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Abstract: Optical coherence tomography (OCT) has revolutionized the field of ophthalmology in the 
last three decades. As an OCT extension, OCT angiography (OCTA) utilizes a fast OCT system to detect 
motion contrast in ocular tissue and provides a three-dimensional representation of the ocular vasculature 
in a non-invasive, dye-free manner. The first OCT machine equipped with OCTA function was approved 
by U.S. Food and Drug Administration in 2016 and now it is widely applied in clinics. To date, numerous 
methods have been developed to aid OCTA interpretation and quantification. In this review, we focused on 
the workflow of OCTA-based interpretation, beginning from the generation of the OCTA images using 
signal decorrelation, which we divided into intensity-based, phase-based and phasor-based methods. We 
further discussed methods used to address image artifacts that are commonly observed in clinical settings, 
to the algorithms for image enhancement, binarization, and OCTA metrics extraction. We believe a better 
grasp of these technical aspects of OCTA will enhance the understanding of the technology and its potential 
application in disease diagnosis and management. Moreover, future studies will also explore the use of ocular 
OCTA as a window to link ocular vasculature to the function of other organs such as the kidney and brain. 
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Introduction

The word tomogram originated from the Greek word 
‘tomos’, meaning section. Optical coherence tomography 
(OCT) was developed based on a  low-coherence 
interferometer, an optical imaging modality for resolving 
the depth-dependent backscattering signals from the 
biological tissues. By utilizing a scanner or a translational 

stage, OCT provides cross-sectional tissue structural 
information. OCT has evolved rapidly since its invention in 
1990s (1) and has gained great success in its translation to 
healthcare. It is nowadays widely applied to multiple clinical 
fields, including dermatology, dentistry, cardiology, vascular 
medicine, etc. However, its main field of application is 
still in ophthalmology because of the layered structural 
characteristics and semi-transparency of the ocular tissue (2).  
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As an OCT extension, OCT-angiography (OCTA) utilizes 
faster OCT systems to detect motion contrast of the 
biological tissue. In general, OCTA can be divided into 
two categories: phase-resolved Doppler OCT based on the 
phase difference between adjacent A-scans (3) and repeated 
B-scans based OCTA. These two categories have different 
spectra of applications, and in this review, we will only scope 
the OCTA generated from repeated B-scans, which we will 
refer to as OCTA for simplicity. 

The development of OCTA over the last decade was 
remarkable. The concept was conceived in 2006 (4) and the 
first commercial device equipped with OCTA functionalities 
was approved by the U.S. Food and Drug Administration 
in 2016. It was welcomed by the rapid acceptance among 
clinicians due to its similarity to fluorescein angiography 
(FA) in non-leakage involved applications, a gold standard 
angiography imaging modality. Moreover, superior to FA, 
OCTA provides refined three-dimensional visualization 
of perfused blood vessels down to the capillary level in a 
dye-free and non-invasive manner. OCTA has provided 
us a better understanding of various microvascular related 
ocular diseases, such as diabetic retinopathy (5-10), age-
related macular degeneration (11-13), glaucoma (14-17), 
and retinal vein occlusion (18,19). Qualitative assessment of 
the OCTA images might be sufficient for diagnosis of some 
diseases. For example, studies have shown that choroidal 
neovascularization was successfully diagnosed based on the 
existence of new pathological vessels revealed by OCTA 
(20,21). Quantitative OCTA metrics, on the other hand, 
may reveal additional subtleties about how the values from 
patients deviate from the healthy population distribution, 
helping us to better classify diseases into different severities, 
understand disease progression, and evaluate therapeutic 
performance. In this review, we will discuss some of the 

common issues regarding quantitative OCTA metrics, such 
as how to extract meaningful metrics, select the appropriate 
metrics and avoid pitfalls from artifacts. 

OCTA signal generation from repeated OCT 
B-scans

The raw OCT signal acquired on the sensor is nonlinearly 
distributed in the spectral domain, and k-space linearization 
is applied to interpolate even spaced sampling in k-space. 
Then, applying Fourier transform converts the raw 
OCT signal into spatial signal providing the local depth 
information. The depth-resolved OCT signal is a complex 
value that can be expressed as: 

( ) ( ) ( )ikφI A e x,z,tx,z,t x,z,t −= 	 [1]

at (x,z) positions and a specific time t, with amplitude A (x, z, t) 
representing the backscattering potential and phase φ (x, z, t)  
representing the wave propagation. 

The basic idea of OCTA is to calculate the decorrelative 
signal between repeated B-scans (n≥2). A schematic 
of volumetric OCTA generation is shown in Figure 1. 
Since the backscattering signal from static tissues has a 
different temporal distribution as compared to that of 
moving particles like red blood cells, motion contrast using 
temporal signal decorrelation can differentiate the dynamic 
and static tissues. Based on the types of the signal used, 
OCTA algorithms can be divided into three categories: 
amplitude-based, phase-based, or phasor-based OCTA.

Amplitude-based OCTA

Amplitude based OCTA utilizes the backscattered intensity 
signal and is insensitive to the phase variation caused by the 

Figure 1 A brief flow chart of OCTA image generation. OCTA, optical coherence tomography angiography.
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imaging system itself or the bulk motion from the samples. 
The amplitude-decorrelation (AD) method calculates the 
AD between adjacent frames using: 
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where An denotes the amplitude of the nth repeated B-scan, 
and N denotes the number of repeated B-scans at each 
position (22). Further splitting the full source spectrum 
into several narrower spectra and calculating the signal 
decorrelation within each spectrum worsens the axial 
resolution but demonstrates a better vessel continuity and 
contrast in angiograms as compared to the full spectrum AD 
method (23,24). This method is referred as split-spectrum 
amplitude-decorrelation angiography (SSADA). On the 
other hand, amplitude variance (AV) OCTA, proposed 
by Mariampillai et al. in 2008 (25), calculates the inter-
frame variance based on the OCT intensity to capture the 
difference of the Gaussian distribution in “solids” and the 
Rayleigh distributions in “fluids”. Its capability of capturing 
capillary size down to 25 μm in an animal chamber window 
was demonstrated (26). Later, Liu et al. (27) combined 
spectroscopic OCT (SOCT) and AV OCTA to visualize the 
oxygen saturation in a chick embryo. SOCT and OCTA 
contrasts were extracted from the same channel, and SOCT 
was computed by oxygenated hemoglobin and deoxygenated 
hemoglobin difference between a longer-wavelength spectral 
band (880 nm) and a shorter-wavelength one (820 nm).  
By simply averaging the absolute amplitude difference 
or squared difference between adjacent tomograms, 
Huang et al. (28) and Blatter et al. (29) generated a retinal 
microvasculature map with 10 degrees and 48 degrees field 
of view (FOV), respectively. 

Recently, Ploner and coworkers (30) developed a 
technique called variable interscan time analysis (VISTA) 
aiming at quantifying the blood flow from OCTA. A faster 
400 kHz swept-source OCT was applied to acquire fast 
repeated B-scans with 1.5 ms interscan time. By comparing 
the OCTA signal from 1.5 and 3.0 ms interscan time, the 
authors could generate a blood flow map in a normalized 
scale and demonstrated its applicability in patients with 
various ocular diseases. 

Phase-based OCTA

Phase variance (PV) OCTA is similar to AV OCTA. Instead 
of using the amplitude term in Eq. [2], it calculates the 
variance of Δφ between repeated scans, where Δφ is the 

phase difference between adjacent A-scans (22). A review 
paper has compared these two methods in detail (26). 
While the AV method suffers less from the system’s phase 
instability and has a lower computational cost, it is prone to 
bulk motion and projection artifacts (26). Furthermore, the 
statistical distribution of the phase decorrelation contains 
information for predicting the flow velocity. In a phantom 
setup using intralipid solution in a capillary, Gräfe et al. 
investigated the relationship between the flow velocity and 
the statistical properties (based on a maximum likelihood 
estimator or standard deviation) of the phase distribution, 
and reported that a normalized flow velocity can be precisely 
retrieved with repeated phase measurements (31). However, 
it is not clear what is the minimal number of repeated scans 
required to predict the flow velocity appropriately and how 
this algorithm will perform for in-vivo measurements in a 
clinical setting. 

Phasor-based OCTA

Optical microangiography (OMAG) was introduced by 
Wang et al. (32) and applied to various vascular beds of 
the body (33-37). The OMAG algorithm migrated from 
analyzing the frequency components along the A-scan 
direction (32) to comparing the complex information 
between repeated B-scans (38). The calculation is achieved 
by averaging the absolute complex signal difference between 
consecutive B-scan pairs. Later, a modification combining 
the geometrical and arithmetic terms was proposed in order 
to improve the visualization of the choriocapillaris (39). 
Complex-signal based OMAG showed higher contrast than 
either amplitude or phase-based OMAG, because both 
amplitude and phase are sensitive to different flow rates and 
combining them can therefore increase the overall OCTA 
signal (39). 

Nevertheless, phasor based OCTA is vulnerable to phase 
noise. For example, in swept-source OCTA, mechanical 
mirrors in the light source may create jitter artifacts in the 
spectrum sweep. Several algorithms have been developed 
for generating phase insensitive OCTA maps (40-43). 
Akinetic swept sources can sweep the spectrum via electrical 
tuning, making it immune to mechanical jittering, and 
therefore have higher phase stability (41,44,45).

Direct comparison between amplitude, phase, and 
phasor based OCTA algorithms is complicated, because the 
hardware and computational time requirements differ in 
different setups. For prototype systems, Gorczynska et al. (22)  
used a 100 kHz SSOCT system to compare the performance 
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of AD, AV, and PV OCTA algorithms in imaging retinal 
and choroidal vessels. Marginal difference in retinal 
microvasculature was observed among these three methods, 
but splitting spectrum improved the vessel continuity. For 
the choroidal vessels, PV OCTA performed slightly better 
than the amplitude-based methods, while the performance 
was not significantly different in visualizing choriocapillaris. 
Poddar et al. (46) utilized a fast megahertz (MHz) Fourier 
Domain Mode Lock (FDML) laser to acquire OCT images 
from the posterior pole of human subjects and compared 
the PV and AV OCTA images. Results showed better 
delineation of choroidal vessels and choriocapillaris using 
PV OCTA, while the AV OCTA exhibited less signal 
strength with fast flow saturating the signal. For commercial 
systems, agreement of OCTA matrices on the retinal 
vasculature (47) or neovascularization (48) is weak. One of 
the possible reasons is that different systems may employ 
different processing methods in OCTA generation, vessel 
enhancement, segmentation, binarization, etc. Hence it is 
difficult to evaluate the performance of OCTA generation 
algorithms by analyzing the data generated from the 
commercial machines. More recently, some state-of-the art 
theories of speckle flowmetry investigated the relationship 
between OCT temporal decorrelation and flow rate (49). 
Without considering the phase fluctuation from the system, 
the author concluded that phasor-based decorrelation can 
best predict the flow velocity, whereas largest discrepancy 
was seen when using the amplitude-based method. 

Commercial OCTA systems favor different algorithms 
to generate their OCTA signals. For example, AngioVue 
(OptoVue, Fremont, California, USA) uses an amplitude-
based SSADA algorithm (50), Triton (Topcon, Japan) 
employs an amplitude-based OCTA ratio analysis (51), 
and AngioPlex (Zeiss, USA) uses a phasor-based OMAG 
algorithm (52).

Recently, deep learning (DL) technology has been 
applied in the biomedical imaging field, and some groups 
have attempted to generate OCTA images via DL. For 
example, Lee et al. (53) tried to generate retinal OCTA 
images from the single acquisition of clinically available 
OCT images by transferring a trained U-Net, but results 
were not satisfactory and only large vessels could be 
successfully reproduced. Liu et al. (54) applied convolutional 
neural networks to generate OCTA images from four 
repeated scans, and the ground truth was generated from a 
phasor based OCTA algorithm (55). They concluded that 
the OCTA map generated from DL algorithm has a better 
signal to noise ratio (SNR) and lower speckle noise than the 

traditional method. With the rapid evolution of new DL 
networks, such as the generative adversarial network (GAN), 
there will be more implementation of DL algorithms in 
OCTA calculation in the near future.

Methods for artifact removal in OCTA

OCTA artifacts originate from multiple sources, such 
as bulk motion, vessel projections, laser beam blockage 
due to eyelashes or cataracts, and segmentation errors 
(56-60). They are common in acquisition and can affect 
quantification of OCTA metrics as well as clinical diagnosis. 
Thus, it’s important to develop algorithms that suppress or 
remove artifacts for improving the performance of OCTA 
in clinical applications.

Motion art i facts  during image acquis i t ion are 
unavoidable, and it comes from voluntary or involuntary 
eye motion, cardiac motion or head motion. It leads to 
vessel breaks, doubling, or stretching, and consequently 
affects OCTA quantification. Reducing motion artifacts 
can generally be done by increasing the acquisition 
speed, implementing a retina tracker, or by redesigning 
special scanning patterns. MHz OCT with a FDML laser 
can increase the acquisition speed by a factor of 16× as 
compared to commercial systems (61,62), so that motion 
artifacts can be greatly reduced given a short acquisition 
time. However, FDML lasers are expensive and MHz 
OCT systems can still be sensitive to fast saccades. Retinal 
trackers, such as the line-scan ophthalmoscope or scanning 
laser ophthalmoscope, detect the motion in real-time and 
send feedback to scanners to adjust the scanning region 
and suspend scanning during saccades. The drawback is the 
longer acquisition time especially for patients with fixation 
problems and high system complexity. Lastly, some special 
scanning patterns were designed to reconstruct motionless 
volumes from post-processing, such as x-y scans (63) and 
Lissajous scans (64), which require longer acquisition time 
and higher computational cost for image reconstruction. 
Figure 2A shows an example comparing the enface OCTA 
images acquired from a 3 mm × 3 mm retinal image with 
and without the use of the eye tracker. 

Superficial vessels can project shadows onto deeper 
vascular plexuses, which are called projection artifacts or 
tail artifacts. Dynamic scattering potential in blood vessels 
affects the number of photons and wavefront reaching the 
deeper tissue, and consequently change the strength of the 
decorrelative signals from the deeper tissue. This effect is 
more severe for large vessels with a high flow rate as shown 
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in Figure 2B. Bernucci et al. injected a contrast agent with 
isotropic scattering (fat emulsion dietary) intravenously to 
enhance the OCTA signal, and no significant change of the 
projection artifact was observed (65). This indicated that the 
projection artifact is partially due to the dumbbell shape of 
the red blood cell. To overcome the projection artifact, one 
could use adaptive optics (AO) with better focusing (66,67) 
or post-processing algorithms: A step-down exponential 

filter (68) was used to remove projection artifacts from 
OCTA cross-sectional scans in brains of rats. Moreover, 
projection artifacts in deeper enface angiograms can be 
removed by subtracting the signal from the superficial 
angiograms (69,70), or comparing the OCTA signal from 
A-scans (17,71). Projection resolved images provided better 
visualization of the deeper retinal layers and the choroids, as 
well as the vasculatures in these layers (70,72,73).

Figure 2 Representative examples of artifacts in OCTA. (A) A macular scan was imaged with/without active eye tracking. Without tracking, 
complete absence of the signal or breaks within the vessels were induced by eye motion including blinking and saccades, respectively. (B) 
Deep capillary plexus (DCP) visualization can be affected by the projection of vessels from its superficial vessel plexus (SVP). A projection 
removal algorithm by subtracting SVP from DCP can resolve the projection artifact and restore the proper visualization of DCP. (C) 
Low signal area from an unknown blockage origin can confound the real capillary dropout area from OCTA images, but the blockage can 
also result in a signal loss in their corresponding OCT images. Borrowing the structural information may help to differentiate signal loss 
area from capillary dropout. (D) Segmentation error occurs more frequently in high myopic eyes with a strong curvature and high optical 
aberration in periphery. Misinterpretation of the capillary loss can occur when not confirming the segmentation accuracy. OCTA, optical 
coherence tomography angiography.

Projection artifactMotion artifactA

Low contrastC Segmentation errorD

B
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Low image contrast is encountered in subjects with 
cataracts, eyelash blockage or high myopia (Figure 2C). 
Low contrast can be global or regional, especially for 
large FOV images. Optical vignetting creates an uneven 
illumination of the retina, making the center bright and 
the periphery dark. Moreover, strong curvature of high 
myopic eyes can result in retina wrapped by the image 
range (74). Hence, correctly differentiating the low contrast 
regions from pathological capillary dropout is crucial for 
diagnosing vascular insufficiency in diseases such as diabetic 
retinopathy. De Pretto et al. (75). used spatial variance filter 
and OCT contrast thresholding to differentiate the artifacts 
from real capillary dropout. The implementation of a DL 
algorithm was also investigated for the same task from the 
corresponding structural image (76).

Segmentation error is probably the most important 
artifact in OCTA (Figure 2D). OCT image quality is easily 
deteriorated by speckle noise, and retinal layers have limited 
boundary contrast. Numerous segmentation algorithms, 
in both automatic and semi-automatic manners, have been 
developed, including k-nearest mean (77), graph cut (78), 
graph theory (63,79), Markov boundary model (80), active 
contour (81,82), texture and shape analysis (83,84), 3-D 
theoretical representation fitting (85), and sparse high 
order potentials (86). Dubose et al. (87) modeled statistical 
intensity distribution of the retinal layers and used Cramèr-
Rao lower bound to explain the limitation of traditional 
retinal layer segmentation. Recently developed retinal layer 
segmentation algorithms have been heavily influenced by 
machine learning (ML) concepts. Various ML methods 
including support vector machine (88), random forest (89), 
neural network (90), and DL architectures were applied to 
retinal segmentation in healthy and diseased eyes (91-101).  
De Fauw and coworkers (102) were able to provide precise 
segmentation of multiple pathological sites after training 
on 14,884 scans. Nevertheless, it is still challenging to 
transfer the ML-based segmentation into OCTA in a 
clinical setting. It is difficult to transfer trained models from 
one machine to another, and for some pathologies such as 
neovascularization, training datasets are simply insufficient. 

OCTA metrics algorithms

Numerous methods have been developed and investigated 
for extracting quantitative metrics from OCTA images. 
OCTA processing is still in its infant stage and so far 
there has been no consensus of the standard processing 
framework, which complicates the comparisons of the 

reported results. The problem is exacerbated by the 
interference between different factors, so one cannot simply 
conclude the performance of one factor without considering 
the subtle effect of the others. Here, we list out these 
influences and discuss how they can potentially affect the 
OCTA quantifications. 

Vessel enhancement algorithms

Retinal vessel network in healthy human eyes can usually 
be divided into several plexuses, each of them almost 
parallel to the retinal surface. Vertical anastomoses link the 
entrances and exits of each plexus to form a closed-loop 
network. Therefore, enface angiograms in each plexus can 
be analyzed individually. Prior to the quantification, some 
vessel enhancement filters are usually applied to increase the 
angiogram SNR. The Frangi filter approach (103) is widely 
applied to enhance the tube-like properties in images by using 
second-order derivative of the image intensity. However, 
its performance is strongly dependent on the presence of 
vessels of different sizes (scales) in the same image. Gabor 
filter is a vessel enhancement algorithm based on the 
determination of orientations within the image. It detects 
the local image orientation by convoluting the image with 
Gabor kernels and Hendargo et al. (104) used it to increase 
the efficiency of angiogram mosaic stitching. Alternative 
filters include weighted symmetry filter (105), active shape 
models (106), vessel enhancement diffusion (107) and local 
phase-based filter (108). Wavelet decomposition (109) 
and modified Bayesian residual transform (MBRT) (110)  
decompose the image into multiple residual images, where 
each residual image represents information at a unique 
scale. Both methods could simultaneously reduce speckle 
noise and enhance the contrast of vessels. Figure 3 shows 
examples of applying representative vessel enhancement 
filters (Frangi, Gaussian, Gabor, Bayesian and superpixel) 
to two 3 mm × 3 mm macular scans, one from a healthy 
eye and the other from an eye with moderate diabetic 
retinopathy. Vessels appeared significantly different with 
various filters, and consequently perfusion density results 
range from 40.4% to 62.0% in the healthy eye and 38.1% to 
61.8% in the diabetic retinopathy eye, using mean grayscale 
intensity as a threshold for binarization. There is as yet no 
agreement on which filter best suits OCTA analysis. Hong 
et al. tested the repeatability of OCTA metrics with multiple 
filters (Gaussian, Gabor, Frangi, and MBRT) in an aged 
population. The performance of different filters varies in 
3 mm × 3 mm and 12 mm × 12 mm protocols: Gabor and 
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MBRT filters yielded the best performances in 3 mm × 3 mm  
and 12 mm × 12 mm protocols, respectively (111).

Averaging over multiple scans might be the most 
straightforward method to reduce image speckle and 
increase SNR. Pulsatile flow and pericyte constriction can 
cause a heterogeneous blood vessel lumen appearance and 
averaging multiple frames can reduce this unevenness. 
Although averaging phasor images lead to better results 
than averaging amplitude image (112), it is computationally 
expensive and such post-processing is impractical to deal 
with images from commercial systems because of the 
limited access to the raw data. Uji et al. (113) showed that 
averaging nine scans greatly improves the visualization of 
retinal vessels and better delineates the boundary of the 
fovea avascular zone (FAZ). Mo et al. (114) observed a better 

correlation between AO scanning laser ophthalmoscope FA 
and OCTA when multiple enface images were registered 
and averaged. OCTA images of choriocapillaris also benefit 
from averaging. High lateral resolution and sampling are 
required to visualize choriocapillaris, and averaging multiple 
frames can substantially increase their visibility (113,115). 
However, the drawback is the longer acquisition time which 
leads to the low tolerability for patients with poor fixation 
or physical difficulties. One study examined the relationship 
between the number of averaged frames and quantification 
of retinal vessel metrics using a commercial system and 
concluded that five scans were optimal to balance the 
acquisition time and image robustness (116). Using another 
machine (PlexElite 9000, Zeiss), we performed ten repeated 
measurements and examined the performance of averaging 

Figure 3 Effect of different representative vessel enhancement filters on OCTA image from one healthy eye and one eye with moderate 
diabetic retinopathy. Visualization of OCTA images can be substantially altered by different filters and parameters, and consequently the 
perfusion density can range from 40.4% to 62.0% in the healthy eye and 38.1% to 61.8% in the diabetic retinopathy eye using the mean 
grayscale intensity as threshold. MBRT, modified Bayesian residual transform. OCTA, optical coherence tomography angiography.

Raw Frangi Gaussian Gabor MBRT Superpixel

57.6% 40.4% 61.7% 60.9% 62.0% 48.5%

54.9% 38.1% 61.8% 60.3% 55.0% 46.7%
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(unpublished data, Figure 4). Here, averaging three images 
seemed visually comparable to averaging ten images to 
balance the retinal vessel unevenness and generate an 
anatomically reasonable choriocapillaris pattern. Moreover, 
it is worth noting that scan quality consistency and 
precise registration algorithms are critical to avoid signal 
degradation. 

Selection of thresholding method is also critical for 
correct OCTA interpretation. The thresholding methods 
can be divided into two categories: global methods and local 
or regional methods. Global thresholding includes Otsu’s 
histogram adaptive thresholding (117) and mean/standard 
deviation thresholding. Otsu methods try to separate the 
foreground and background by adaptively selecting a local 
minimum in the histogram to be the threshold, and the 
mean/standard deviation method sets a fixed value, e.g., 
mean + standard deviation, to be the threshold. Local or 
regional thresholding methods such as Phansalkar (118), 
Niblack (119), and Sauvola (120), use different types of 
local information to binarize images. Both types of methods 
have their advantages and disadvantages. For instance, local 
thresholding methods tackle the uneven illuminance in 
images, but the drawback is the need to tune the kernel size. 
One example is over-segmenting the noise in the FAZ (121)  
with a small kernel radius. Furthermore, noise present 
in the OCTA images, especially in the low signal regions 
such as choriocapillaris can easily cause misinterpretation if 
thresholding is not done properly. For careful interpretation 
of the perfusion readings, the binarized images must be 
assessed alongside the OCTA images (122).

Vessel selectivity algorithms allow for the analysis of large 
vessels and capillaries separately. For several diseases such 
as glaucoma (123), diabetic retinopathy (6,124), ischemic 
optic neuropathy (125,126) and Alzheimer’s disease (127) 
where capillaries are more affected, separating the large 
vessels from capillaries could bring extra diagnostic power 
as compared to combining them. Vessel selectivity can be 
simply done by thresholding the angiograms and applying 
some morphology operators, and some aforementioned 
vessel enhancement filters can also be applied prior to the 
thresholding. However, the vessel selectivity algorithm is 
not perfect yet, and the selection standard usually differs 
from the anatomical definitions, such as vessel branch order. 

Quantification

Traditional quantitative metrics for OCTA analysis are 
perfusion density and vessel density. The perfusion density 

is calculated as the ratio of the binarized perfusion area 
to the entire imaged area. Vessel density is based on the 
skeletonized vessel map, using a one-pixel line to represent 
the vessel, as such excluding the effect of the vessel 
diameter. It is calculated as the ratio of vessel area to the 
entire imaged area. 

There are also some other proposed metrics such as 
fractal dimension (8,128) and complexity index (129), but 
they are less intuitive and more computationally costly. 
Because of the heterogeneous nature of the parafoveal 
vessels (130), perfusion and vessel densities were sometimes 
calculated separately in four quadrants. For example, as 
shown in Figure 5, an annulus with inner ring diameter  
1 mm and outer ring diameter 2.5 mm was evenly separated 
into superior, inferior, temporal and nasal quadrants. 

For choriocapillaris, instead of calculating the area of 
perfusion, researchers used the non-perfused area for analysis 
with some binarization approaches. These non-perfused 
regions, based on individual preference, are called flow 
voids, flow deficits or signal voids. The total non-perfused 
region usually reflects the global change in the imaged area 
due to systemic diseases, such as hypertension (73), and sizes 
of individual non-perfused regions can represent the local 
change due to more focal pathology, such as drusen (131). 

Magnification is an important factor to consider. The 
actual FOV Sactual can be modeled as a function of axial eye 
length: 

Sactual=p · q · Sprotocol 	 [3]

where Sprotocol is the FOV of scanning protocol, p is the 
magnification factor of the machine optics, and q is the 
magnification factor of the eye which has been expressed 
as 0.01306 · (AL−1.82) with AL representing the axial eye 
length and 1.82 is the distance between the corneal apex 
and the second principal plane in mm (132). Whether this 
formula is, however, truly correcting all magnification errors 
remains unproven. Magnification can affect how much FAZ 
is included in the calculation and also perfusion density 
because perfusion decreases along with eccentricity (133),  
which can further affect the quantification of OCTA 
images especially in highly myopic eyes with long axial eye 
length (134,135). A systematic review revealed only 8% 
of 509 articles correctly rescale the imaging area (136). A 
lack of axial eye measurement might be the reason and, 
in this case, the FAZ annulus method might be a more 
appropriate approach to mitigate the influence of FAZ. An 
example is shown in Figure 5, where the FAZ was manually 
delineated and its 500 µm and 1,000 µm thick annulus were 
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Figure 4 Effect of multiple enface image averaging on visualization of retinal and choriocapillaris OCTA images. Averaging multiple frames 
increases the image signal and reduces background noise but averaging 10 frames has marginal improvement as compared to averaging 3 
frames. Moreover, the improvement is greater in choriocapillaris plexus where the original signal to noise ratio is low. Red arrows indicate 
the locations where averaging caused changes in vessel appearance. OCTA, optical coherence tomography angiography.
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defined for regional OCTA quantification. Nevertheless, 
this method could be labor-intensive due to the manual 
delineation of FAZ.

OCTA metrics can be significantly affected by many 
other factors, such as lateral resolution, sampling rate, 
system speed and scan direction. Different lateral 
resolutions and sampling rates from clinical machines gave 
dissimilar qualitative and quantitative OCTA results (48).  
AO OCTA is a new technology to correct the ocular 
aberration and achieve diffraction limited lateral resolution 
by utilizing deformable mirrors, and capillaries in AO-
OCTA images appeared to be narrower and consequently 
yielded lower perfusion density compared to that imaged 
without AO (66,114,137,138). In addition, increasing the 
sampling density has a substantial effect on the OCTA 
visualization and quantification (139), changing the 
sampling rate post-processing can significantly alter the 
choriocapillaris size (140) and retinal perfusion density (141).  
Different sampling densities using the same machine 
(PlexElite 9000, Zeiss, USA) resulted in disagreement of 
perfusion and vessel density calculation and performed 
differently in diagnosing diabetic retinopathy (142). 
Imaging speed, including A-scan and B-scan speed, also 
contribute to the OCTA signal. The time interval between 
repeated B-scans is sensitive to the blood flow in a specific 
range (30,143). Due to the large variation of blood flow 
rate in retinal and choroidal vessels, different systems may 
advance in detecting either one of them: faster systems, 

in general, have shorter interscan time interval, which are 
more sensitive to faster flow and the converse is also true. 
For example, a 1.7-MHz FDML laser is 17× faster than 
most lasers that are used in commercial machines. Using 
such a laser as light source could substantially reduce the 
interscan time and consequently improve the visualization 
of the fast flow such as choriocapillaris and choroid, 
but conversely compromised the detection of slow flow 
velocities as, for example in foveal capillaries adjacent to the 
FAZ (144). Last but not least, the scan direction is another 
factor influencing the OCTA signal that is not sufficiently 
taken into account. First, the OCTA signal is most sensitive 
to the flow perpendicular to the fast scanning direction. 
Changing the scan direction will result in being sensitive 
the flow from a different angle (145). Second, the motion 
artifacts are usually along the slow scan axis, which might 
consequently alter the OCTA image appearance. Generally 
speaking, quantification of OCTA metrics can be affected 
by a myriad of factors, which can influence the outcome 
and the results will need to be reported alongside detailed 
method description. Comparisons are complicated among 
commercial machines using different parameters and 
methods. 

In summary, OCTA can reveal the three-dimensional 
retinal and choroidal vascular network with unprecedented 
resolution and speed. Although OCTA machines have been 
commercialized by several companies and the technology 
has been translated to clinics, research is still ongoing to 

Figure 5 Illustration of a possible analysis of a macular OCTA image. Quadrant analysis (superior, inferior, nasal, temporal) on an annulus is 
shown in the upper row and FAZ annulus analysis based on manual FAZ delineation is depicted in the lower row. OCTA, optical coherence 
tomography angiography; FAZ, fovea avascular zone.
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find optimized solutions for interpreting and quantifying 
OCTA images. Novel approaches are directed towards 
the quantification of blood flow rate from OCTA, which 
is important for understanding local or global perfusion 
changes as well as vascular dysregulation prior to the 
morphological change in microvasculature, but no solution 
for this problem has been found as yet. Whereas OCTA has 
been extensively studies for ocular disease, future studies 
will also explore the use of ocular OCTA as a window to link 
ocular vasculature to the function of other organs such as 
the kidney and brain. To find clinically relevant association 
selection of an optimized quantification algorithm is crucial.
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