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Background: Tumor mutation burden (TMB) has an important association with immunotherapy 
responses. TMB in the Chinese population has not been well established. Finding differences between the 
Chinese and Caucasian populations and elucidating the underlying biological mechanisms of high TMB 
might help develop more precise and effective means for TMB and immunotherapy response prediction.
Methods: Chinese cancer patients fresh tissue (n=2,177), formalin-fixed, paraffin-embed (FFPE) specimens 
(n=3,294), and pleural fluid (n=189) were profiled using a 295- or 520-gene next-generation sequencing 
(NGS) panel. The association of the TMB status with a series of molecular features and biological pathways 
was determined using bootstrapping.
Results: TMB, measured by 295- or 520-cancer-related gene panels, was correlated with whole-exome 
sequencing (WES) TMB based on the in silico simulation in The Cancer Genome Atlas cohort. The median 
TMB of our data was slightly higher than that from the Foundation Medicine Inc. (FMI) dataset. TMB 
was also slightly different within the same cancer type between the Chinese and Caucasian population. 
We discovered that the underlying pathways of TMB status varied greatly and sometimes had an opposite 
association with TMB across different cancer types. Moreover, we developed a 23-gene and a 16-gene 
signature to predict TMB prediction for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC), respectively, indicating a histology-specific mechanism for driving high-TMB in lung cancer.
Conclusions: TMB varies among different ethnic populations. Our findings extend the knowledge of 
the underlying biological mechanisms for high TMB and might be helpful for developing more precise and 
accessible TMB assessment panels and algorithms in more cancer types.

860

Original Article 

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-3807


Jiao et al. TMB in Chinese cancer patients

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(14):860 | http://dx.doi.org/10.21037/atm-20-3807

Page 2 of 12

Introduction 

High tumor mutation burden (TMB) has been associated 
with improved response to immune checkpoint inhibitors 
(ICIs) because elevated TMB increases the odds of 
generating immunogenic neoantigens (1,2). TMB was 
revealed to be an independent predictor of responses to 
ICIs not only in non-small cell lung cancer (NSCLC) (3), 
but also in small-cell lung cancer (SCLC) (4), melenoma (5),  
and other varieties of cancer (6). Multiple clinical trials 
have demonstrated the positive correlation between TMB 
and response to ICIs. KEYNOTE-001 has shown that in 
NSCLC patients receiving pembrolizumab, those with 
higher TMB had an improved overall response rate (ORR) 
and longer progression-free survival (PFS). TMB has 
been previously calculated by whole-exome sequencing 
(WES) (1,7). Nevertheless, its assessment by WES could 
be substantially limited by its high cost, the lack of deep 
coverage, and the additional bioinformatics demands. 
Multiple studies have reported that tatgeted sequencing 
panels containing coding regions of several hundreds of 
cancer-related genes can accurately estimate TMB and 
predict response to immunotherapy (8-11).

Although TMB may be a pan-cancer predictor for 
immune check point inhibitor, different tumors have 
different immune features and TMBs (12,13), and their 
potential driving mechanisms are different (14,15). For 
instance, deficiency in DNA damage response (DDR) 
pathway can raise the overall mutation burden in bladder 
cancer (16). In colon cancer, the mismatch repair (MMR)-
deficient tumors were found to have a higher TMB than the 
MMR-proficient tumor (17). However, in breast cancers, 
tumors with mutations in BRCA1, a central gene in the 
homologous recombination pathway, exhibited a greater 
mutational burden than BRCA1-wt tumors (18). Given 
these diverse findings, further exploring the distinction of 
underlying driving pathway between different cancer types 
may be clinically significant. 

Besides the disparity between cancer types, TMB may 
also vary across different ethnic populations. In NSCLC, for 
which targeted therapy was first engineered, a huge gap of 

efficacy was detected between Western populations and East 
Asian population in 2000s. This can be explained by the fact 
that East Asian populations harbor a higher percentage of 
epidermal growth factor receptor (EGFR) mutation (19-22).  
A similar ethnic diversity in relation to the EGFR mutation 
and NSCLC may also exist for TMB. However, most of the 
studies concerning TMB have been conducted in Western 
populations, and thus the TMB features in Chinese patients 
have not been well established. This may have great 
clinical significance for oncologists in the era of immune 
therapy, especially in China. Furthermore, if we can find 
a way to predict TMB with fewer combinations of genes, 
it will reduce the cost of sequencing and provide more 
convenience for clinicians. 

In this study, we examined the TMB landscape of a 
cohort of 5,660 Chinese cancer patients, spanning 11 cancer 
types, using either a 295- or a 520-gene NGS panel. We 
established cancer-specific and histology-specific biological 
pathways associated with TMB status. In addition, as a 
proof of concept, an unsupervised algorithm was conducted 
using stepwise logistic regression to generate TMB-
predicting signatures from both lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC). 

Methods

Cohort selection and study design

We reviewed the genomic profiling data of 5,660 cancer 
patients from the following 9 participating centers: 
Changzheng Hospital, The Affiliated Hospital of Qingdao 
University, Fudan University Shanghai Cancer Center, 
Jiangsu Cancer Hospital & Jiangsu Institute of Cancer 
Research, The Affiliated Cancer Hospital of Nanjing 
Medical University, The First Affiliated Hospital of Suzhou 
University, The First Affiliated Hospital of Zhejiang 
University, Taizhou Central Hospital, Affiliated Hangzhou 
First People’s Hospital and Eastern Hepatobiliary Surgery 
Hospital. Samples were collected from April 2015-April 
2018. There were 3 samples types: fresh tissue (n=2,177), 
formalin-fixed, paraffin-embedded (FFPE) (n=3,294) 
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and pleural fluid (n=189), which were profiled in a 
Clinical Laboratory Improvement Amendments (CLIA)-
certified sequencing laboratory (Burning Rock Biotech, 
Guangzhou, China) using the OncoScreen 295 (n=2,026) or 
OncoScreenPlus 520 (n=3,634) cancer-related gene panel. 
Of note, cases with maximal allelic frequency of less than 
5% were not enrolled in this cohort. An external cohort 
consisting of 8,092 samples with WES sequencing data 
was downloaded from The Cancer Genome Atlas (TCGA) 
database to evaluate the in silico correlation of TMB using 
the 295- and 520-gene panels and WES. Eligible patients 
were histologically assessed according to the latest World 
Health Organization Criteria.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethic Committee of Changzheng Hospital 
(2017SL016). Written informed consent was obtained from 
each patient for the use of their specimen.

NGS library preparation and sequencing

Capture-based targeted deep sequencing was performed 
using the 295- or 520-gene panel, spanning 1.44 and 1.64 
Mb of the human genome, respectively. The gene list for 
each panel was listed in Tables S1 and S2. The detailed 
NGS library and sequencing protocol preparation was 
performed as previously described (23). In brief, DNA 
was fragmented by Covaris M220 focused ultrasonicator 
(Covaris, Inc., Woburn, MA, USA) followed by end repair, 
phosphorylation, dA addition, and adaptor ligation for 
library construction. Then, DNA library was purified 
by using Agencourt AMPure beads (Beckman Coulter, 
Fullerton, CA, USA). The quality and the size of the 
fragments were assessed using Qubit 2.0 fluorimeter with 
the dsDNA high-sensitivity assay kit (Life Technologies, 
Carlsbad, CA, USA). Indexed samples were sequenced on 
Nextseq500 (Illumina, Inc., USA) with paired-end reads. 

TMB calculation and microsatellite instability (MSI) 
assessment

For sequencing data from the 295- or 520-gene panel, 
the somatic alterations in exons of coding regions and the 
adjacent 20-bp length of both upstream and downstream 
sequences were included in the calculation of TMB. The 
copy number variation and fusion were not counted. 
Alterations in the mutations of EGFR (exon 18–21) and 
ALK (amino acid 1,116–1,382) kinase domains were also 

excluded from the TMB calculation. A maximum allelic 
fraction (max.AF) of 5% was defined as the detection 
limit for TMB assessment using in-house validation, and 
samples with max.AF <5% were excluded. MSI status was 
determined as previously described (24). Additionally, 
homologous recombination repair (HRR) and DDR were 
defined as any non-synonymous mutation in the coding 
region of 16 and 87 genes, respectively. Detailed gene lists 
are provided in Table S3.

Analysis of the correlation of underlying pathways and 
TMB

To compute the significance of the correlation of each 
pathway with TMB, the patients were divided into two 
sub-groups: one group included those with any mutation 
in the specific pathway, and the other group included 
those without any such mutation. The ratio of the mean 
TMB of the patients with and without mutations in this 
pathway was calculated as the main statistical indicator. 
Next, regions with the same size covered by all genes from 
each pathway were randomly selected from our panel with 
1,000 repetitions to simulate the distribution of the statistic 
and compute the significance, while controlling for bias 
in which a high-TMB sample could elevate the number 
of mutations among any set of genes. In each simulation, 
patients were also divided into two sub-groups mutated or 
non-mutated, based on the mutation status of the randomly 
selected regions, and the mean TMB ratios of these two 
groups were also calculated.

Gene signature development for TMB prediction

A machine learning algorithm was used in the cohorts 
with LUAD and LUSC to construct TMB prediction 
models. Samples of 300 patients with LUAD and 100 
patients with LUSC were selected randomly from the 
entire cohort as independent test sets. The remaining 
samples, utilized as training sets, were used to establish the 
TMB class prediction model. To select the most predictive 
genes, a t-test was employed firstly in the training set to 
find the genes related to TMB as candidate genes. Then, 
the CfsSubsetEval attribute evaluator and the BestFirst 
search method of WEKA software (version 3.8) were used 
for feature selection (25). The predictive capability of 
each attribute and the degree of redundancy between two 
different attributes were measured using the CfsSubsetEval 
attribute evaluator. Furthermore, a set of attributes with 



Jiao et al. TMB in Chinese cancer patients

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(14):860 | http://dx.doi.org/10.21037/atm-20-3807

Page 4 of 12

a high correlation and low-coupling was generated. The 
BestFirst search method searched the feature subset space 
through a greedy hill-climbing strategy augmented with 
a backtracking facility. Next, to avoid over-fitting, a ten-
fold cross-validation was utilized in the feature selection 
procedure. Considering the convenience of clinical 
application, logistic regression was used to establish the 
TMB class prediction model by gene features. To evaluate 
the performance of the model, both ten-fold cross-
validation of the training dataset and independent test 
datasets were utilized. 

Statistical analysis

All data, except for the feature selection step of machine 
learning, were analyzed using Software R (Version 3.4.0). 
The correlation between TMB (as calculated by the 295- 
and 520-gene panels) and WES was evaluated by linear 

regression. Wilcoxon signed-rank test was used to compare 
the mutation loads between the age groups among the 
TMB-high, -medium, and -low patients. Comparisons 
between the mutation burden in male and female patients, 
MSI-H and microsatellite-stable (MSS) patients, DDR 
deficient and DDR proficient patients, and HRR deficient 
and HRR proficient patients were also performed using the 
Wilcoxon signed-rank test. For all statistical tests, a P value 
<0.05 was considered statistically significant.

Results

The landscape of TMB across different cancer types in the 
Chinese population

This cohort contained 1,996 (35.3%) females and 2,370 
(41.9%) males, and gender information of 1,294 (22.9%) 
cases was unavailable. Median age of these patients was  
58 years, ranging from 39 to 94 years (Table 1). For 
subsequent analyses, patients of this cohort with 11 
distinct cancer and histology types, were classified into the 
following 3 main types on the basis of tumor origin and 
evolution: LUAD (1,847/5,660, 32.6%), colorectal cancer 
(548/5,660, 9.7%), and LUSCs (474/5,660, 8.4%). Other 
cancer types included breast cancer (466/5,660, 8.2%), 
gastrointestinal cancer (261/5,660, 4.6%), hepatobiliary 
cancer (154/5,660, 2.7%), etc. The last cancer type group, 
“others” (n=1,526/5,660, 27.0%), included cancer types 
containing less than 50 unique specimens (n=417), lung 
cancers except for LUAD and LUSC (n=899), and cases 
with unknown cancer types (n=210).

Detailed panel information is presented in Figure S1A. 
The TMB, assessed by the 295- and 520-gene panels and 
WES closely correlated with each other (295-gene panel 
vs. WES, R2 =0.969; 520-gene panel vs. WES, R2 =0.975; 
295- vs. 520-gene panel, R2 =0.993; Figure S1B,C,D). These 
results indicated that the comprehensive genomic profiling 
using 295- and 520-gene panels can accurately reveal the 
actual mutation burden.

We performed comparative mutation burden analysis 
between our Chinese study cohort and a larger cohort 
(over 100,000 samples) reported by Foundation Medicine 
Inc. (FMI) (8). In our cohort, the TMB distribution was 
highly variable between and within cancer classes, ranging 
from 0 to 723.8 mutations/Mb, with a median TMB of  
5.6 mutations/Mb. The median TMB was slightly higher 
than that from the FMI dataset, which was 3.6 mutations/Mb. 
Overall, 5.4% (n=305) of the patients had a TMB higher 

Table 1 Patient characteristics

Patient characteristics n %

Total 5,660

Gender

Female 1,996 35.3

Male 2,370 41.9

Unknown 1,294 22.9

Age (y)

Median 58 –

Range 39–94 –

Tumor type

Lung adenocarcinoma 1,847 32.6

Colorectal cancer 548 9.7

Lung squamous cell carcinomas 474 8.4

Breast cancer 466 8.2

Gastrointestinal cancer 261 4.6

Hepatobiliary cancer 154 2.7

Sarcoma 123 2.2

Ovarian cancer 122 2.2

Pancreatic cancer 87 1.5

Kidney cancer 52 0.9

Others 1,526 27.0
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than 20 mutations/Mb, 16.5% (n=936) cases had a TMB 
between 10 and 20 mutations/Mb, and 78.1% (n=4,439) 
cases had a TMB of less than 10 mutations/Mb in our 
cohort.

Among all the cancer groups, sarcomas had the lowest 
mutation burden (median TMB 2.4 mutations/Mb) in our 
cohort, which agreed well with the FMI results (median of each 
sarcoma subtypes ranged from 1.7 to 3.3 mutations/Mb). The 
median TMB of breast cancer ranked second in our cancer 
groups in terms of TMB from low to high and coincided 
with that of the FMI population (median of each breast 
cancer subtypes ranged from 2.7 to 3.8 mutations/Mb).  
As to ovarian cancer, the median TMB in our cohort 
was 4.1 mutation/Mb, and the range of median TMB 
for each ovarian cancer subtype in the FMI dataset was 
1.8–3.6 mutation/Mb. We found that the median TMB 
of hepatobiliary cancer, kidney cancer, and pancreatic 
cancer was the same in our cohort (4.8 mutations/Mb), and 
higher than that in the FMI dataset (hepatobiliary cancer 
median =2.5–3.6 mutations/Mb; kidney cancer median 
= from 2.5–5.4 mutations/Mb; pancreatic cancer median  
=1.8–2.7 mutations/Mb). In gastrointestinal cancer 
and colorectal cancer, the median TMB was 5.6 and  
7.1 mutations/Mb, respectively, higher than those of 
the FMI population (gastrointestinal cancer median  
=0.9–5.0 mutations/Mb; colorectal cancer median  
3.6–5.9 mutations/Mb). In addition, cancers related to 
chronic mutagen exposures such as lung cancers exhibited 
greater hyper-mutation than other cancer groups in our 
cohort. Within lung cancers, LUSC was more highly 
mutated than LUAD (median 10.2 vs. 5.1 mutations/Mb), 
and consistent with conclusions from the FMI population 
(median 9.0 vs. 6.3 mutations/Mb) (Figure 1A,B). 

Association between TMB and demographic/molecular 
features

TMB-medium (63 years) and high groups (63 years) were 
significantly older than the TMB-low group (56 years; 
P<0.001, Wilcoxon signed-rank test; n=4,328; Figure 2A). 
This phenomenon was also observed in the lung cancer 
subpopulation (high TMB, median age =65 years; medium 
TMB, 63 years; low TMB, 59 years; P<0.001, n=1,801; 
Figure 2B), which was the major tumor type in this study. 
Furthermore, our analysis revealed that male patients more 
commonly correlated with higher TMB than the female 
patients, with statistical significance (median TMB 6.3 vs. 
4.0 mutations/Mb, P<0.001, n=4,366; Figure 2C), in both 

the whole cohort and the lung cancers group (median TMB 
7.1 vs. 4.0 mutations/Mb, P<0.001, n=1,810; Figure 2D).

We further established that the MSI-high patients usually 
had a higher TMB than the MSS patients (median TMB 
71.4 vs. 5.1 mutations/Mb, P<0.001, n=4,513, Figure 2E). 
Alterations in DDR occurred in all 11 cancer type groups, 
with alteration frequencies ranging from 26.4% (23/87) in 
pancreatic cancer to 57.8% (274/474) in LUSC. We observed 
that DDR-deficient patients had a significantly higher TMB 
than the DDR-proficient patients (median TMB 7.9 vs.  
4.1 mutations/Mb, P<0.001, n=5,660, Figure 2F). 

Similar to DDR, HRR alterations were identified in 
the patients of all 11 cancer type groups, with a minimal 
alteration frequency of 11.5% (6/52) in kidney cancer 
and a maximal frequency of 34.5% (161/466) in breast 
cancer. HRR-deficient patients had a significantly higher 
TMB than HRR-proficient patients (median TMB 8.2 vs.  
4.8 mutations/Mb, P<0.001, n=5,660, Figure 2G).

Underlying driving pathways of high TMB across different 
cancer types

We investigated the distribution of mutations across Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
in different cancer groups (Figure 3A). The minimal 
percentage of mutated cases was observed in the MMR 
pathway of pancreatic cancer (0/87, 0%), whereas the 
maximal percentage occurred in the PI3K-Akt signaling 
pathway of colorectal cancer (537/548, 98.0%). 

Some of the pathways displayed significant association 
with TMB status in different cancer groups, but no pathway 
had a universal association with TMB. Moreover, we 
observed that an alteration in an identical pathway but in 
different cancer groups may indicate an opposite direction 
of the TMB status (Figure 3B, Figure S2).

TMB predictive signature (TPS) development

Molecular signatures consisting of 23 and 16 gene features 
were derived for TMB status prediction in LUAD and 
LUSC, respectively (Figure 4A). In LUAD, 22 gene features 
were positively correlated with the TMB status, with a 
correlation coefficient value ranging from 0.34 for ATR to 
1.63 for LRP1B. Only EGFR (oncogenic driver variants) 
was negatively correlated to TMB (correlation coefficient 
=−1.13). In LUSC, all 16 identified gene features were 
positively associated with TMB. Among them, KMT2A 
was the most highly correlated with the TMB status, with a 
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Figure 1 Landscape of the tumor mutation burden of 5,660 cancer patients across different cancer types. (A) Comparative tumor mutation 
burden (TMB) analysis between our study cohort and the FMI cohort. Orange bars indicate our study cohort. and green bars represent the FMI 
population. (B) Landscape of TMB in our cohort. The top table lists the patient number and median mutation burden of cancer patients grouped 
on the basis of different cancer types. The middle boxplots display the landscape of TMB in different cancer types. A single point indicates an 
individual patient. The specific proportion of TMB-high, TMB-medium, and TMB-low in different cancer types are indicated by different colors. 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TMB, tumor mutation burden; FMI, Foundation Medicine Inc.
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Figure 2 Association between TMB and patient demographics and molecular patterns. (A) The variations in the TMB status were correlated 
with the differences in age in the whole cohort, with statistically significant differences (Wilcoxon test); (B) high TMB was associated with 
old age in lung cancer patients (Wilcoxon test). Male patients were more prone to having high TMB than females in both the whole cohort 
(C) and lung cancer subgroups (D) (Wilcoxon test); (E) microsatellite instability-high commonly indicated high TMB (Wilcoxon test); (F) 
DDR deficiency and (G) HRR deficiency were both correlated with high TMB (Wilcoxon test). TMB, tumor mutation burden; DDR, DNA 
damage response.
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correlation coefficient of 1.67, followed by TP53 (1.60) and 
RUNX1T1 (1.59). 

The TMB predicted by TPS was in remarkable 
agreement with the TMB directly calculated by the NGS 
panels, as measured by area under the curve (AUC) (LUAD, 
AUC =89.3%, Figure 4B; LUSC, AUC =86.5%, Figure 
4C) and seven other parameters (Table S4) in both NSCLC 
subtypes.

Discussion

We characterized the landscape of TMB in a cohort of 

5,660 Chinese cancer patients across 11 cancer groups. To 
our knowledge, our cohort is the largest reported Chinese 
cohort concerning TMB in a pan-cancer population. We 
observed a rich variation in mutational burden across and 
within cancer types, which was consistent with previous 
studies (1,7,8). Patients with high TMB can be identified 
in nearly all cancer types, implying that patients with 
any cancer types may have potentially benefit from 
immunotherapy. In our study cohort, the median TMB of 
several tumor types was higher than that of the FMI dataset. 
Several factors can account for these results including but 
not limited to the difference in ethnicity, age, stage, line of 
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Figure 3 Association of mutated pathways and TMB demonstrated in a heatmap. (A) Percentage of the mutated cases in each pathway 
across the different cancer type groups. The mutation percentages are colored as specified above; (B) correlation analysis of the underlying 
pathways and the TMB status across different cancer types. The different cancer types are located in the bottom category and the different 
pathways are located in the left category. The positive and negative correlations between the pathways and the TMB status are marked in 
red and green, respectively. *, indicates P<0.05; **, indicates P<0.01; and ***, indicates P<0.001. TMB, tumor mutation burden;
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Figure 4 Gene signature for TMB prediction in non-small cell lung cancer. (A) Correlation coefficient of TPS for TMB prediction in 
LUAD and LUSC. The red column indicates a positive correlation, whereas the blue column indicates a negative correlation; (B,C) ten-
fold cross-validation demonstrated TMB-prediction accuracy and robustness of TPS in ROC curves in both LUAD and LUSC. AUC, area 
under the curve; TMB, tumor mutation burden; TPS, TMB predictive signature; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma.
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treatment, cohort size, and TMB calculation algorithm.
Numerous  previous  s tudies  have  explored the 

demographic and molecular features associated with TMB 
and yielded conflicting findings. A recent study in a Chinese 
population reported the absence of a correlation between 
TMB and age or gender, but only included 16 adolescent 
patients (9). However, an investigation in a Caucasian 
population established that a high TMB was related to older 
age, but no difference in the median TMB existed between 
female and male patients (8). In our cohort, the higher 
TMB was correlated with older age and male gender. We 
also revealed that MSI-high, DDR, and HRR deficiency 
commonly indicated a higher TMB than MSS, DDR 
proficiency, and HRR proficiency, which is consistent with 
the findings of previous studies (8). 

Increasing evidence suggests that the underlying TMB-
associated biological mechanisms vary across different 
cancer types. DDR deficiency leads to a high TMB 
in bladder cancer, whereas MMR deficiency leads to 
hypermutation in colon cancer (16,17). Here, we estimated 
the association of 26 crucial biological pathways and the 
TMB status in 11 tumor type groups. Besides the pathways 
related to genomic instability and DNA repair, such as 
MMR, HRR, and DDR, signaling pathways were also 
included in our analysis. The correlation between TMB 
and the biological pathways was found to be both cancer- 
and histology-specific. LUSC is characterized by a high 
mutation burden and marked genomic complexity (26). 
There are frequent alterations of CDKN2A, RB1, and AKT 
in LUSC, which are involved in the following pathways: cell 
cycle control, p53 signaling pathway, apoptosis, PI3K-Akt 
pathway, central carbon metabolism, and MAPK signaling 
pathway (27). The frequent alterations in these pathways 
in LUSC are the potential underlying biological basis for a 
high TMB, which is consistent with our results that all the 
above-mentioned pathways are correlated with a high TMB 
in LUSC. 

Notch signaling pathway was correlated with a low-TMB 
status in pancreatic cancer. This finding is in agreement 
with those of previous studies reporting that aberrant 
Notch signaling was involved in tumor initiation and tumor 
maintenance in pancreatic cancer (28,29), and patients 
with pancreatic cancer commonly had a low TMB (7,26). 
Nevertheless, it is worth noting that we have not definitively 
demonstrated the causality between mutated pathways and 
the mutation burden. 

Efforts have been previously made to identify gene 
alterations associated with an increased TMB (10). Herein, 

we generated 23- and 16-gene signatures in LUAD and 
LUSC, respectively, to establish the TMB, reaching 
an accuracy of 88.4% (LUAD) and 79.3% (LUSC), 
respectively. To date, these are the smallest gene sets 
reported for TMB prediction. 

Conclusions

This study is the largest pan-cancer NGS sequencing 
cohort reported in a Chinese population to date. In this 
study, using the 295- and 520-gene NGS panels, we 
produced a TMB estimation which strongly correlated with 
those calculated by WES. Using our targeted sequencing 
panel, we revealed the diversity of TMB between the 
Chinese and Caucasian populations, identified drivers and 
predictors of TMB status, and found highly diverse patterns 
across different cancer types. Moreover, gene signatures 
consisting of 23 and 16 genes were derived for TMB status 
prediction in LUAD and LUSC, respectively, with only 
12 genes shared by both subtypes, suggesting that the two 
NSCLC histological subtypes possess distinct underlying 
mechanisms for induction of the TMB status. 

Our findings extend the knowledge of the diversity across 
different ethnicities and reveal the underlying biological 
mechanisms for high TMB. These results might be 
clinically significant, especially for physicians in China, and 
may be helpful for developing more precise and accessible 
TMB assessment panels and algorithms in more cancer 
types.
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Table S1 OncoScreen 295 gene list

ABL1 MUTYH CDK8 PIK3CA FANCM FGFR4 SMAD4 MCL1

AKT1 MYC CDKN1B PIK3CG FAT3 FLT1 SMARCA4 MDM2

AKT2 MYCL CDKN2A PIK3R1 FBXW7 FLT3 SMARCB1 MDM4

AKT3 MYCN CDKN2B PIK3R2 FGF10 FLT4 SMARCD1 MED12

ALK MYD88 CDKN2C PMS2 FGF12 FOXL2 SMO MEF2B

ALOX12B NBN CEBPA PNRC1 FGF14 GATA1 SOCS1 MEN1

AMER1 NCOR1 CHEK1 PPP2R1A FGF19 GATA2 SOX10 MET

APC NF1 CHEK2 DDR2 PRDM1 GATA3 SOX2 MITF

APCDD1 NF2 CHUK DIS3 PRKAR1A GID4 SPEN MLH1

AR NFE2L2 CIC DNMT3A PRKDC GNA11 SPOP MPL

ARAF NFKBIA CRBN DOT1L PRSS8 GNA13 SRC MRE11A

ARFRP1 NKX2-1 CREBBP EGFR PTCH1 GNAQ STAG2 MSH2

ARID1A NOTCH1 CRKL EMSY PTEN GNAS STAT4 MSH6

ARID2 NOTCH2 CRLF2 EP300 PTPN11 ADGRA2 STK11 MTOR

ASXL1 NOTCH3 CSF1R EPHA3 RAD50 GRIN2A IRS2 SUFU

ATM NOTCH4 CTCF EPHA5 RAD51 GSK3B JAK1 SYK

ATR NPM1 CTNNA1 EPHB1 RAD51B HGF JAK2 TBX3

ATRX NRAS CTNNB1 ERBB2 RAD51C HLA-A JAK3 TET2

AURKA NSD1 CUL4A ERBB3 RAD51D HRAS JUN TGFBR2

AURKB NTRK1 CUL4B ERBB4 RAD52 IDH1 KAT6A TIPARP

AXL NTRK2 CYP17A1 ERG RAD54L IDH2 KDM5A TMPRSS2

BACH1 NTRK3 DAXX ESR1 RAF1 IGF1 KDM5C TNFAIP3

BAP1 CARD11 NUP93 ETV1 RARA IGF1R KDM6A TNFRSF14

BARD1 CASP8 PAK3 ETV4 RB1 IGF2 KDR TOP1

BCL2 CBFB PAK7 ETV5 REL IKBKE KEAP1 TP53

BCL2L2 CBL PALB2 ETV6 RET IKZF1 KIT TRRAP

BCL6 CCND1 PARP1 EWSR1 RICTOR IL7R KLHL6 TSC1

BCOR CCND2 PARP2 EZH2 RNF43 INHBA KMT2A TSC2

BCORL1 CCND3 PARP3 FAM46C ROS1 IRF4 KMT2D TSHR

BCR CCNE1 PARP4 FANCA FGF23 RPA1 KRAS VHL

BLM CD79A PAX5 FANCC FGF3 RPTOR LMO1 WISP3

BRAF CD79B PBRM1 FANCD2 FGF4 RUNX1 LRP1B WT1

BRCA1 CDC73 PDGFRA FANCE FGF6 RUNX1T1 MAP2K1 XPO1

BRCA2 CDH1 PDGFRB FANCF FGF7 SETD2 MAP2K2 XRCC3

BRIP1 CDK12 PDK1 FANCG FGFR1 SF3B1 MAP2K4 ZNF217

BTG1 CDK4 PIK3C2G FANCI FGFR2 SH2B3 MAP3K1 ZNF703

BTK CDK6 PIK3C3 FANCL FGFR3 SMAD2 MAP3K13

Supplementary



Table S2 OncoScreenPlus 520 gene list

ABL1 NRAS CSF1R FGF23 SMAD3 GREM1 CALR MST1R

AKT1 NSD1 CTCF FGF6 SMAD4 GRIN2A CD276 CUL4B

AKT2 NTHL1 CTNNB1 FGF7 SMARCA4 GRM3 EPCAM SNCAIP

AKT3 NTRK1 CUL3 H3F3B SMARCB1 GSK3B FAS FYN

ALK NTRK2 DAXX HIST1H3F SMO GSTM1 TGFBR1 ABL2

AMER1 NTRK3 DDR2 HSD3B1 SOCS1 GSTT1 YAP1 ALOX12B

APC NUP93 DICER1 MYOD1 SOX2 H3F3A ZFHX3 STK40

AR PALB2 DNMT3A PHOX2B SOX9 H3F3C GPS2 TCF3

ARAF PAK7 DOT1L SOX10 SPEN HGF PIK3R3 MAGI2

ARID1A PPP6C EGFR TMEM127 SPOP HIST1H1C ANKRD11 ERCC2

ARID1B GABRA6 EMSY BACH1 SPTA1 HIST1H2BD CRBN HLA-A

ARID2 ZNRF3 PARK2 BBC3 SRC HIST1H3A EIF4A2 PGR

ASXL1 ARID5B PAX5 CENPA SRSF2 HIST1H3B ERCC4 ACVR1B

ATM HSP90AA1 PBRM1 EP300 STAG2 HIST1H3C REL CASP8

ATR CYLD PDGFRA EPHA3 STAT3 HIST1H3D SHQ1 HDAC2

ATRX KEL PDGFRB EPHA5 STAT5B HIST1H3E TET1 PARP2

AURKA PARP4 PIK3CA EPHA7 STK11 HIST1H3G YES1 PIK3CD

AURKB ZNF217 PIK3CB EPHB1 SUFU HIST1H3H ZRSR2 NOTCH4

AXIN1 FRS2 PIK3CG ERBB2 SYK HIST1H3I EED LATS2

AXL BIRC3 PIK3R1 ERBB3 TBX3 HIST1H3J LYN PARP3

BAP1 MAX PIK3R2 ERBB4 TERC HIST2H3D PDK1 ASXL2

BARD1 TRAF2 PLCG2 ERCC1 CTLA4 HIST3H3 RAD21 MDC1

BCL2 KAT6A PMS1 ERG GNA13 HNF1A PDPK1 MST1

BCL2L1 STAT5A PMS2 ERRFI1 SDHAF2 HNF1B PLK2 FGF12

BCL6 ADGRA2 POLD1 ESR1 RYBP TERT ERCC3 QKI

BCOR RECQL4 POLE EZH2 SH2D1A TET2 ERCC5 BMPR1A

BLM DNMT1 POM121L12 FAM175A APCDD1 TGFBR2 HRAS BCORL1

BRAF ELOC PPP2R1A FAM46C IL10 TNFAIP3 IDH1 PAK1

BRCA1 B2M PPP2R2A FANCA KLF4 TNFRSF14 IDH2 RPS6KB2

BRCA2 RHOA PRDM1 FANCC PDCD1 TNFSF11 IGF1R RPS6KA4

BRD4 IGF1 PRKAR1A FANCD2 TIPARP TOP1 IGF2 FGF14

BRIP1 IRF2 PRKDC FANCE VTCN1 TP53 IKBKE PIM1

BTK ACVR1 PTCH1 FANCF WISP3 TP63 IKZF1 SH2B3

CARD11 EIF4E PTEN FANCG GATA4 TSC1 IL7R MAPK3

CBFB AXIN2 PTPN11 FANCI GATA6 TSC2 INHBA TACC3

CBL SMARCD1 PTPRD FANCL GID4 TSHR INPP4B MAP3K14

CCND1 CUL4A RAC1 FAT1 PDCD1LG2 U2AF1 IRF4 SUZ12

MED12 TRAF7 RAD50 FAT3 PPM1D VEGFA IRS1 CTNNA1

MEF2B CHUK RAD51 FBXW7 PRSS8 VHL IRS2 MALT1

MEN1 CCND2 RAD51B FGF19 RAB35 WRN JAK1 RPA1

MET CCND3 RAD51C FGF3 RIT1 WT1 JAK2 PRKCI

MITF CCNE1 RAD51D FGF4 XIAP XPO1 JAK3 RFWD2

MLH1 CD274 RAD52 FGFR1 ARFRP1 XRCC2 JUN LZTR1

MLH3 CD79A RAD54L FGFR2 DCUN1D1 NEB KDM5A NCOA3

MPL CD79B RAF1 FGFR3 IFNGR1 TRRAP KDM5C DIS3

MRE11A CDC73 RARA FGFR4 KLHL6 CHD4 KDM6A FANCM

MSH2 CDH1 RB1 FH NEGR1 PTPRT KDR MGA

MSH3 CDK12 SLIT2 FLCN VEGFB PREX2 KEAP1 PARP1

MSH6 CDK4 BCL2L2 FLT1 VEGFC PIK3C2G KIT STAT4

MTOR CDK6 BTG1 FLT3 XRCC3 PTPRS KMT2A PIK3C3

MUTYH CDK8 CXCR4 RBM10 EIF1AX TAF1 KMT2C RANBP2

MYC CDKN1A FOXA1 RET CYP17A1 CHD2 KMT2D PIK3C2B

MYCL CDKN1B HIST2H3C RICTOR FLT4 NCOR1 KRAS TOP2A

MYCN CDKN1C HOXB13 RNF43 FOXL2 INSR LATS1 ATF1

MYD88 CDKN2A ID3 ROS1 FOXO1 RASA1 LMO1 EPHA2

NBN CDKN2B INHA RPTOR FOXP1 INPP4A LRP1B FCGR2B

NF1 CDKN2C NKX3-1 RUNX1 FUBP1 DNMT3B MAP2K1 HDAC1

NF2 CEBPA PMAIP1 SDHA GALNT12 CSF3R MAP2K2 HDAC4

NFE2L2 CHD1 PNRC1 SDHB GATA1 TCF7L2 MAP2K4 NR4A3

NFKBIA CHEK1 SOX17 SDHC GATA2 RUNX1T1 MAP3K1 PTK2

NKX2-1 CHEK2 ZBTB2 SDHD GATA3 E2F3 MCL1 TMPRSS2

NOTCH1 CIC ZNF703 SETD2 GLI1 EGFL7 MDM2 BCR

NOTCH2 CREBBP BCL10 SF3B1 GNA11 ICOSLG MDM4 EWSR1

NOTCH3 CRKL DNAJB1 SLX4 GNAQ MAPK1 MAP3K13 NRG1

NPM1 CRLF2 FGF10 SMAD2 GNAS RHEB PAK3 BCL2L11



Figure S1 Accuracy of the comprehensive genomic profiling panel (295- and 520-cancer-related-gene panels) for assessment of the tumor 
mutation burden.
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Table S3 DDR and HRR gene lists

DDR gene list HRR gene list

MLH1 XPC LIG4 BRCA1

MSH2 MSH3 POLM BRCA2

MSH6 POLQ XRCC3 ATM

PMS1 APEX1 BRIP1

PMS2 APEX2 PALB2

ERCC2 FEN1 RAD51C

ERCC3 TDG BARD1

ERCC4 TDP1 CDK12

ERCC5 UNG CHEK1

BRCA1 POLB CHEK2

MRE11A ATRIP FANCL

NBN RNMT PPP2R2A

RAD50 TOPBP1 RAD51B

RAD51 ALKBH2 RAD51D

RAD51B ERCC6 RAD54L

RAD51D CUL5 FANCI

RAD52 POLN

RAD54L EXO1

BRCA2 REV1

BRIP1 MLH3

FANCA SLX1A

FANCC XRCC5

PALB2 UBE2T

RAD51C GEN1

BLM TREX1

ATM ALKBH3

ATR MUS81

CHEK1 POLE3

CHEK2 REV3L

MDC1 TP53BP1

POLE SHPRH

MUTYH NHEJ1

PARP1 XRCC4

RECQL4 RBBP8

MGMT PRKDC

BARD1 SHFM1

ERCC1 FANCB

FANCD2 EME1

FANCI TOP3A

FANCL XRCC2

FANCM POLL

XPA XRCC6

DDR, DNA damage response; HRR, homologous recombination repair.



Figure S2 Underlying driving pathways of high TMB across different cancer types. TMB, tumor mutation burden.



Table S4 Performance of TMB prediction of TPS in LUAD and LUSC

LUAD LUSC

Training cross-validation Independent test Training cross-validation Independent test

Sensitivity 62.7% 63.6% 77.7% 82.2%

Specificity 95.2% 95.3% 77.2% 76.6%

PPV 79.4% 79.4% 78.2% 76.9%

NPV 89.7% 90.3% 76.7% 81.9%

Accuracy 87.8% 88.4% 77.5% 79.3%

MCC 63.2% 64.1% 54.9% 58.8%

F1-score 70.1% 70.6% 77.9% 79.5%

AUC 90.7% 89.3% 85.1% 86.5%

TMB, tumor mutation burden; TPS, TMB predictive signature; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PPV, 
positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient ; AUC, area under the curve.


