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Abstract: Tumor associated macrophages (TAMs) are important components of the tumor microenvironment 
(TME). They are characterized by a remarkable functional plasticity, thereby mostly promoting cancer 
progression. Changes in immune cell metabolism are paramount for this functional adaptation. Here, we 
review the functional consequences of the metabolic programming of TAMs and the influence of local and 
systemic targeted therapies on the metabolic characteristics of the TME that shape the functional phenotype 
of the TAMs. Understanding these metabolic changes within the context of the cross-talk between the 
different components of the TME including the TAMs and the tumor cells is an essential step that can pave 
the way towards identifications of ways to improve responses to different treatments, to overcome resistance 
to treatments, tumor progression and reduce treatment-specific toxicity. 
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Introduction

Inflammation is an emerging hallmark of malignant 
tumors. The tumor microenvironment (TME) is involved 
in the pathogenesis and progression of different cancers 
in general. Characteristically, the TME is a relative 
nutrient-poor, hypoxic, acidic milieu that can influence the 
cellular composition and functional phenotype of local as 
well as infiltrating immune cells. Metabolic shifts within 
the immune cells result in changes in the immune cells 
phenotype and function, thereby influencing their effector 
functions. Additionally, data suggests that the TME also 

differs between different tumor types, and can change 
depending on the stage and progression of the disease (1). 
Because of this, it is hard to predict which changes local 
cells such as tumor associated macrophages (TAMs) and 
other immune cells undergo within a specific TME and 
how those metabolic shifts influence the response to specific 
treatments. Also, different treatment regiments, including 
local therapies such as radiotherapy, and systemic agents 
targeting tumor vascularization and tumor cells such as 
multikinase inhibitors (MKIs) and mechanistic mammalian 
target of rapamycin (mTOR) inhibitors can induce 
(metabolic) changes in the TME (2-4). These changes are 
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likely to influence the function of the immune cells in the 
TME as well. The important question is whether these 
phenotypic changes synergistically improve the response to 
therapy or if they are deleterious, leading to more therapy 
resistance and subsequently tumor progression. Targeting 
tumor cell and immune cell metabolism in the right 
way, at the right time, in conjunction with other therapy 
modalities could be beneficial in patients and be exploited 
therapeutically. Therefore, understanding the complex 
interplay between cancer cells and the immune cells on 
the one hand and the effects of different therapies on this 
balance on the other hand is paramount in order to identify 
ways to improve responses to different treatments.

The tumor microenvironment and its metabolic 
characteristics

In contrast to normal organs, solid tumors are highly 
disorganized and heterogenous structures comprising 
various different cell types. The TME is defined as the 
surrounding components of a tumor and include parts of the 
extracellular matrix (ECM), vascularization, such as blood 
vessels, as well as endothelial cells, fibroblasts and different 
types of immune cells. The heterogeneous factors and 
mediators present at the TME promote tumor progression 
by providing nutrients and signals that lead to immune 
suppression and thereby generating an anti-inflammatory 
milieu (5). In addition to containing immune suppressing 
factors, the TME of most tumors is hypoxic which favors 
cancer progression and metastasis by upregulating several 
important genes such as hypoxia-inducible factor 1-alpha 
(HIF-1α) (6). During tumor development, the TME is 
shaped and changed continuously in parallel with the tumor 
growth. Malignant cells accumulate mutations, leading to 
clonal diversity and heterogeneity in signal transduction, 
the epigenome, and gene expression. This induces 
heterogeneity in differentiation, metabolic and proliferative 
states across the cancer cell populations (7). Furthermore, 
tumor cells release various recruitment factors, which result 
in the infiltration of monocytes and are important mediators 
in the crosstalk between monocytes and tumor cells (7). 
Next to these intrinsic changes, other circumstances in the 
TME, such as proximity to the vasculature, deprivation 
of and competition for oxygen and nutrients, or the lack 
of degradation of metabolic waste products, affect the 
metabolism in both tumor cells and TAMs and the crosstalk 
between both cell types (Figure 1) (7).

Macrophages are abundant immune cells in the TME 

of most tumors and their presence is thought to be 
associated with tumor progression and poor prognosis (8).  
Because of their specific phenotypical character in 
cancer, those macrophages were named TAMs. Most 
TAMs originate from circulating bone marrow and 
spleen derived monocytes and will differentiate in the 
TME (9-11). Naturally, macrophages show high levels of 
functional plasticity which is why numerous phenotypes 
and intermediate phenotypes have been described at 
different tissue compartments (12). In general, TAMs 
immunophenotypically differ from circulating macrophages 
as they usually show high expression of interleukin-10 (IL-
10) and low expression of IL-12 as well as higher expression 
of specific surface receptors such as the mannose receptor 
(MR, CD206) (13-16). TAMs are often considered M2-like 
macrophages (or IL-4/IL13-activated) as opposed to the 
M1-like macrophages (LPS/IFN-γ-activated). However, 
since recent insights reveals a spectrum of macrophage 
activation states rather than a dichotomous M1/M2 model, 
we will not use the M1/M2 nomenclature in this review but 
rather describe them according to their source, activators 
and specific markers if available as currently recommended 
(17,18). Given the above mentioned characteristics, TAMs 
strongly contribute to the anti-inflammatory status of the 
TME. Additionally, TAMs are known to contribute to 
angiogenesis and metastasis of tumors by upregulating genes 
responsible for ECM remodelling such as proteases and 
matrix metallopeptidases ultimately facilitating the escape 
of tumor cells (19). Interestingly, several animal studies have 
shown that depletion of macrophages in malignant tumors 
resulted in decreased tumor progression, thereby leading to 
a better outcome and prognosis (20,21).

Extracellular circumstances affecting the 
metabolic characteristics of the TME

One of the strongest stimuli, inducing the secretion of 
tumor-derived factors, is hypoxia. During tumor growth, 
the level of oxygen is strongly reduced due to abnormal 
tumor vasculature, especially in the center of the neoplasm. 
Hypoxia triggers HIF-1α stabilization in neoplastic cells 
and consequently the release of pro-angiogenic factors, 
such as growth factors (VEGF, PDGF, PIGF, ANG-2),  
chemokines (CXCL8, CXCL12), cytokines, (TNFα, 
IL1β, TGFβ) and metalloproteases (MMPs), resulting in 
angiogenesis and thereby cancer cell growth (22,23) as well 
as monocyte recruitment (24). Furthermore, hypoxia leads 
to an enhanced glycolytic activity of tumor cells and thereby 
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an increased lactate secretion which acidifies the TME and 
affects the local immune cells (see below) (25).

Tumor cell metabolism

To sustain the high energy demands of tumor cells required 
for the high proliferation rate in an oxygen- and nutrient-
deprived TME, their metabolism is adapted. It has become 
evident that metabolic alterations during tumorigenesis 
encompass all stages of cell-metabolite interaction: (I) 
increase of metabolite influx, (II) direction of nutrients to 
metabolic pathways contributing to cellular tumorigenic 
properties, (III) effect on cellular fate, such as alterations 
in differentiation by gene-regulation and metabolic 
interactions with the TME (25). 

To fulfill the biosynthetic demands, tumor cells have 
a high uptake of glucose and glutamine, two principal 
nutrients that support survival and biosynthesis by 
maintaining pools of numerous carbon intermediates (26).  
An elevated consumption of glucose by tumors in 
comparison to nonproliferating normal cells has been first 
described by Otto Warburg in 1924 and is now referred to 
as the “Warburg effect”, entailing the shift from oxidative 
phosphorylation (OXPHOS) as the main source of energy 
towards anaerobic glycolysis (26). In this, PI3K/Akt 
signaling acts as a master regulator of glucose uptake by 
promoting the expression of plasma membrane glucose 

transporter 1 (GLUT1) (25). Upregulation of GLUT1 and 
the first enzyme of glycolysis, hexokinase (HK), enables 
the metabolic shift towards an enhanced glucose uptake 
and glycolysis (27). Next to glucose, a high demand for 
glutamine in tumor cells has been first described by Harry 
Eagle in the 1950s. Eagle showed that the optimal growth of 
cultured HeLa cells requires substantially more glutamine 
in culture medium relative to other amino acids (28).  
In line with this, glutamine depletion from the TME as 
compared to the corresponding normal tissue is described 
in numerous tumorigenic contexts (29-32). 

Interestingly, proliferating tumor cells convert excess 
pyruvate as product from glycolysis to lactate rather than 
transporting it into the mitochondria for OXPHOS. 
Compared to OXPHOS, anaerobic glycolysis is far 
less efficient in terms of adenosine triphosphate (ATP) 
production. However, glycolysis is a robust provider 
of precursor molecules and reducing equivalents in the 
form of nicotinamide adenine dinucleotide phosphate 
(NADPH), whereas tricarboxylic (TCA) cycle activity is 
the major negative regulator of glucose metabolism. By 
converting pyruvate to lactate, proliferating tumor cells 
prevent accumulation of cytosolic NADH and reduce 
ATP production, promoting glycolysis free from feedback 
repression by excess mitochondrial ATP generation (25). 

Although glycolysis is often described as a single chain 
of molecular events, leading to the generation of pyruvate, 

Figure 1 Schematic overview of the tumor microenvironment (TME) containing different cell types that interact with each other. Different 
gradients regarding the availability of nutrients and oxygen as well as metabolic waste products and the grade of acidification are indicated.
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several glycolytic intermediates can be shunted into 
branching pathways as well. The first branch in glycolysis, 
is the pentose phosphate pathway (PPP), which is often 
elevated in tumorigenesis and enhances the production of 
structural components of nucleotides and NADPH. Several 
other glycolytic intermediates, such as frucotse-6-phosphate 
and dihydroxyacetone phosphate (DHAP), can be utilized 
for cellular glycosylation reactions as well as heparan sulfate 
and hyaluronic acid biosynthesis, or in the biosynthesis 
of phospholipids, respectively (25), enhancing tumor 
proliferation. 

Moreover, tumor cells show a symbiotic metabolism, 
as in hypoxic regions of a tumor, cancer cells metabolize 
glucose through anaerobic glycolysis  and express 
monocarboxylate transporter 4 (MCT4) to release lactate, 
whilst well-oxygenated cancer cells import the lactate 
produced by hypoxic cancer cells via MCT1 and consume it 
to fuel mitochondrial metabolism (33,34).

Metabolism of TAMs

The metabolic profile of TAMs is very dynamic (Figure 2). 
In a nutrient-deprived TME, TAMs compete with cancer 
cells for nutrients such as glucose and therefore undergo 
changes in their cellular metabolism as well. 

Under normoxic conditions, several studies indicate 
that TAMs have an activated aerobic glycolysis (35,36). 
Furthermore, metabolic changes in TAMs have also been 
linked to promotion of tumor invasion and metastasis, 
linked to an increased glycolytic activity (37). 

Next to glucose metabolism, TAMs show an increased 
glutamine uptake and metabolism (38), whereas glutamine 
depletion restrains programming towards a pro-tumorigenic 
phenotype (39,40). Furthermore, some TAMs accumulate 
intracellular lipids, supporting their immunomodulatory 
functions (41).  Multiple factors involved in l ipid 
metabolism, including enzymes and chaperones are 
deregulated in TAMs (41-45). Transcriptomic profiling 
showed high gene expression of lipid metabolism pathways 
in alveolar resident macrophages, including PPAR-γ 
signaling. Another population defined as TAMs selectively 
expressed chemokine genes and a population resembling 
tumor-associated monocytes expressed genes involved in 
matrix remodeling. These findings underscore the diversity 
of macrophage phenotypes in cancer (46). Interestingly, 
PPAR-y signaling is associated with a pro-tumorigenic 
phenotype of TAMs, as described in an ovarian cancer 
model (47). Furthermore, TAMs are known to express 

cyclo-oxygenase 2 (COX2) in vivo and in vitro (48-50). 
However, the functional relevance of lipid metabolism in 
TAMs is still not fully understood. 

Factors involved in the metabolic and functional 
programming of TAMs

Within the TME, TAMs and tumor cells develop a 
symbiotic relationship which is the result of both tumor-
derived and TAM-derived factors and the intrinsic 
adaptation of the cellular metabolism of both cells to the 
metabolically unfavorable TME. 

Chemokines

Tumor-derived factors  are involved in monocyte 
recruitment, survival, and differentiation within the tumor 
site. Monocyte chemoattractant protein-1 (MCP1, also 
known as CCL2) is a tumor- and stromal-derived factor 
involved in monocyte recruitment (51). Inhibition of the 
CCL2-CCR2 signaling in a mouse model of breast cancer 
impaired monocyte infiltration, inhibited metastasis, 
reduced tumor growth, and depletion of tumor-derived 
CCL2 inhibited metastatic seeding (52). 

Next to CCL2, tumor cells secrete high levels of the 
growth factor colony stimulating factor-1 (CSF-1), which 
is involved in recruitment and differentiation of monocytes 
(53-55). CSF-1 programs monocyte-derived macrophages 
towards an pro-tumorigenic phenotype coupled to fatty 
acid oxidation (FAO) upregulation (56) and secretion of 
pro-tumorigenic and immunosuppressive factors such as 
epidermal growth factor (EGF) (57) and IL-10 (58).

Hypoxia

Hypoxia has been shown to induce infiltration of TAMs and 
reprogramming of macrophages toward the pro-tumorigenic 
phenotype (59-63), promoting tumor cell proliferation 
and chemoresistance (64). Under hypoxic conditions, 
TAMs produce angiogenic factors such as vascular 
endothelial growth factor (VEGFA). VEGFA stimulates 
chemotaxis of endothelial cells and macrophages (65).  
Other angiogenic factors released by TAMs include 
basic fibroblast growth factor, thymidine phosphorylase, 
urokinase-type plasminogen activator and adrenomedullin 
(65-67). Macrophages also promote angiogenesis by 
physically assisting sprouting blood vessels to augment the 
complexity of the intra-tumorigenic vascular network (68). 
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Interestingly, under hypoxic conditions, TAMs upregulate 
REDD1 (regulated in development and DNA damage 
responses 1), a negative regulator of mTOR. REDD1-
mediated mTOR inhibition hinders glycolysis, leaving more 
glucose for neighboring cells and curtails their excessive 
angiogenic response, resulting in abnormal blood vessel 
formation (69).

Lactate

Extracellular lactate, secreted by tumor cells, functions 
as signaling molecule which leads the induction of an 
angiogenic response (70-73). Accumulation of extracellular 
lactate stimulates the programming of macrophages towards 
a pro-tumorigenic phenotype and induces expression of 
VEGF (74-77). Furthermore, the secretion of lactate into 

the stroma via MCT1 is co-transported with H+, leading 
to further acidification of the TME. Interestingly, recent in 
vivo animal studies have shown that differences in function 
of MCT1 transporter on melanoma cells confer different 
metastatic potential to these cells. The results suggest that 
the bidirectional, more efficient handling of lactate by 
the tumor cells results in a more efficient handling of the 
oxidative stress and may contribute to the higher metastatic 
potential in melanoma’s (78). Interestingly, acidification 
of the TME enhances an IL-4 driven phenotype in 
macrophages and induces a pro-tumor phenotype (79).

Autophagy

Another process involved in differentiation of macrophages 
into TAMs is autophagy (80,81). It was found that 

Figure 2 Schematic overview of the metabolic adaptations of tumor cells and (tumor associated) macrophages. Depending on the availability 
of nutrients and oxygen several metabolic programmes are initiated that allow both cells to adapt to the changing conditions within the 
TME. Several cytokines and chemokines are involved in these processes and allow both cells to differentiate for adaptation. ARG1, arginase 
1; CCL2, monocyte chemoattractant protein-1; CCL18, C-C motif chemokine ligand 18; CSF-1, colony stimulating factor-1; GLUT1, 
glucose transporter 1; HIF-1α, hypoxia-inducible factor 1-alpha; IL-6, interleukin-6; MCT, monocarboxylate transporter; REDD1, 
regulated in development and DNA damage responses 1; TNFα, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor. 
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autophagy, induced by toll-like receptor 2 (TLR2) signaling, 
could differentiate bone marrow-derived macrophages into 
a pro-tumorigenic phenotype in the presence of hepatoma 
tumor cell condition medium (82). In another study, 
myeloid-cell specific autophagy was shown to impair anti-
tumorigenic immune responses and promote the survival 
and accumulation of pro-tumorigenic macrophages in tumor 
tissues, a process modulated via CSF-1 and transforming 
growth factor (TGFβ) (83). Wen et al. show that tumor 
cell-released autophagosomes differentiated macrophages 
into an immunosuppressive phenotype characterized by the 
expression of programmed cell death protein ligand-1 (PD-
L1) and IL-10 (84).

Importantly, the effects of metabolic effects of cancer 
cells on TAMs is not unidirectional. TAMs secrete multiple 
cytokines with metabolic functions, including IL-6, tumor 
necrosis factor alpha (TNFα) and CCL18 (85-87). TAM-

derived IL-6, TNFα and CCL18 promote tumor cell 
glycolysis and proliferation (85-87). 

Effects of local and systemic therapies on the 
cross-talk between tumor cells and TAMs and 
their metabolic reprogramming

Different local and systemic cancer therapies influence the 
composition of the TME and the cross-talk between the 
cellular components of the TME. Some of these effects can 
be attributed to changes of the metabolic characteristics 
of the TME through induction of ischemia and hypoxia 
or through direct effects of these drugs on the cellular 
metabolism or other intracellular signaling pathways (Table 1).  
The effect of these therapies on TAMs is not well understood 
and only scarcely studied, particularly with respect to 
immunometabolism. 

Table 1 Effects of local and systemic therapies on the recruitment, survival and functional reprogramming of TAMs through metabolic 
mechanisms

Therapy

Effect on TAMs

Infiltration/recruitment
Increase 

apoptosis

Reprogramming

Increase Reduce
Anti-tumorigenic

 phenotype
Pro-tumorigenic

phenotype

Radiotherapy >8–20 Gy (4) >8–20 Gy (4) 2 Gy (88,89)

Chemotherapy Gemcitabine (90); 
Doxorubicin (91,92) 
Cyclophosphamides 
(90,91,93-95); HDAC 

inhibitors (TMP195) (96); 
Topoisomerase inhibitors 
(90,91,93-95); Retinoids 

(90,91,93-95)

Dual HDAC and GSK3B 
inhibitors (Metavert) (97)

HDAC inhibitor (TMP195) 
(96); Leg-3 (98); Fenretinide 
(99); All-trans-retinoic acid 
(ATRA) (100); Gemcitabine 

(93)

Doxorubicin 
(91,92,95)

Immunotherapy CSF-1R inhibitors 
(21,101,102)

CSF-1R inhibitors 
(21,101,102)

MKI Sorafenib (≤30 mg/kg) 
(103)

Sorafenib (≤30 mg/kg) (103) Sorafenib  
(>30 mg/kg) (104)

Autophagy 
inhibitors

Chloroquine (105,106)

Autophagy 
activators

Rapamycin (3,107); Baicalin 
(108); Neferine (109)

Metabolism 
activators

Metformin (110-112) Simvastatin + 
Fenretinide (113)

Metformin (110-112,114); 
Simvastatin +/- Fenretinide 

(113,115)

CSF-1R, colony stimulating factor-1 receptor; GSK3B, glycogen synthase kinase 3 beta; Gy, gray; HDAC, histone deacetylase; MKI, 
multikinase inhibitors; TAMs, tumor-associated macrophages.
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Radiotherapy

Upon irradiation, immunosuppressive pathways are 
activated in the TME and radiation-induced inflammation 
is caused, subsequently affecting tumor progression. TAMs 
are recruited and programmed by increased expression 
of CSF-1 and the destruction of vascularization upon 
irradiation (4). As immunosuppressive cells, TAMs are 
involved in the process of radiation-induced inflammation 
and may promote tumor recurrence (116). HIF-1α and 
interferon gamma (IFN-γ) signaling in the TME induces 
the expression of PD-L1 in TAMs, suppressing anti-
tumor immunity (117). Conversely, regression of tumors 
at distant sites from the irradiated lesion, called “abscopal” 
effect, suggest an activation of host immunity (118).  
Furthermore, radiation-induced tumor cell apoptosis drives 
differentiation of macrophages into a pro-tumorigenic, 
anti-inflammatory phenotype (119,120). Interestingly, 
the effects seem to be dose-dependent, as high doses of 
irradiation (>8 Gy) may promote an anti-inflammatory 
phenotype of macrophages: a dose of 20 Gy induces a 
phenotype of TAMs with tolerogenic properties (4),  
whereas low-dose irradiation (2 Gy) skew macrophages 
towards an anti-tumorigenic phenotype, inducing effective 
T cell immunity (88) and influences angiogenic responses 
in tumor endothelial cells (89).

Chemotherapeutics 

Chemotherapeutic agents are used to directly or 
indirectly inhibit the proliferation of rapidly growing 
cells, typically in the context of malignancy. Next to the 
effects on neoplastic cells, different chemotherapeutic 
agents among which antimetabolites (e.g., gemcitabine), 
anti-tumor antibiotics (e.g., anthracyclines), alkylating 
reagents (e.g., cyclophosphamides), histone deacetylase 
(HDAC) inhibitors,  topoisomerase inhibitors and 
retinoids have been shown to influence the recruitment 
and the functional phenotype of TAMs as well. Various 
chemotherapeutics, including gemcitabine have been 
reported to induce the recruitment of myeloid cells 
(90,91,93-95). The immunogenic cell death of neoplastic 
cells upon chemotherapy leads to modulation of an adaptive 
immune response (121), which is in line with the discovery 
that distinct mouse tumors only show an optimal response 
to anthracyclines in the presence of an intact immune 
system (122). Interestingly, gemcitabine, even induces a 
reprograming of TAMs toward an immunostimulatory 

phenotype in a pancreatic murine tumor model (93).
In contrast, there are discrepant findings in the role 

of TAMs to the anthracycline Doxorubicin. Whereas 
some studies show that treatment induces macrophage 
recruitment, angiogenesis and pro-tumor effects or 
polarization (91,92), others show that blocking monocyte 
recruitment by the administration of a CSF-1R-signaling 
antagonist in a preclinical breast cancer model, enhanced 
the therapeutic efficacy of chemotherapy (91,123). 

Whereas the efficacy of anthracycline-based neoadjuvant 
chemotherapy in breast cancer patients is associated with 
the expression levels of the cytokines YKL-39 and CCL18, 
it is not associated with the amount of TAMs present (124).  
In line with this, compounds packed in liposomes, such as 
Long-circulating liposomes (LCL)-encapsulated doxorubicin 
(Doxil) and LCL-encapsulated prednisolone phosphate 
(LCL-PLP) have anti-angiogenic and anti-inflammatory 
effects on TAMs. Interestingly, only LCL-PLP inhibited 
tumor growth through strong suppressive effects on pro-
angiogenic functions of TAMs (125). Furthermore, a 
doxorubicin-based prodrug (leg-3) selectively ablated TAMs 
and resulted in a significant reduction of angiogenic factors 
and related tumor vessel growth (98). 

A selective class IIa HDAC inhibitor, TMP195, induces 
the recruitment and differentiation of highly phagocytic 
and stimulatory macrophages. Combining TMP195 with 
chemotherapy regimens or T-cell checkpoint blockade 
significantly enhanced the durability of tumor reduction 
in different studies (96), underscoring a potential role 
of macrophages in treatment duration. Metavert, a dual 
inhibitor of glycogen synthase kinase 3 beta (GSK3B) 
and HDACs, increases killing of drug-resistant pancreatic 
ductal adenocarcinoma cells by paclitaxel and gemcitabine. 
Administration of Metavert in vivo leads to beneficial 
effects such as, decreased TAM infiltration, tumor growth 
inhibition, prevention of tumor metastasis and a decrease of 
pro-tumorigenic cytokines (97). 

Furthermore, Etoposide, a topoisomerase II-inhibitor, 
increases cancer cell apoptosis in cells co-cultured with 
IFN-γ/LPS induced macrophages, but reduces apoptosis in 
the presence of IL-4/IL-13 induced macrophages (126).

Retinoic acid (RA) altered the ability of monocytes to 
contribute in the tumor angiogenesis process and decreased 
the ability of TAMs to secrete IL-8 and VEGF (127). All-
trans-retinoic acid (ATRA) abrogated the ability of prostate 
cancer cell-derived factors to induce a pro-tumorigenic 
TAM-l ike  phenotype character ized by increased 
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proliferation and increased expression of pro-angiogenic, 
immunosuppressive and pro-metastatic factors. ATRA also 
inhibited the cancer cell-stimulated proliferation of the 
pro-tumorigenic macrophages and restored their cytotoxic 
capacity towards prostate cancer cells (100). Furthermore, 
fenretinide, a synthetic retinoid, suppresses IL-4/IL-
13 induced programming of macrophages, shown by the 
reduced expression of pro-tumorigenic surface markers, the 
down-regulation of marker genes and the inhibition of pro-
tumorigenic macrophage-promoted angiogenesis (99). 

Taken together, anthracyclines and retinoids rather 
have anti-angiogenic effects on TAMs, whereas the effects 
of HDAC and topoisomerase inhibitors are only scarcely 
investigated.

Immunotherapies 

In the past decades, substantial evidence is arising that 
immunotherapy against a broad range of cancers is a 
suitable alternative to conventional therapies such as 
chemo- or radiotherapy. In general, this therapeutic 
approach makes use of existing immunological pathways 
and cellular interactions to improve the anti-tumorigenic 
immune response or by blocking undesired interactions of 
immune cells with cancer cells. To date, several therapies 
that target specific immune checkpoints have been 
approved and were proven effective in different forms of 
cancer. One such checkpoint is the inhibitory interaction 
between PD-L1 (CD274), expressed by cancer cells, and its 
receptor PD-1 (CD279) present on different immune cells. 
T-lymphocyte associated protein-4 (CTLA-4, CD152) 
is another immune checkpoint efficiently targeted in 
cancer immunotherapy. The effects of immune checkpoint 
inhibitors on the TAMs metabolism is largely unknown. 
Nonetheless, recently, Palaskas et al. showed that PD-1 
signaling broadly influences the primary human T-cell 
metabolism in vitro, shifting it from aerobic glycolysis and 
glutaminolysis towards utilization of alternative substrates 
to fuel the TCA cycle. Moreover, the glucose-derived 
carbon was not derived towards FAO. Furthermore, the 
study uncovered a block in the nucleoside phosphate de novo 
synthesis pathway and a reduced mTORC1 signaling (128). 
Another recent study suggests that immune cell metabolites 
could be relevant additional markers to predict response 
to PD-1 blockade therapy (129). Apart from targeting 
immune checkpoints, inhibiting recruitment of TAMs by 
blocking the CSF-1/CSF-1R pathway represents a different 

approach. CSF-1R inhibitors not only have been shown to 
reduce the number of TAMs, but also reprogramming of 
TAMs from pro-tumorigenic towards an anti-tumorigenic 
phenotype (21,101,102).

Multikinase inhibitors (MKI), selective kinase inhibitors 
and VEGFR targeting drugs

MKIs have become a promising treatment strategy, since 
increased intracellular, paracrine and autocrine kinase 
signaling play a key role in many cancers (2). MKIs often 
influence tumor vascularization by targeting VEGF 
receptor (VEGFR) and thereby affect tumor oxygenation 
(2,130-132). This can also alter the TME to a more 
immunosuppressive state and inhibit drug uptake in the 
tumor (2,130-132). Furthermore, VEGFR inhibition 
can directly affect TAMs, because VEGFR-1 is mainly 
expressed on anti-inflammatory macrophages and its 
suppression causes reprogramming towards a more pro-
inflammatory activated phenotype (133). There are several 
examples of interactions between kinases and VEGFR 
inhibition and the functional programming of TAMs within 
the TME, some of which possibly also involving metabolic 
pathways. The immunomodulatory effects of some MKIs, 
such as sorafenib, which is broadly used for treatment of 
hepatocellular carcinoma (HCC), renal cell carcinoma 
(RCC) and non-medullary thyroid carcinoma (DTC), 
seem to be dose-dependent (134). As such, treatment of 
hepatocellular carcinoma (HCC) with sorafenib in low doses 
(≤30 mg/kg), was mostly associated with TAM programming 
towards a more pro-inflammatory phenotype, possibly 
through VEGF reduction, miR-101 inhibition or enhanced 
CCL2 expression (103). Furthermore, sorafenib can inhibit 
the release of the growth factors mCD163, insulin-like 
growth factor 1 (IGF-1) and TGFβ by anti-inflammatory 
TAMs. Additionally, low dose sorafenib treatment could 
decrease TAM percentages and increase their expression of 
four activation markers (FAS-L, chemokine (C-X-C motif) 
ligand 9 (CXCL-9), CD31, and CD105) (103). However, 
high doses (>30 mg/kg) impelled immunosuppressive 
effects in HCC through TAMs by increasing the PD-
L1 expression (104). Even though, these high doses 
might not be achievable in humans, TME and immune 
changes have often been involved in challenging sorafenib 
resistance (103). Initially, sorafenib dose-dependently 
inhibits HIF-1α synthesis (135) leading to downregulated 
VEGF expression and decreased tumor vascularization. 
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However, the hypoxic TME, caused by sustained sorafenib 
treatment, leads to upregulation of the SDF1-α/CXCR4 
axis (136), HIF-1α and HIF-2α (137). The increase of 
HIF-1α and HIF-2α has been associated with sorafenib 
resistance in myeloid leukemia, renal, gastric and hepatoma, 
because it enhances the expression of target genes involved 
in mitophagy (BNIP3, NIX), angiogenesis (VEGF), 
glycolysis (GLUT1, HK2, LDH, PDK1) and proliferation 
(cycl in D1,  c-Myg/PCNA, TGFα  /EGFR) (137) .  
Even without hypoxia, sorafenib is known to increase 
aerobic glycolysis, decrease OXPHOS activity and increase 
reactive oxygen species (ROS) levels in a dose-dependent 
manner in hepatoma cells in vitro. This results in higher 
glucose uptake and lactate production (138,139), thereby 
altering the TME. It remains to be investigated if sorafenib 
can also directly shift the metabolism of TAMs in a similar 
manner. 

The immunological  e f fects  of  vandetanib,  the 
most recently approved MKI for medullary thyroid 
cancer (MTC), are still mostly unknown. Nonetheless, 
interesting metabolic effects in highly glycolytic hereditary 
leiomyomatosis and RCC cells have been reported by 
Sourbier et al. Vandetanib inhibits the phosphorylation 
of ABL1, a non-receptor tyrosine kinase, which leads to 
a reduction of the mTOR-HIF-1α-dependent aerobic 
glycolysis. In contrast to sorafenib, vandetanib leads to an 
alteration of the TME by reduced lactate production and 
glucose uptake, through downregulated Glut1 and Glut4. 
Additionally, suppressed ABL1 function diminishes the 
NRF2-dependent antioxidant response which is essential 
for the survival of ROS-producing tumor cells (140). Future 
research could clarify whether TAM function is affected by 
vandetanib, directly or through TME modifications.

Autophagy modulators

Autophagy is known to have both pro-tumorigenic and anti-
tumorigenic effects in cancer (141). The role of autophagy 
in cancer might differ in different stages of carcinogenesis, 
different tumor types and could be related to changes in 
the TME and treatment. Autophagy activation results 
in intracellular lysosomal degradation and recycling of 
proteins and organelles. This process is controlled by 
autophagy-related genes, regulated by nutrient, energy and 
stress sensing mechanisms, thereby recycling intracellular 
components  to maintain energy homeostasis  and 
mitochondrial metabolic function inside the cell (141). 

Autophagy inhibition
Chloroquine (CQ), an autophagy inhibitor, was able to 
reprogram pro-tumorigenic macrophages to an anti-
tumorigenic phenotype. The reprogrammed macrophages 
presented higher phagocytotic activity towards Hep-
2 laryngeal tumor cells and re-sensitized Hep-2 cells to 
cisplatin treatment in vitro (105). Another study by Li et 
al. showed that CQ abrogated the abnormal angiogenic 
efficacy of pro-tumorigenic macrophage-conditioned 
media, thereby decreasing abnormal angiogenesis and lung 
carcinogenesis (106). 

Autophagy stimulation
Whereas previously mentioned studies demonstrate 
a beneficial effect of autophagy inhibition on the 
reprogramming of TAMs, others have shown that the 
induction of autophagy is the key to reprogramming of 
TAMs. Shan et al. demonstrate inhibition of programming 
of mouse RAW 264.7 macrophages to pro-tumorigenic 
macrophages by autophagy inducer rapamycin. Not only 
pro-tumorigenic expression was down-regulated, but 
intracellular ROS generation was also blocked by autophagy 
induction (3). Another group showed that upregulation 
of TAM autophagy using rapamycin exhibited effective 
inhibition of colony formation and proliferation in 
colorectal cancer cells while inducing apoptosis (107). Like 
rapamicin, Baicalin, a natural flavonoid, elevated autophagy 
programmed TAMs towards an anti-tumorigenic phenotype 
and promoted pro-inflammatory cytokine production. Co-
culture of HCC cells with baicalin-treated TAMs resulted 
in reduced proliferation and motility (108). 

Neferine, a bisbenzylisoquinoline alkaloid, induced 
autophagy via inhibition of the mTOR/p70S6K pathway in 
human umbilical vein endothelial cells and also possessed 
the ability to suppress pro-tumorigenic macrophage 
programming (109).

Metabolism modulators 

Metformin
Metformin, well known for its use in the treatment 
of diabetes, has been intensively studied for its anti-
tumorigenic properties. Despite the numerous studies, 
using metformin in clinical trials provided conflicting data 
(142,143). Metformin-use not only affects the tumor cells, 
but also influences the TME and TAMs present in the 
TME. Several studies demonstrate a role of metformin 
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in the pro-tumorigenic programming of macrophages. 
Metformin suppressed IL-13-induced pro-tumorigenic 
macrophages in vitro, as indicated by a reduced expression 
of CCL2 and marker CD206 (114). Metformin has also 
been shown to reduce TAM infiltration, inhibit tumor 
growth and angiogenesis by skewing TAM programming 
towards an anti-tumorigenic phenotype (110-112). 

Simvastatin
Simvastatin, a member of the group 3-hydroxy-3-
methylglutaryl (HMG)-CoA reductase inhibitors, is 
clinically used for the reduction of hypercholesterolemia. 
Similar to metformin, simvastatin, has also been studied 
in relation to cancer. In anaplastic thyroid cancer (ATC), 
simvastatin has been shown to inhibit proliferation 
and migration of ATC cells in vitro (144). Additionally, 
Simvastatin has been shown to have the potential to re-
sensitize drug-resistant cancer cells via reprogramming of 
TAMs. Simvastatin was able to reprogram TAMs in vitro 
via cholesterol-associated LXR/ABCA1 regulation, re-
sensitizing non-small cell lung cancer cells to paclitaxel 
(115). Finally, Simvastatin weakened the TAM-mediated 
resistance of pancreatic ductal adenocarcinoma cells to 
gemcitabine (145). A drug combination of simvastatin and 
fenretinide reprogrammed TAMs in vitro via regulation 
of the STAT6 pathway as well as induced ROS-mediated 
mitochondrial apoptosis by inhibiting the Ras/Raf/p-Erk 
pathway in glioma cells (113).

Future research directions and outstanding 
questions 

The functional consequences of metabolic programming 
of TAMs and tumor cells present in the TME has attracted 
increased attention. Understanding the dynamic metabolic 
changes and how these affect the functional phenotype 
of the tumor-infiltrating TAMs is important for the 
development and improvement of therapies. The same 
holds true for other immune and non-immune cells which 
coexist and interplay within the inflammatory TME. 
This will provide not only a better understanding on the 
pathophysiology of tumor development and progression, 
but potentially presents new opportunities for therapy 
and monitoring of patients with malignant tumors. Next 
to the conventional therapies, such as radiotherapy, 
chemotherapy and immunotherapy, novel approaches to 
target macrophages in the TME could complement the 
armamentarium of anti-cancer therapy. The latter include 

strategies to inhibit recruitment and survival of TAMs in 
the TME, and induce functional reprogramming of these 
cells towards anti-tumorigenic phenotypes. Such strategies 
are currently being explored in clinical and translational 
settings. Despite several limitations related to therapy 
resistance and loss of sensitivity due to compensatory 
immunosuppressive mechanisms and toxicity, such 
approaches show promising results and will most likely be 
further investigated in clinical trials (146).

Targeting immune cell metabolism to synergize the 
effect of other systemic or local treatments and overcome 
therapy resistance is interesting, but at this time it still faces 
several challenges.

One of the challenges involves the targeting of specific 
metabolic pathways to the different cell types. Indeed, 
future work towards the design of delivery systems that 
could target the metabolic modulators directly towards the 
desired cell type would be crucial, with the recent progress 
in nanotechnologies being promising. These developments 
would automatically help for the second challenge of these 
therapies: depending on the cell type, what may be favorable 
for one cell or process, may be deleterious for another, 
thereby creating either a synergistic or counteracting effect 
of potential therapeutic metabolic modulators. Finally, as 
metabolic mediators could affect inadvertently bystander 
organs and cells, this could lead to side effects, that could be 
also tacked by targeting the drug to specific cells.

In conclusion, during therapeutic interventions changes 
in the metabolic landscape of the tumor occur. These 
changes could result in reprogramming of TAMs into a 
more anti-tumorigenic phenotype that could be harnessed 
therapeutically. Future studies are warranted to discover the 
specific role of cellular metabolic pathways in various cell 
types in TC, to discover new modulators of these pathways 
with therapeutic potential, to deliver these molecular 
modulators to the appropriate cell type, and finally to test 
and implement these new approaches in patients. In this 
respect, modulators of immune cell metabolism could be 
combined with other forms of immunotherapies, such as 
checkpoint inhibitors, to identify new and more efficient 
therapeutic strategies. One example of such an approach 
could be the inhibition of transcription factor c-MAF 
inducing metabolic programing of TAMs towards a pro-
tumoral phenotype, which has been shown to overcome 
anti-PD-1 therapy resistance in a Lewis lung carcinoma 
model (147). Only after these studies are performed in the 
coming years the full potential of metabolic modulators of 
the immune system will be realized.
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