 52) are evident in BC across different population of the 55 world. The prevalence of these HPV types showed variation 56 among different population. The HPV16 was prevalent in 57 American BC patients, whereas HPV18 and HPV33 were 58 frequent in Australian and Chinese BC patients (Table 1). 59 Apart from the above mentioned three subtypes, prevalence 60 of other subtypes in BC patients among different population 61 are as follows: HPV6/HPV11 in 5-12.6% patients of 62 Iran and Spain (39,40), HPV31 in 1.5-11.5% patients of 63 Brazil and UK (37,48), HPV35 in 16-19.2% of patients 64 of Thailand and UK (37,49), HPV45 in 23% of UK BC 65 patients (37) and HPV52 in 1.5-11% of Brazil, UK and 66 Thailand patients (37,48,49). 67

HPV infection was also evident among the different 68 subtypes of BC (Table 2). Among these subtypes, 69 comparative high HPV infection was observed in Luminal 70 B than other BC subtypes indicating that these cells might 71 be favourable for HPV survival or may serve as an initial 72 target of HPV infection due to the cooperative interaction 73 with HER2 as well as ER (Figure 1D) (55,56). HPV 74 infection in Triple Negative Breast Cancer (TNBC) varied 75 from 15-50% in different studies, in which HPV16 was the 76 most prevalent subtype (Table 2). In addition, HPV infection 77 was also reported in adjacent normal and benign breast 78

95

96

tissue (Table 1) (57) as well as in BC cell lines MDA-MB-79 175-VII, SK-BR-3 and MCF7 (20,38). HPV infection was 80 also reported in nipple tissue, breast ductal lavage, nipple 81 discharge and even from breast milk (8,58-62). Interestingly, 82 presence of HPV was also observed in the serum-derived 83 extracellular vesicles (58). In many studies, the presence of 84 HPV genome in Indian, Italian and Australian BC patients 85 was confirmed by sequencing analysis apart from PCR 86 based methods (35,38,58). 87

Significant association between HPV infection, clinical 88 grade, young age of the patients and histology were reported 89 by different investigators worldwide (38,53,56), which 90 further establish the clinical implication of HPV infection 91 in BC. In addition, HPV associated poor prognosis of BC 92 patients was also reported by our group and Ohba *et al.* 93 (38,56). 94

#### Possible route of HPV infection in breast:

97 98 HPV infection can be transmitted through both sexual and nonsexual contacts. The genital HPV is mostly transmitted 99 by direct skin-to-skin contact during sexual intercourse 100 with an infected person (63). Generally, HPVs enter 101 into the body through the skin and epidermal injuries, 102 mucous membranes, skin abrasions and infects the cells 103 of the basal layer of the stratified epithelium (64). The 104 internalization of virions occurs slowly by endocytosis of 105 clathrin coated vesicles in the presence of heparin sulphate. 106 This ultimately leads to the transport of viral DNA to the 107 nucleus and in the process disruption of the intracapsomeric 108 disulphide bonds of the viral capsid occurs in the reducing 109 environment of the cell (65-70). However, there can be 110 three possible mode of HPV infection in breast tissue 111 (Figure 2). According to the first one, HPV may be 112 transmitted to breast from the genital region of the patients 113 having a previous history of HPV-positive uterine cervical 114 cancer (CACX) through blood, lymphatic systems or any 115 other body fluid (71). It may be the case where a secondary 116 malignant transformation of breast tissue could occur by 117 an HPV infected malignant cell, which is derived from the 118 primary tumour of any other site (72,73). It may also be due 119 to spill over of HPV virion to the circulation system from 120 HPV infected primary tumour site (74). As per the second 121 mechanism, transmission of HPV can occur to breast from 122 any oral site due to oral sexual practices (46). Third one 123 suggests that the transmission of HPV may occur to breast 124 by nipple or micro-lesion of breast skin due to genital-125 breast sexual activity (75,76). 126

| breast tissue    |   |
|------------------|---|
|                  | I |
| d adjacent norma |   |
| E                |   |
| breast tumour a  |   |
| .=               |   |
| prevalence i     |   |
| $\sim$           |   |
| HPV              |   |
| ldwide           |   |
| Wor!             |   |
| -                | Í |
| Table            |   |

|                                                  |            |              | ш            | sreast tumour |              |               | Adjacent    | Ticello      |                         |
|--------------------------------------------------|------------|--------------|--------------|---------------|--------------|---------------|-------------|--------------|-------------------------|
| Country                                          | benign     |              |              | Malignant     |              |               | breast      | preservation | Methods of<br>detection |
| •                                                | (%) AHH    | HPV (%)      | HPV16 (%)    | HPV18 (%)     | HPV33 (%)    | Other HPV (%) | HPV (%)     | - type       |                         |
| China [Yu <i>et al.</i> 1999] (11)               | 1/20, 5.0  | 18/52, 34.6  | 1/52, 1.9    | 0/52, 0.0     | I            | I             | I           | PET          | PCR/Southern            |
| China [Yu <i>et al.</i> 2000] (12)               | 4/72, 5.0  | 14/32, 43.8  | I            | I             | 14/32, 43.8  | I             | I           | PET          | PCR/Southern            |
| USA [de Villiers <i>et al.</i> 2004] (8)         |            | 25/29, 86.2  | 3/29, 10.3   | 0/29. 0.0     | 0/29,0.0     | 12/25, 48.0   | I           | PET          | PCR/In-situ             |
| Brazil [Damin <i>et al.</i> 2004] (13)           | 0/41, 0.0  | 25/101, 24.7 | 14/101, 13.8 | 10/101, 9.9   | I            | I             | I           | PET          | PCR/Seq                 |
| Turkey [Gumus <i>et al.</i> 2006] (14)           |            | 37/50, 74.0  | I            | 20/50, 40.0   | 35/50, 70.0  | I             | 16/50, 32.0 | СРТ          | PCR                     |
| Greece [Kroupis <i>et al.</i> 2006] (15)         |            | 17/107, 15.9 | 14/17, 67.0  | I             | I            | 7/17, 41.1    | I           | СРТ          | PCR                     |
| Korea [Choi <i>et al.</i> 2007] (16)             |            | 8/123, 6.5   | I            | I             | I            | I             | 0/31, 0.0   | PET          | PCR/Chip                |
| China [Tsai <i>et al.</i> 2005] (17)             |            | 8/62, 12.9   | I            | I             | I            | I             | 8\62 12.9   | СРТ          | PCR/Southern            |
| Japan [Khan <i>et al.</i> 2008] (18)             |            | 26/124, 20.9 | 24/26, 92.3  | 3/124, 2.4    | 1/124, 0.8   | I             | 0/11. 0.0   | PET          | PCR                     |
| Mexico [de León DC <i>et al</i> . 2009] (19)     |            | 15/51, 29.4  | 10/51, 19.6  | 3/51, 5.8     | I            | I             | 0/43. 0.0   | PET          | PCR                     |
| Australia [Heng <i>et al.</i> 2009] (20)         |            | 1/26, 3.8    | I            | I             | I            | I             | I           | PET          | PCR/In-situ             |
| China [He <i>et al</i> . 2009] (21)              |            | 24/40, 60.0  | I            | I             | I            | I             | 1/20. 5.0   | СРТ          | PCR                     |
| Mexico [Mendizabal-Ruiz <i>et al.</i> 2009] (22) |            | 3/67, 4.4    | I            | I             | I            | I             | 0/40, 0.0   | PET          | PCR                     |
| Mexico [Herrera-Goepfert et al. 2011] (23)       |            | 6/60, 10.0   | 6/60, 10.0   | I             | I            | I             | 7/60, 11.6  | PET          | PCR                     |
| China [Mou <i>et al.</i> 2011] (24)              |            | 4/62, 6.4    | 3/62, 4.8    | 1/62, 1.6     | I            | I             | 0/46, 0.0   | СРТ          | PCR                     |
| Italy [Frega <i>et al.</i> 2012] (25)            |            | 9/31, 29.0   | I            | I             | I            | I             | 0/12        | PET          | INNO-Lipa HPV           |
| Australia [Glenn <i>et al.</i> 2012] (26)        |            | 25/50, 50.0  | 25/50, 50.0  | I             | I            | I             | 8/40, 20.0  | СРТ          | PCR                     |
| Iran [Sigaroodi <i>et al.</i> 2012] (27)         |            | 15/58, 25.8  | 4/79, 5.0    | 4/79, 5.0     | I            | I             | 1/41, 2.4   | PET          | PCR/Seq                 |
| China [Liang <i>et al</i> . 2013] (28)           |            | 48/224, 21.4 | I            | I             | I            | I             | 6/37, 16.2  | Lump         | HC2                     |
| China [Wang <i>et al.</i> 2014] (29)             | 2/2, 100.0 | 7/7,100.0    | I            | I             | I            | I             | I           | СРТ          | HC/seq                  |
| Iraq [Ali <i>et al.</i> 2014] (30)               |            | 60/129, 46.5 | 33/129, 25.5 | 35/129, 27.1  | 16/129, 12.4 | I             | 3/44, 6.8   | PET          | In-situ                 |
| Iran [Ahangar-Oskouee <i>et al.</i> 2014] (31)   |            | 22/65, 33.8  | 1/65, 1.5    | I             | I            | I             | 0/65, 0.0   | PET          | PCR/Seq                 |
| Iran [Manzouri <i>et al.</i> 2014] (32)          |            | 10/55, 18.1  | 2/55, 3.6    | 1/55, 1.8     | 1/55, 1.8    | I             | 7/51, 13.7  | PET          | PCR                     |
| China [Peng <i>et al</i> . 2014] (33)            |            | 2/100, 2.0   | 2/100, 2.0   | I             | I            | I             | 0/50, 0.0   | CPT          | MS-PCR                  |
| China [Fu <i>et al.</i> 2015] (34)               |            | 25/169, 14.7 | I            | I             | I            | I             | 1/83, 1.2   | PET          | PCR                     |
| Table 1 (continued)                              |            |              |              |               |              |               |             |              |                         |

| Lable I (continued)                                                                |               |                  |               |                                |              |                                   |                  |               |                         |
|------------------------------------------------------------------------------------|---------------|------------------|---------------|--------------------------------|--------------|-----------------------------------|------------------|---------------|-------------------------|
|                                                                                    |               |                  | Breast        | tumour                         |              |                                   | Adjacent         | Ticerto       |                         |
| Country                                                                            | Benign        |                  |               | Malignant                      |              |                                   | normal<br>breast | preservation  | Methods of<br>detection |
|                                                                                    | (%) Adh       | HPV (%)          | HPV16 (%)     | HPV18 (%)                      | HPV33 (%)    | Other HPV (%)                     | (%) AHH          | type          |                         |
| China [Li <i>et al.</i> 2015] (7)                                                  |               | 3/187, 1.6       | I             | I                              | I            | I                                 | 0/92, 0.0        | PET           | PCR/Seq                 |
| Australia [Lawson <i>et al.</i> 2015] (35)                                         | 29/40, 72.5   | 29/40, 72.5      | 4/40, 10.0    | 22/40, 55.0                    | 8/40, 20.0   | I                                 | 6/20, 30.0       | PET           | PCR/Seq                 |
| Australia [Ngan <i>et al.</i> 2015] (36)                                           | 23/31, 74.1   | 24/31, 77.4      | 3/31, 9.6     | 21/31, 67.7                    | 4/31, 12.9   | I                                 | I                | PET           | PCR/Seq                 |
| UK [Salman <i>et al.</i> 2017] (37)                                                | 6/36, 16.6    | 35/74, 47.2      | 7/35, 20.0    | 8/35, 22.8                     | 3/35, 8.5    | 25/35, 71.4                       | I                | CPT           | PCR/Seq                 |
| India [Islam <i>et al.</i> 2017] (38)                                              | 5/7, 71       | 203/213, 64.8    | 120/174, 69   | 61/174, 35.0                   | 5/174, 2.9   | I                                 | 2/21, 9.5        | CPT           | PCR/Southern            |
| Spain [Delgado-García <i>et al.</i> 2017] (39)                                     |               | 130/251, 51.8    | I             | I                              | I            | I                                 | 49/186. 26.3     | PET           | PCR                     |
| Iran [Khodabandehlou <i>et al.</i> 2019] (40)                                      |               | 35/72, 48.6      | I             | I                              | I            | I                                 | 5/36, 16.1       | CPT           | PCR                     |
| UK [Wrede <i>et al</i> . 1992] (41)                                                | I             | 0/80, 0.0        | 0/80, 0.0     | 0/80, 0.0                      | 0/80, 0.0    | I                                 | I                | PET           | PCR                     |
| USA [Bratthauer <i>et al.</i> 1992] (42)                                           | I             | 0/13, 0.0        | 0/13, 0.0     | 0/13, 0.0                      | 0/13, 0.0    | 0/13, 0.0                         | 0/15, 0.0        | PET           | PCR                     |
| India [Gopalkrishna <i>et al</i> . 1996] (43)                                      | I             | 0/25, 0.0        | 0/25, 0.0     | 0/25, 0.0                      | I            | I                                 | 0/5, 0.0         | FNAC          | PCR                     |
| Switzerland [Lindel <i>et al.</i> 2007] (44)                                       | I             | 0/81, 0.0        | 0/81, 0.0     | 0/81, 0.0                      | 0/81, 0.0    | 0/81, 0.0                         | I                | PET           | PCR                     |
| France [de Cremoux <i>et al.</i> 2008] (45)                                        | I             | 0/50, 0.0        | 0/50, 0.0     | 0/50, 0.0                      | 0/50, 0.0    | 0/50, 0.0                         | I                | CPT           | PCR                     |
| China [Chang <i>et al.</i> 2012] (46)                                              | I             | 0/48, 0.0        | I             | I                              | I            | I                                 | 3/30, 10.0       | PET           | PCR                     |
| PCR, polymerase chain reaction; PCR/S<br>in-eth. PCR followed by in-eth. bybridise | eq, polymeras | e chain reaction | followed by : | sequencing; P(<br>B·HC2 hybrid | CR/southern, | polymerase cha<br>FT_naraffin-emb | in reaction foll | owed by South | Tern blot; PCR/         |

2 20 . . ž . 3 . ž 2 ņ 5 2 

Table 1 (continued)



**Figure 1** HPV prevalence in breast cancer in worldwide. (A) Frequency of HPV among the methods of detection. (B) Frequency of HPV among the preservation type of tissue samples. (C) Distribution of HPV among different continents of the world. (D) Frequency of HPV among different subtypes of breast cancer (BC). PET, paraffin-embedded tissue; CPT, cryo preserved tissue.

#### 127 Molecular profiles of HPV in BC

128 The persistent high-risk (hr) HPV infection are well 129 known prerequisite factor for clinical progression and 130 the development of Cervical intraepithelial neoplasia III 131 (CIN III) and CACX (77-79). The persistent infections 132 with hrHPVs have been identified as an essential but not 133 sufficient factor in the pathogenesis of anogenital and other 134 135 epithelial carcinomas (80). It was evident that sequential changes in the molecular profiles (genetic/epigenetic 136 expression) of HPV occurred during development of 137 tumour. Recent studies have shown that the majority 138 (86-100%) of HPV genome present in breast tissue in an 139 integrated form, an important step of HPV induced normal 140 epithelial cell transformation as well as carcinogenesis 141 (Table 3) (85). On the other hand, low copy number of HPV 142 genome with range 0.00054-9.3 copies/cell in breast tumor 143 was reported by different investigators including our group 144 (Table 3). Based on sequence variation of the HPV genome, 145 146 four naturally occurring lineages have been characterized like European-Asian (A), African-1(Af-1) (B) African-2(Af-2) 147 (C) and Asian-American-North American (D) (86). Among 148 these, American-North American (D) lineage was associated 149 with the virulence property (87). Our previous sequence 150

variation analysis of E6-E7 and LCR regions of HPV16 151 genome revealed that "A" lineage was frequent in BC 152 (64.2%, 36/56) followed by D (33.9%) and B (1.78%) (38). 153 Among these, frequent variants such as 7521 G > A at LCR 154 and 350T > G at E6 regions indicated their importance 155 in the process of carcinogenesis (88). HPV genome is 156 functionally subdivided into three regions: early, late and 157 the regulatory-long control region (LCR) or non-coding 158 region (NCR), each are separated by two polyadenylation 159 (pA) sites: early pA (pAE) and late pA (pAL) sites 160 (Figure 3) (89). After HPV infection and capsid uncoating, 161 P97 promoter derived early poly-cistronic mRNA transcript 162 is responsible for production of early response proteins i.e., 163 E1, E2, E4, E5, E6 and E7 by differential splicing (90). On 164 the other hand, the poly-cistronic mRNA transcript from 165 the late promoter P670 through differential splicing could 166 produce E1, E2, E4, L1 and L2 proteins. Our previous 167 study showed high methylation in p97 promoter (97%) 168 and enhancer (51%) at LCR region of HPV16 genome, 169 indicating the importance of this epigenetic modification in 170 regulation of the viral genome expression (38) (Table 3). 171

The expression of E6 and E7 oncogenes have their 172 significant biological implications in HPV induced 173 carcinogenesis. The E6/E7 transcripts were detected in 174

#### Page 6 of 13

|                                                   |                | TNBC               |                     |                | Her2+              |                     |                 | Luminal B          |                     |                | Luminal A          |                     |
|---------------------------------------------------|----------------|--------------------|---------------------|----------------|--------------------|---------------------|-----------------|--------------------|---------------------|----------------|--------------------|---------------------|
| Country                                           | HPV<br>(%)     | HPV16/18/33<br>(%) | Other<br>HPV<br>(%) | HPV<br>(%)     | HPV16/18/33<br>(%) | Other<br>HPV<br>(%) | HPV<br>(%)      | HPV16/18/33<br>(%) | Other<br>HPV<br>(%) | HPV<br>(%)     | HPV16/18/33<br>(%) | Other<br>HPV<br>(%) |
| Algeria [Corbex <i>et al.</i><br>2014] (50)       | 5/25,<br>20.0  | 4/25, 16.0         | 1/25,<br>4.0        | -              | _                  | -                   | -               | _                  | -                   | -              | -                  | -                   |
| Italy [Piana <i>et al.</i> 2014]<br>(51)          | 6/40,<br>15.0  | 28.6               | 14.3                | 0/2,<br>0.0    | -                  | -                   | -               | -                  | -                   | 0/38,<br>0.0   | -                  | -                   |
| Australia [Lawson <i>et al.</i><br>2015] (35)     | 1/2,<br>50.0   | 1/2, 50.0          | -                   | 2/2,<br>100.0  | 2/2, 100.0         | -                   | 18/22,<br>81.8  | 14/22, 81.8        | 4/22,<br>18.1       | 3/6,<br>50.0   | 3/6, 50.0          | -                   |
| Spain [Vernet-Tomas<br><i>et al.</i> 2015] (52)   | 0/16,<br>0.0   | -                  | -                   | -              | -                  | -                   |                 | -                  | -                   |                | -                  | -                   |
| Venezuela [Fernandes<br><i>et al.</i> 2015] (53)  | 2/2,<br>100    | -                  | -                   | 0              | -                  | -                   | 4/7,<br>54.1    | -                  | -                   | 4/13,<br>30.7  | -                  | -                   |
| India [Islam <i>et al.</i> 2017]<br>(38)          | 37/67,<br>55.2 | -                  | -                   | 56/84,<br>66.6 | -                  | -                   | 58/83,<br>69.9  | -                  | -                   | 23/38,<br>60.5 | -                  | -                   |
| Spain [Delgado-García<br><i>et al.</i> 2017] (39) | 11/24,<br>8.7  | -                  | -                   | 5/12,<br>4.0   | -                  | -                   | 73/118,<br>61.8 | , –                | -                   | 37/88,<br>29.4 | -                  | -                   |
| Morocco [Habyarimana<br><i>et al.</i> 2018] (54)  | 4\9,<br>44.4   | 2\2, 100.0         | 2\2,<br>100.0       | 3\6,<br>50.0   | 2\3, 66.6          | 1\3,<br>33.3        | 3\10,<br>30.0   | 2\3, 66.6          | 1\3,<br>33.3        | 12\21,<br>57.1 | 11\12, 91.6        | 1\12,<br>8.3        |

Table 2 Worldwide prevalence of HPV infection in different subtypes of breast cancer

TNBC, triple negative breast cancer.



**Figure 2** Representative diagram showing possible route of HPV transmission to breast tissue. There are mainly three possible mechanisms: (I) infected genital site to breast through blood/body fluid, (II) direct contact between genital and breast due abnormal sexual activity and (III) oral to breast due to oral sex activity.

24–100% of BC samples by different researchers including
our group (*Table 3*). Apart from the existing transcripts of
E6/E7, two novel fusion transcripts of E6/E7 (E6^E7\*I,
E6^E7\*II) in breast tumour were detected by us suggesting
the underlying differences in molecular pathogenesis of
HPV in BC compared to other cancers (*Figure 3*) (38).

Going further, different investigators including our group detected the E6/E7 protein expression in 24–76% breast samples indicating functional relevance of HPV in breast tumour tissue (*Table 3*) (35). In addition, E6 and E7 expression was also evident in adjacent normal tissue, nipple tissue and epithelial layer of normal breast skin (8,38,71).

Table 3 Molecular profiles of HPV in breast cancer

| Deferences                        | Molecular profiles           |                    | Description         |                    |
|-----------------------------------|------------------------------|--------------------|---------------------|--------------------|
| References                        | Physical Status              | Integrated (%)     | Mix (%)             | Episomal (%)       |
| Khodabandehlou et al. 2019 (40)   |                              | 86 (30/35)         | 14 (5/35)           |                    |
| Khan <i>et al.</i> 2008 (18)      |                              | 96 (25/26)         |                     | 4 (1/26)           |
| Islam <i>et al.</i> 2017 (38)     |                              | 87.5 (105/120)     | 8.3 (9/120)         | 4.2 (5/120)        |
| Aguayo <i>et al.</i> 2011 (81)    |                              | 100.0 (4/4)        |                     |                    |
| Herrera-Goepfert et al. 2013 (82) | Viral Load                   |                    | 0.20892 copies/cell |                    |
| Lawson <i>et al.</i> 2016 (71,83) |                              | 0.00               | 054–0.0021 copies/  | /cell              |
| Khan <i>et al.</i> 2008 (18)      |                              |                    | 5.4 copies/cell     |                    |
| Islam et al. 2017 (38)            |                              | 9.                 | 3 copies/50 ng gDN  | A                  |
| Islam et al. 2017 (38)            | Sequence variants            |                    | 70.8% (34/48)       |                    |
| Islam et al. 2017 (38)            | Methylation status           | P97 promoter: 96.7 | 7%, (30/31), Enhanc | er: 51.6%, (16/31) |
| Lawson <i>et al.</i> 2015 (35)    | E6 expression (mRNA/protein) |                    | 76% (16/21)         |                    |
| Islam et al. 2017 (38)            |                              |                    | 53.3% (16/30)       |                    |
| Suarez et al. 2013 (84)           |                              |                    | 56.2 (9/16)         |                    |
| Lawson <i>et al.</i> 2015 (35)    | E7 expression (mRNA/protein) |                    | 24% (5/21)          |                    |
| Islam et al. 2017 (38)            |                              |                    | 53.3% (16/30)       |                    |
| Suarez et al. 2013 (84)           |                              |                    | 56.2 (9/16)         |                    |
| Ngan <i>et al.</i> 2015 (36)      |                              |                    | 62.5% (20/32)       |                    |

#### 187 Molecular pathogenesis of HPV associated BC

188 The molecular mechanism of HPV infection in promoting 189 190 cervical cancer development and progression has been studied comprehensively (91). However, the exact 191 mechanism by which HPV induces or promotes breast 192 carcinogenesis is not well defined yet. It was evident that 193 the E6 and E7 oncoproteins of HPV16 could immortalize 194 human mammary epithelial cells through inactivation of 195 p53 and RB respectively indicating their importance in 196 cellular transformation (55,92). Different in-vitro studies 197 showed association of E6/E7 with multiple cellular 198 pathways in transformation of mammary epithelial cells 199 (Figure 4) (5). Among these pathways, E6/E7 could down 200 regulate P53, NFX1 and BRCA1 resulting up regulation 201 of CoX2, NF-κβ and ER associated pathways (72,93-97). 202 On the other hand, E6/E7 could stabilize HER2 receptor 203 resulting in the activation of beta-catenin and thus enhance 204 cellular proliferation (Figure 3) (55,98). Al Moustafa et al. 205 observed co-over expression of E6/E7 and HER-2 in 40% 206 207 of HPV16 positive BC (99). Ohba et al. showed association

of the APOBEC3B pathway with the ER-positive breast 208 tumors in presence of HPV (56). The association of E6 with 209 these pathways in breast carcinogenesis has been validated 210 in murine model systems (100). 211

#### Future management of HPV associated BC

214 215 In this review, it is evident that HPV is associated with a sub set of BC irrespective of different molecular subtypes. 216 As HPV infects the breast through nipple and micro-217 lesions on the breast skin due to genetial-breast sex activity, 218 hygienic sexual practice could prevent HPV infection to the 219 breast. In conventional cervical cancer screening, cervical 220 swab is used for HPV test followed by Pap test leading 221 to early diagnosis of cervical cancer (101). Likewise, it is 222 pertinent to detect HPV in breast ductal lavage, breast 223 nipple discharge and breast milk which will be useful for 224 determination of risk of BC as well as early diagnosis of BC. 225 Apart from these, detection of HPV in breast tissue will be 226 powerful biomarker for specific treatment protocol of the 227

212

213



**Figure 3** Schematic representation of molecular portrait of human papillomavirus 16 (HPV16) genome. The ~8 kb human papillomavirus genome may be found as an episomal or linear integrated form in the nucleus of the infected cell. The viral genome harbours two polyadenylation signals such as early polyadenylation signal (pAE) and late polyadenylation signal (pAL). The pAE signal terminates the transcription of early (E) genes such as E1–E7, whereas pAL signal terminate transcription of late (L) genes L1 and L2. The LCR of the genome contains the origin of DNA replication (ori) and the early viral promoter, p97 while the late promoter, p670, is located in the E7 coding region. eUTR and IUTR represent the early and late 3'UTR respectively. Known 5' splice donor site (SD) like SD226, SD880, SD1302 and SD3632 are shown as green circle with black border whereas 3' splice acceptors (SA) SA409, SA526, SA742, SA2582, SA2709, SA3358 and SA5639 are shown as blue circle with red border. Apart from these, two novel splice donor sites SD174 & SD221 and accepter sites SA718 & SA850 are depicted as green circle with red border and blue circle with red border respectively. Alternative splicing among these splice sites are produce two sets of mRNA transcripts from respective promoter p97 and p670. Red colour E6^E7\*I & E6^E7\*II represent the novel transcripts. Each transcript represents the most likely candidate mRNA for production of the corresponding proteins.



**Figure 4** Schematic diagram represent the Putative mechanism of HPV in breast carcinogenesis. (A) Interaction of E6 with E6-AP leads to the degradation of p53 resulting in increased cellular proliferation eventually transforming into immortalized mammary epithelial cells (MEC). (B) E6 linked with hTERT can mediate immortalization of MEC through inactivation of p14ARF-p53 pathway (V) E6 could increase the mammary cell proliferation through up regulation of Cox2. This occurs due to E6 mediated degradation of NFX1 resulting in p105 down regulation and stabilizing NF- $\kappa\beta$  which can now activate transcription of COX2. (D) E6/E7 interaction with HER2 results in its activation. HER2 in-turn activates c-Src which leads to the phoshorylation of beta-catenin at its C-terminal end as a result of which beta-catenin translocates to nucleus and activates different proliferation associated genes. (E) E6/E7 inhibits the function of BRCA1 resulting in restoration of expression of ER. High expression of ER leads to increased proliferation of mammary cell due to modulation of different proliferation associated genes.

HPV infected BC. Moreover, the presence of HPV in blood
plasma of BC patients can be the indicator of dissemination
of tumour cells from the primary site which can serve as
a useful prognostic tool of the disease. The prevalence of
HPV in BC indicates that prophylactic vaccination against
HPV is needed to restrict the disease in women (102).

234 235

#### Conclusions

In this review, we suggest that HPV is an important
etiological factor in the development of a sub-set of BC
and also HPV associated BC has some distinct molecular
profile than other HPV associated cancers like cervical
cancer (CACX), head and neck squamous cell carcinoma

(HNSCC). Thus an in-depth understanding and analysis 242 of the molecular profile of BC in the light of HPV is 243 essentially needed for the proper management of the 244 disease. 245

#### 246 247

#### **Acknowledgments**

The authors thank the Director, Chittaranjan National248<br/>249Cancer Institute, Kolkata, India for kind interest in the<br/>work. We would like to thank Mr. Aniban Roychowdhury251<br/>252for his language editing help and valuable suggestions.253<br/>253Funding: The financial support for this work was provided<br/>by UGC-NET Fellowship grant Sr. No. 2121430433, Ref.<br/>No.: 21/12/2014(ii) EU-V dated 08.06.2015 to Mr. BC.253

#### Islam et al. HPV infection in BC

#### Page 10 of 13

#### 256 Footnote

2.62

263

264

265

266

277

279

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.
org/10.21037/atm-19-2756). The authors have no conflicts of interest to declare.

*Ethical Statement:* The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

267 Open Access Statement: This is an Open Access article 268 distributed in accordance with the Creative Commons 269 Attribution-NonCommercial-NoDerivs 4.0 International 270 License (CC BY-NC-ND 4.0), which permits the non-271 commercial replication and distribution of the article with 272 the strict proviso that no changes or edits are made and the 273 original work is properly cited (including links to both the 274 formal publication through the relevant DOI and the license). 275 See: https://creativecommons.org/licenses/by-nc-nd/4.0/. 276

#### <sup>278</sup> References

- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
- Malvia S, Bagadi SA, Dubey US, et al. Epidemiology of
   breast cancer in Indian women. Asia Pac J Clin Oncol
   2017;13:289-95.
- Hankinson SE, Colditz GA, Willett WC. Towards an
   integrated model for breast cancer etiology: the lifelong
   interplay of genes, lifestyle, and hormones. Breast Cancer
   Res 2004;6:213-8.
- Alibek K, Kakpenova A, Mussabekova A, et al. Role of
   viruses in the development of breast cancer. Infect Agent
   Cancer 2013;8:32.
- de Lima EG, do Amaral CM, Peixe FC, et al. Putative
   Mechanisms of Viral Transmission and Molecular
   Dysregulation of Mammary Epithelial Cells by Human
   Papillomavirus: Implications for Breast Cancer. Curr Mol
   Med 2016. [Epub ahead of print].
- Wang T, Chang P, Wang L, et al. The role of human
  papillomavirus infection in breast cancer. Med Oncol
  2012;29:48-55.
- 302 7. Li J, Ding J, Zhai K. Detection of Human Papillomavirus
  303 DNA in Patients with Breast Tumor in China. PLoS One

|             | 2015;10:e0136050.                                            | 304  |
|-------------|--------------------------------------------------------------|------|
| 8.          | de Villiers EM, Sandstrom RE, zur Hausen H, et al.           | 305  |
|             | Presence of papillomavirus sequences in condylomatous        | 306  |
|             | lesions of the mamillae and in invasive carcinoma of the     | 307  |
|             | breast. Breast Cancer Res 2005;7:R1-11.                      | 308  |
| 9.          | Polyak K. Breast cancer: origins and evolution. J Clin       | 309  |
|             | Invest 2007;117:3155-63.                                     | 310  |
| 10.         | Ma H, Wang Y, Sullivan-Halley J, et al. Use of four          | 311  |
|             | biomarkers to evaluate the risk of breast cancer subtypes in | 312  |
|             | the women's contraceptive and reproductive experiences       | 313  |
|             | study. Cancer Res 2010;70:575-87.                            | 314  |
| 11.         | Yu Y, Morimoto T, Sasa M, et al. HPV33 DNA in                | 315  |
|             | premalignant and malignant breast lesions in Chinese and     | 316  |
|             | Japanese populations. Anticancer Res 1999;19:5057-61.        | 317  |
| 12.         | Yu Y, Morimoto T, Sasa M, et al. Human papillomavirus        | 318  |
|             | type 33 DNA in breast cancer in Chinese. Breast Cancer       | 319  |
|             | 2000;7:33-6.                                                 | 320  |
| 13.         | Damin AP, Karam R, Zettler CG, et al. Evidence for           | 321  |
|             | an association of human papillomavirus and breast            | 322  |
|             | carcinomas. Breast Cancer Res Treat 2004;84:131-7.           | 323  |
| 14.         | Gumus M, Yumuk PF, Salepci T, et al. HPV DNA                 | 324  |
|             | frequency and subset analysis in human breast cancer         | 325  |
|             | patients' normal and tumoral tissue samples. J Exp Clin      | 326  |
|             | Cancer Res 2006;25:515-21.                                   | 327  |
| 15.         | Kroupis C, Markou A, Vourlidis N, et al. Presence of         | 328  |
|             | high-risk human papillomavirus sequences in breast           | 329  |
|             | cancer tissues and association with histopathological        | 330  |
|             | characteristics. Clin Biochem 2006;39:727-31.                | 331  |
| 16.         | Choi YL, Cho EY, Kim JH, et al. Detection of human           | 332  |
|             | papillomavirus DNA by DNA chip in breast carcinomas of       | 333  |
|             | Korean women. Tumour Biol 2007;28:327-32.                    | 334  |
| 17.         | Isai JH, Isai CH, Cheng MH, et al. Association of            | 335  |
|             | viral factors with non-familial breast cancer in Taiwan      | 336  |
|             | by comparison with non-cancerous, fibroadenoma, and          | 337  |
| 10          | thyroid tumor tissues. J Med Virol 2005;75:276-81.           | 338  |
| 18.         | Knan NA, Castillo A, Koriyama C, et al. Human                | 339  |
|             | papiliomavirus detected in remaie breast carcinomas in       | 241  |
| 10          | Japan. Br J Cancer 2008;99:408-14.                           | 341  |
| 19.         | de Leon DC, Montiel DP, Nemcova J, et al. Human              | 342  |
|             | papillomavirus (HPV) in breast tumors: prevalence in a       | 343  |
| 20          | Liong P. Clann W.K. Va V. at al. Human papillame             | 245  |
| 20.         | rieng b, Gienn WK, ie i, et al. Human papinoma               | 245  |
|             | 2000.101.1345 50                                             | 340  |
| 21          | Ha O Zhang SO Chu VI at al The completions between           | 3/10 |
| <i>∠</i> 1. | HPV16 infaction and expressions of a subP 2 and hel 2 in     | 340  |
|             | breast carcinoma. Mol Biol Rep 2000-26:807-12                | 350  |
| ~~          |                                                              |      |

22. Mendizabal-Ruiz AP, Morales JA, Ramirez-Jirano LJ, et al. 351

### Page 11 of 13

| 352 |     | Low frequency of human papillomavirus DNA in breast          | 36. | ľ  |
|-----|-----|--------------------------------------------------------------|-----|----|
| 353 |     | cancer tissue. Breast Cancer Res Treat 2009;114:189-94.      |     | ſ  |
| 354 | 23. | Herrera-Goepfert R, Khan NA, Koriyama C, et al. High-        |     | E  |
| 355 |     | risk human papillomavirus in mammary gland carcinomas        | 37. | S  |
| 356 |     | and non-neoplastic tissues of Mexican women: no              |     | F  |
| 357 |     | evidence supporting a cause and effect relationship. Breast  |     | b  |
| 358 |     | 2011;20:184-9.                                               | 38. | Ι  |
| 359 | 24. | Mou X, Chen L, Liu F, et al. Low prevalence of human         |     | a  |
| 360 |     | papillomavirus (HPV) in Chinese patients with breast         |     | i  |
| 361 |     | cancer. J Int Med Res 2011;39:1636-44.                       |     | i  |
| 362 | 25. | Frega A, Lorenzon L, Bononi M, et al. Evaluation of E6       | 39. | Ι  |
| 363 |     | and E7 mRNA expression in HPV DNA positive breast            |     | F  |
| 364 |     | cancer. Eur J Gynaecol Oncol 2012;33:164-7.                  |     | a  |
| 365 | 26. | Glenn WK, Heng B, Delprado W, et al. Epstein-Barr            | 40. | ŀ  |
| 366 |     | virus, human papillomavirus and mouse mammary tumour         |     | р  |
| 367 |     | virus as multiple viruses in breast cancer. PLoS One         |     | a  |
| 368 |     | 2012;7:e48788.                                               | 41. | ſ  |
| 369 | 27. | Sigaroodi A, Nadji SA, Naghshvar F, et al. Human             |     | С  |
| 370 |     | papillomavirus is associated with breast cancer in the north |     | 1  |
| 371 |     | part of Iran. ScientificWorldJournal 2012;2012:837191.       | 42. | E  |
| 372 | 28. | Liang W, Wang J, Wang C, et al. Detection of high-           |     | b  |
| 373 |     | risk human papillomaviruses in fresh breast cancer           |     | t  |
| 374 |     | samples using the hybrid capture 2 assay. J Med Virol        | 43. | (  |
| 375 |     | 2013;85:2087-92.                                             |     | h  |
| 376 | 29. | Wang T, Zeng X, Li W, et al. Detection and analysis          |     | b  |
| 377 |     | of human papillomavirus (HPV) DNA in breast cancer           |     | 1  |
| 378 |     | patients by an effective method of HPV capture. PLoS         | 44. | Ι  |
| 379 |     | One 2014;9:e90343.                                           |     | a  |
| 380 | 30. | Ali SH, Al-Alwan NA, Al-Alwany SH. Detection and             |     | C  |
| 381 |     | genotyping of human papillomavirus in breast cancer          |     | 2  |
| 382 |     | tissues from Iraqi patients. East Mediterr Health J          | 45. | d  |
| 383 |     | 2014;20:372-7.                                               |     | h  |
| 384 | 31. | Ahangar-Oskouee M, Shahmahmoodi S, Jalilvand S, et al.       |     | С  |
| 385 |     | No detection of 'high-risk' human papillomaviruses in a      | 46. | (  |
| 386 |     | group of Iranian women with breast cancer. Asian Pac J       |     | p  |
| 387 |     | Cancer Prev 2014;15:4061-5.                                  |     | (  |
| 388 | 32. | Manzouri L, Salehi R, Shariatpanahi S, et al. Prevalence of  | 47. | I  |
| 389 |     | human papilloma virus among women with breast cancer         |     | (  |
| 390 |     | since 2005-2009 in Istahan. Adv Biomed Res 2014;3:75.        |     | ŀ  |
| 391 | 33. | Peng J, Wang T, Zhu H, et al. Multiplex PCR/mass             | 10  | E  |
| 392 |     | spectrometry screening of biological carcinogenic agents     | 48. | (  |
| 393 | ~ . | in human mammary tumors. J Clin Virol 2014;61:255-9.         |     | P  |
| 394 | 34. | Fu L, Wang D, Shah W, et al. Association of human            |     | (. |
| 395 |     | papillomavirus type 58 with breast cancer in Shaanxi         | 40  | (  |
| 396 | 2.5 | province of China. J Med Virol 2015;8/:1034-40.              | 49. | 1  |
| 397 | 35. | Lawson JS, Glenn WK, Salyakina D, et al. Human               |     | ŀ  |
| 398 |     | Papilloma Viruses and Breast Cancer. Front Oncol             |     | (  |
| 399 |     | 2013;5:277.                                                  |     | 2  |
|     |     |                                                              |     |    |

| 36. | Ngan C, Lawson JS, Clay R, et al. Early Human Papilloma<br>Virus (HPV) Oncogenic Influences in Breast Cancer. | 400<br>401 |
|-----|---------------------------------------------------------------------------------------------------------------|------------|
|     | Breast Cancer (Auckl) 2015:9:93-7.                                                                            | 402        |
| 37. | Salman NA, Davies G, Majidy F, et al. Association of High                                                     | 403        |
|     | Risk Human Papillomavirus and Breast cancer: A UK                                                             | 404        |
|     | based Study. Sci Rep 2017;7:43591.                                                                            | 405        |
| 38. | Islam S, Dasgupta H, Roychowdhury A, et al. Study of                                                          | 406        |
|     | association and molecular analysis of human papillomavirus                                                    | 407        |
|     | in breast cancer of Indian patients: Clinical and prognostic                                                  | 408        |
|     | implication. PLoS One 2017;12:e0172760.                                                                       | 409        |
| 39. | Delgado-García S, Martinez-Escoriza IC, Alba A, et al.                                                        | 410        |
|     | Presence of human papillomavirus DNA in breast cancer:                                                        | 411        |
|     | a Spanish case-control study. BMC Cancer 2017;17:320.                                                         | 412        |
| 40. | Khodabandehlou N, Mostafaei S, Etemadi A, et al. Human                                                        | 413        |
|     | papilloma virus and breast cancer: the role of inflammation                                                   | 414        |
|     | and viral expressed proteins. BMC Cancer 2019;19:61.                                                          | 415        |
| 41. | Wrede D, Lugmani YA, Coombes RC, et al. Absence                                                               | 416        |
|     | of HPV 16 and 18 DNA in breast cancer. Br J Cancer                                                            | 417        |
|     | 1992;65:891-4.                                                                                                | 418        |
| 42. | Bratthauer GL, Tavassoli FA, O'Leary TJ. Etiology of                                                          | 419        |
|     | breast carcinoma: no apparent role for papillomavirus                                                         | 420        |
|     | types 6/11/16/18. Pathol Res Pract 1992;188:384-6.                                                            | 421        |
| 43. | Gopalkrishna V, Singh UR, Sodhani P, et al. Absence of                                                        | 422        |
|     | human papillomavirus DNA in breast cancer as revealed                                                         | 423        |
|     | by polymerase chain reaction. Breast Cancer Res Treat                                                         | 424        |
|     | 1996;39:197-202.                                                                                              | 425        |
| 44. | Lindel K, Forster A, Altermatt HJ, et al. Breast cancer                                                       | 426        |
|     | and human papillomavirus (HPV) infection: no evidence                                                         | 427        |
|     | of a viral etiology in a group of Swiss women. Breast                                                         | 428        |
|     | 2007;16:172-7.                                                                                                | 429        |
| 45. | de Cremoux P, Thioux M, Lebigot I, et al. No evidence of                                                      | 430        |
|     | human papillomavirus DNA sequences in invasive breast                                                         | 431        |
|     | carcinoma. Breast Cancer Res Treat 2008;109:55-8.                                                             | 432        |
| 46. | Chang P, Wang T, Yao Q, et al. Absence of human                                                               | 433        |
|     | papillomavirus in patients with breast cancer in north-west                                                   | 434        |
|     | China. Med Oncol 2012;29:521-5.                                                                               | 435        |
| 47. | Lüder Ripoli F, Mohr A, Conradine Hammer S, et al. A                                                          | 436        |
|     | Comparison of Fresh Frozen vs. Formalin-Fixed, Paraffin-                                                      | 437        |
|     | Embedded Specimens of Canine Mammary Tumors via                                                               | 438        |
|     | Branched-DNA Assay. Int J Mol Sci 2016;17:724.                                                                | 439        |
| 48. | Cavalcante JR, Pinheiro LGP, Almeida PRC, et al.                                                              | 440        |
|     | Association of breast cancer with human papillomavirus                                                        | 441        |
|     | (HPV) infection in Northeast Brazil: molecular evidence.                                                      | 442        |
|     | Clinics (Sao Paulo) 2018;73:e465.                                                                             | 443        |
| 49. | Ngamkham J, Karalak A, Chaiwerawattana A, et al.                                                              | 444        |
|     | Prevalence of Human Papillomavirus Infection in Breast                                                        | 445        |
|     | Cancer Cells from Thai Women. Asian Pac J Cancer Prev                                                         | 446        |
|     | 2017;18:1839-45.                                                                                              | 447        |
|     |                                                                                                               |            |

#### Islam et al. HPV infection in BC

496

497

498

499

500

501

502

503

504

505

| 448<br>449 | 50. | Corbex M, Bouzbid S, Traverse-Glehen A, et al.<br>Prevalence of papillomaviruses, polyomaviruses, and |     | prevalence of genital human papillomavirus infections<br>in abused and nonabused preadolescent girls. Pediatrics |
|------------|-----|-------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|
| 450        |     | herpesviruses in triple-negative and inflammatory breast                                              |     | 2000;106:645-9.                                                                                                  |
| 451        |     | tumors from algeria compared with other types of breast                                               | 64. | Beutner KR, Wiley DJ, Douglas JM, et al. Genital warts                                                           |
| 452        |     | cancer tumors. PLoS One 2014;9:e114559.                                                               |     | and their treatment. Clin Infect Dis 1999;28 Suppl                                                               |
| 453        | 51. | Piana AF, Sotgiu G, Muroni MR, et al. HPV infection and                                               |     | 1:S37-56.                                                                                                        |
| 454        |     | triple-negative breast cancers: an Italian case-control study.                                        | 65. | Giroglou T, Florin L, Schafer F, et al. Human                                                                    |
| 455        |     | Virol J 2014;11:190.                                                                                  |     | papillomavirus infection requires cell surface heparan                                                           |
| 456        | 52. | Vernet-Tomas M, Mena M, Alemany L, et al. Human                                                       |     | sulfate. J Virol 2001;75:1565-70                                                                                 |
| 457        |     | papillomavirus and breast cancer: no evidence of                                                      | 66. | Joyce JG, Tung JS, Przysiecki CT, et al. The L1                                                                  |
| 458        |     | association in a Spanish set of cases. Anticancer Res                                                 |     | major capsid protein of human papillomavirus type 11                                                             |
| 459        |     | 2015;35:851-6.                                                                                        |     | recombinant virus-like particles interacts with heparin and                                                      |
| 460        | 53. | Fernandes A, Bianchi G, Feltri AP, et al. Presence of                                                 |     | cell-surface glycosaminoglycans on human keratinocytes. J                                                        |
| 461        |     | human papillomavirus in breast cancer and its association                                             |     | Biol Chem 1999;274:5810-22.                                                                                      |
| 462        |     | with prognostic factors. Ecancermedicalscience                                                        | 67. | Culp TD, Christensen ND. Kinetics of in vitro                                                                    |
| 463        |     | 2015;9:548.                                                                                           |     | adsorption and entry of papillomavirus virions. Virology                                                         |
| 464        | 54. | Habyarimana T, Attaleb M, Mazarati JB, et al. Detection                                               |     | 2004;319:152-61.                                                                                                 |
| 465        |     | of human papillomavirus DNA in tumors from Rwandese                                                   | 68. | Day PM, Lowy DR, Schiller JT. Papillomaviruses                                                                   |
| 466        |     | breast cancer patients. Breast Cancer 2018;25:127-33.                                                 |     | infect cells via a clathrin-dependent pathway. Virology                                                          |
| 467        | 55. | Woods Ignatoski KM, Dziubinski ML, Ammerman C,                                                        |     | 2003;307:1-11.                                                                                                   |
| 468        |     | et al. Cooperative interactions of HER-2 and HPV-16                                                   | 69. | Selinka HC, Giroglou T, Sapp M. Analysis of the                                                                  |
| 469        |     | oncoproteins in the malignant transformation of human                                                 |     | infectious entry pathway of human papillomavirus type 33                                                         |
| 470        |     | mammary epithelial cells. Neoplasia 2005;7:788-98.                                                    |     | pseudovirions. Virology 2002;299:279-87.                                                                         |
| 471        | 56. | Ohba K, Ichiyama K, Yajima M, et al. In vivo and in vitro                                             | 70. | Li M, Beard P, Estes PA, et al. Intercapsomeric disulfide                                                        |
| 472        |     | studies suggest a possible involvement of HPV infection                                               |     | bonds in papillomavirus assembly and disassembly. J Virol                                                        |
| 473        |     | in the early stage of breast carcinogenesis via APOBEC3B                                              |     | 1998;72:2160-7.                                                                                                  |
| 474        |     | induction. PLoS One 2014;9:e97787.                                                                    | 71. | Lawson JS, Glenn WK, Salyakina D, et al. Human                                                                   |
| 475        | 57. | Bae JM, Kim EH. Human papillomavirus infection and                                                    |     | Papilloma Virus Identification in Breast Cancer Patients                                                         |
| 476        |     | risk of breast cancer: a meta-analysis of case-control                                                |     | with Previous Cervical Neoplasia. Front Oncol 2016;5:298.                                                        |
| 477        |     | studies. Infect Agent Cancer 2016;11:14.                                                              | 72. | Widschwendter A, Brunhuber T, Wiedemair A, et al.                                                                |
| 478        | 58. | Carolis S, Pellegrini A, Santini D, et al. Liquid biopsy                                              |     | Detection of human papillomavirus DNA in breast cancer                                                           |
| 479        |     | in the diagnosis of HPV DNA in breast lesions. Future                                                 |     | of patients with cervical cancer history. J Clin Virol                                                           |
| 480        |     | Microbiol 2018;13:187-94.                                                                             |     | 2004;31:292-7.                                                                                                   |
| 481        | 59. | Balci FL, Uras C, Feldman SM. Is human papillomavirus                                                 | 73. | Hennig EM, Suo Z, Thoresen S, et al. Human                                                                       |
| 482        |     | associated with breast cancer or papilloma presenting with                                            |     | papillomavirus 16 in breast cancer of women treated for                                                          |
| 483        |     | pathologic nipple discharge? Cancer Treat Res Commun                                                  |     | high grade cervical intraepithelial neoplasia (CIN III).                                                         |
| 484        |     | 2019;19:100122.                                                                                       |     | Breast Cancer Res Treat 1999;53:121-35.                                                                          |
| 485        | 60. | Louvanto K, Sarkola M, Rintala M, et al. Breast Milk Is a                                             | 74. | Bodaghi S, Wood LV, Roby G, et al. Could human                                                                   |
| 486        |     | Potential Vehicle for Human Papillomavirus Transmission                                               |     | papillomaviruses be spread through blood? J Clin                                                                 |
| 487        |     | to Oral Mucosa of the Spouse. Pediatr Infect Dis J                                                    |     | Microbiol 2005;43:5428-34.                                                                                       |
| 488        |     | 2017;36:627-30.                                                                                       | 75. | Islam S, Dasgupta H, Basu M, et al. Skin mediates Human                                                          |
| 489        | 61. | Tuominen H, Rautava S, Collado MC, et al. HPV                                                         |     | Papilloma Virus (HPV) infection in breast: A report of                                                           |
| 490        |     | infection and bacterial microbiota in breast milk and infant                                          |     | four cases. Available online: https://www.researchgate.                                                          |
| 491        |     | oral mucosa. PLoS One 2018;13:e0207016.                                                               |     | net/publication/324008020_Skin_mediated_human_                                                                   |
| 492        | 62. | Diaz S, Boulle N, Moles JP, et al. Human papillomavirus                                               |     | papillomavirus_infection_in_breast_A_report_of_four_cases                                                        |
| 493        |     | (HPV) shedding in breast milk from African women living                                               | 76. | Breast cancer may be sexually transmitted. 2006.                                                                 |
| 494        |     | with HIV. J Clin Virol 2018;106:41-3.                                                                 |     | Available online: www.abc.net.au/science/news/                                                                   |
| 495        | 63. | Stevens-Simon C, Nelligan D, Breese P, et al. The                                                     |     | stories/2006/1808903.htm. Accessed 12 December.                                                                  |

|        | major capsid protein of human papillomavirus type 11                    | 506 |
|--------|-------------------------------------------------------------------------|-----|
|        | recombinant virus-like particles interacts with heparin and             | 507 |
|        | cell-surface glycosaminoglycans on human keratinocytes. J               | 508 |
|        | Biol Chem 1999;274:5810-22.                                             | 509 |
| 67.    | Culp TD, Christensen ND. Kinetics of in vitro                           | 510 |
|        | adsorption and entry of papillomavirus virions. Virology                | 511 |
|        | 2004;319:152-61.                                                        | 512 |
| 68.    | Day PM, Lowy DR, Schiller JT. Papillomaviruses                          | 513 |
|        | infect cells via a clathrin-dependent pathway. Virology                 | 514 |
|        | 2003;307:1-11.                                                          | 515 |
| 69.    | Selinka HC, Giroglou T, Sapp M. Analysis of the                         | 516 |
|        | infectious entry pathway of human papillomavirus type 33                | 517 |
|        | pseudovirions. Virology 2002;299:279-87.                                | 518 |
| 70.    | Li M, Beard P, Estes PA, et al. Intercapsomeric disulfide               | 519 |
|        | bonds in papillomavirus assembly and disassembly. J Virol               | 520 |
|        | 1998;72:2160-7.                                                         | 521 |
| 71.    | Lawson JS, Glenn WK, Salyakina D, et al. Human                          | 522 |
|        | Papilloma Virus Identification in Breast Cancer Patients                | 523 |
|        | with Previous Cervical Neoplasia. Front Oncol 2016;5:298.               | 524 |
| 72.    | Widschwendter A, Brunhuber T, Wiedemair A, et al.                       | 525 |
|        | Detection of human papillomavirus DNA in breast cancer                  | 526 |
|        | of patients with cervical cancer history. J Clin Virol                  | 527 |
|        | 2004;31:292-7.                                                          | 528 |
| 73.    | Hennig EM, Suo Z, Thoresen S, et al. Human                              | 529 |
|        | papillomavirus 16 in breast cancer of women treated for                 | 530 |
|        | high grade cervical intraepithelial neoplasia (CIN III).                | 531 |
|        | Breast Cancer Res Treat 1999;53:121-35.                                 | 532 |
| 74.    | Bodaghi S, Wood LV, Roby G, et al. Could human                          | 533 |
|        | papillomaviruses be spread through blood? J Clin                        | 534 |
|        | Microbiol 2005;43:5428-34.                                              | 535 |
| 75.    | Islam S, Dasgupta H, Basu M, et al. Skin mediates Human                 | 536 |
|        | Papilloma Virus (HPV) infection in breast: A report of                  | 537 |
|        | four cases. Available online: https://www.researchgate.                 | 538 |
|        | net/publication/324008020_Skin_mediated_human_                          | 539 |
|        | papillomavirus_infection_in_breast_A_report_of_four_cases               | 540 |
| 76.    | Breast cancer may be sexually transmitted. 2006.                        | 541 |
|        | Available online: www.abc.net.au/science/news/                          | 542 |
|        | stories/2006/1808903.htm. Accessed 12 December.                         | 543 |
| Ann Tr | <i>ansl Med</i> 2020;8(10):650   http://dx.doi.org/10.21037/atm-19-2756 |     |
|        |                                                                         |     |

| 544 | 77. | Wallin KL, Wiklund F, Angstrom T, et al. Type-specific      |      |
|-----|-----|-------------------------------------------------------------|------|
| 545 |     | persistence of human papillomavirus DNA before the          | -    |
| 546 |     | development of invasive cervical cancer. N Engl J Med       | 92.  |
| 547 |     | 1999;341:1633-8.                                            |      |
| 548 | 78. | Zielinski GD, Snijders PJ, Rozendaal L, et al. HPV          |      |
| 549 |     | presence precedes abnormal cytology in women developing     |      |
| 550 |     | cervical cancer and signals false negative smears. Br J     | 93.  |
| 551 |     | Cancer 2001;85:398-404.                                     |      |
| 552 | 79. | zur Hausen H. Papillomavirus infectionsa major cause of     |      |
| 553 |     | human cancers. Biochim Biophys Acta 1996;1288:F55-78.       |      |
| 554 | 80. | zur Hausen H. Papillomaviruses and cancer: from             | 94.  |
| 555 |     | basic studies to clinical application. Nat Rev Cancer       |      |
| 556 |     | 2002;2:342-50.                                              | ·    |
| 557 | 81. | Aguayo F, Khan N, Koriyama C, et al. Human                  | 95.  |
| 558 |     | papillomavirus and Epstein-Barr virus infections in breast  |      |
| 559 |     | cancer from chile. Infect Agent Cancer 2011;6:7.            |      |
| 560 | 82. | Herrera-Goepfert R, Vela-Chavez T, Carrillo-Garcia          | 96.  |
| 561 |     | A, et al. High-risk human papillomavirus (HPV) DNA          |      |
| 562 |     | sequences in metaplastic breast carcinomas of Mexican       |      |
| 563 |     | women. BMC Cancer 2013;13:445.                              | 97.  |
| 564 | 83. | Lawson JS, Glenn WK, Whitaker NJ. Human Papilloma           |      |
| 565 |     | Viruses and Breast Cancer - Assessment of Causality. Front  | 98.  |
| 566 |     | Oncol 2016;6:207.                                           |      |
| 567 | 84. | Pereira Suarez AL, Lorenzetti MA, Gonzalez Lucano R, et     |      |
| 568 |     | al. Presence of human papilloma virus in a series of breast | 99   |
| 569 |     | carcinoma from Argentina. PLoS One 2013;8:e61613.           | :    |
| 570 | 85. | McBride AA, Warburton A. The role of integration in         | :    |
| 571 |     | oncogenic progression of HPV-associated cancers. PLoS       |      |
| 572 |     | Pathog 2017;13:e1006211.                                    | 100. |
| 573 | 86. | Burk RD, Harari A, Chen Z. Human papillomavirus             |      |
| 574 |     | genome variants. Virology 2013;445:232-43.                  | :    |
| 575 | 87. | Mirabello L, Yeager M, Cullen M, et al. HPV16               | 101. |
| 576 |     | Sublineage Associations With Histology-Specific Cancer      |      |
| 577 |     | Risk Using HPV Whole-Genome Sequences in 3200               |      |
| 578 |     | Women. J Natl Cancer Inst 2016;108:djw100.                  |      |
| 579 | 88. | DeFilippis VR, Ayala FJ, Villarreal LP. Evidence of         | 102. |
| 580 |     | diversifying selection in human papillomavirus type 16 E6   |      |
| 581 |     | but not E7 oncogenes. J Mol Evol 2002;55:491-9.             |      |
| 582 | 89. | Doorbar J, Egawa N, Griffin H, et al. Human                 |      |
| 583 |     | papillomavirus molecular biology and disease association.   |      |
| 584 |     | Rev Med Virol 2015;25 Suppl 1:2-23.                         | Cit  |
| 585 | 90. | Johansson C, Schwartz S. Regulation of human                | H    |
| 586 |     | papillomavirus gene expression by splicing and              | ma   |
| 587 | . · | polyadenylation. Nat Rev Microbiol 2013;11:239-51.          | atur |
| 588 | 91. | Balasubramaniam SD, Balakrishnan V, Oon CE, et al.          | aun  |

© Annals of Translational Medicine. All rights reserved.

589

|     | Key Molecular Events in Cervical Cancer Development.      | 590 |
|-----|-----------------------------------------------------------|-----|
|     | Medicina (Kaunas) 2019;55:384.                            | 591 |
| 92. | Wazer DE, Liu XL, Chu Q, et al. Immortalization of        | 592 |
|     | distinct human mammary epithelial cell types by human     | 593 |
|     | papilloma virus 16 E6 or E7. Proc Natl Acad Sci U S A     | 594 |
|     | 1995;92:3687-91.                                          | 595 |
| 93. | Liu Y, Chen JJ, Gao Q, et al. Multiple functions of       | 596 |
|     | human papillomavirus type 16 E6 contribute to the         | 597 |
|     | immortalization of mammary epithelial cells. J Virol      | 598 |
|     | 1999;73:7297-307.                                         | 599 |
| 94. | Wang YX, Zhang ZY, Wang JQ, et al. HPV16 E7 increases     | 600 |
|     | COX-2 expression and promotes the proliferation of        | 601 |
|     | breast cancer. Oncol Lett 2018;16:317-25.                 | 602 |
| 95. | Zhang Y, Fan S, Meng Q, et al. BRCA1 interaction          | 603 |
|     | with human papillomavirus oncoproteins. J Biol Chem       | 604 |
|     | 2005;280:33165-77.                                        | 605 |
| 96. | Rosen EM, Fan S, Isaacs C. BRCA1 in hormonal              | 606 |
|     | carcinogenesis: basic and clinical research. Endocr Relat | 607 |
|     | Cancer 2005;12:533-48.                                    | 608 |
| 97. | Hilakivi-Clarke L. Estrogens, BRCA1, and breast cancer.   | 609 |
|     | Cancer Res 2000;60:4993-5001.                             | 610 |
| 98. | Yasmeen A, Bismar TA, Kandouz M, et al. E6/E7 of HPV      | 611 |
|     | type 16 promotes cell invasion and metastasis of human    | 612 |
|     | breast cancer cells. Cell Cycle 2007;6:2038-42.           | 613 |
| 99. | Al Moustafa AE, Kassab A, Darnel A, et al. High-          | 614 |
|     | risk HPV/ErbB-2 interaction on E-cadherin/catenin         | 615 |
|     | regulation in human carcinogenesis. Curr Pharm Des        | 616 |
|     | 2008;14:2159-72.                                          | 617 |
| 100 | Shai A, Pitot HC, Lambert PF. p53 Loss synergizes with    | 618 |
|     | estrogen and papillomaviral oncogenes to induce cervical  | 619 |
|     | and breast cancers. Cancer Res 2008;68:2622-31.           | 620 |
| 101 | Koliopoulos G, Nyaga VN, Santesso N, et al. Cytology.     | 621 |
|     | versus HPV testing for cervical cancer screening in       | 622 |
|     | the general population. Cochrane Database Syst Rev        | 623 |
|     | 2017;8:CD008587.                                          | 624 |
| 102 | Purdie J. Can Human Papillomavirus (HPV) Cause Breast     | 625 |
|     | Cancer? healthline. 2018. Available online: https://www.  | 626 |
|     | healthline.com/health/breast-cancer/breast-cancer-and-    | 627 |
|     | hpv. Accessed December 14 2018.                           | 628 |
|     |                                                           | 629 |

**Cite this article as:** Islam MS, Chakraborty B, Panda CK. Human papilloma virus (HPV) profiles in breast cancer: future management. Ann Transl Med 2020;8(10):650. doi: 10.21037/ atm-19-2756