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Highlighted Reports in Galectins
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Abstract: Re-epithelialization is a critical contributing process in wound healing in the human body. When 

this process is compromised, impaired or delayed, serious disorders of wound healing may result that are painful, 

difficult to treat, and affect a variety of human tissues. Recent studies have demonstrated that members of the 

galectin class of β-galactoside-binding proteins modulate re-epithelialization of wounds by novel carbohydrate-

based recognition systems. Galectins constitute a family of widely distributed carbohydrate-binding proteins with 

the affinity for the β-galactoside-containing glycans found on many cell surface and extracellular matrix (ECM) 

glycoproteins. There are 15 members of the mammalian galectin family that so far have been identified. Studies 

of the role of galectins in wound healing have revealed that galectin-3 promotes re-epithelialization of corneal, 

intestinal and skin wounds; galectin-7 promotes re-epithelialization of corneal, skin, kidney and uterine wounds; 

and galectins-2 and -4 promote re-epithelialization of intestinal wounds. Promising prospects for developing novel 

therapeutic strategies for the treatment of problematic, slow- or non-healing wounds are implicit in the findings 

that galectins stimulate the re-epithelialization of wounds of the cornea, skin, intestinal tract and kidney. Molecular 

mechanisms by which galectins modulate the process of wound healing are beginning to emerge and are described 

in this review. 
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Re-epithelialization of wounds

Relevant in a variety of clinical scenarios, impaired wound 
healing remains among medicine’s most frustrating 
therapeutic challenges. Healing defects may occur in organ 
systems as different as cornea, skin and gastrointestinal 
(GI) tract (1-6). These are but a representative three of the 
number of human organ systems which may be threatened 
by impaired or delayed re-epithelialization which results in 
persistent epithelial defects. This defines a condition with 
serious medical implications. However, scientific effort has 
yet to comprehensively explain the failure of some, and not 
other, wounds to heal within a reasonable course of time. 
Meanwhile, patients with debilitations caused by a range of 
wounds, from relatively obscure to commonplace causes, 
disease-associated, accidental, surgical or inflicted (for 
example of combat), rely on what we know to support their 

treatment. Resolution of chronic wounds of various etiologies 
can be frustrating and may not always be successful. Around 
the world, millions of individuals are affected and in the 
United States alone, combat-related and other traumatic 
wounds cause over 300,000 hospitalizations each year (7,8).

Persistent corneal epithelial defects may undermine the 
integrity of the anterior stroma, produce ulceration and in 
the direst cases cause perforation of the stromal tissue with 
significant visual loss. The insidious damage of delayed re-
epithelialization and resultant persistent epithelial defects are 
also evident in the chronic wounds of the elderly, decubitus 
ulcer, and venous statis ulcer of the skin. Impairment of the 
intestinal surface barrier and related damage are frequently 
observed in a number of GI ailments including inflammatory 
bowel diseases (IBDs). In these conditions, the treatment 
goal is prompt re-epithelialization of the wound, essential 
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for rapid resealing of the epithelial surface barrier to control 
inflammation and to restore intestinal homeostasis. Delayed 
re-epithelialization of intestinal wounds in IBDs gives rise to 
uncontrolled intestinal inflammation and general immune 
responses (9,10).

In general, failure to re-epithelialize is caused more by 
a reduced potential of the epithelium to migrate across the 
wound bed than inadequate cell proliferation (11-13). Cell 
migration requires sequential adhesion to and release from 
the substrate, representing a complex process of cell-matrix 
interactions (14-17). Recent studies indicate that members 
of the galectin class of β-galactoside-binding proteins play 
a critical role in modulating cell-matrix interactions and re-
epithelialization of wounds by novel carbohydrate-based 
recognition systems (18-26).

Galectins

Galectins are a family of widely distributed carbohydrate-
binding proteins defined by their affinity for the 
β-galactoside-containing glycans which are present on various 
cell surface and extracellular matrix (ECM) glycoproteins 
(27,28). There are 15 presently identified members of the 
galectin family in mammals, ranging in subunit size from 14 
to 39 kDa. Each galectin contains a canonical carbohydrate 
recognition domain (CRD) of ~130 amino acids. Galectins 
can be expressed both intracellularly and extracellularly. 
Galectins do not contain a classical signal sequence or a 
transmembrane domain and are secreted from the cell via 
nonclassical pathways. Some galectins such as galectins-1, -3, 
-8 and -9 have wide tissue distribution, whereas others, such 
as galectins-4, -5 and -6, exhibit tissue specificity. The current 
interest in delineating the function of galectins is explained 
by studies demonstrating that many critical cellular response 
including cell adhesion (29-31), migration (18,32), immune 
response (33,34) and angiogenesis (35-41) are modulated by 
this class of lectins.

Carbohydrate-binding specificity of galectins 

All galectins specifically recognize galactose-containing 
glycans, yet each galectin has unique, fine specificity for 
more complex galactose-containing oligosaccharides, a 
consequence of variability in the CRD sequence. Each 
galectin associates with certain types of glycans for 
signaling based on differences in the carbohydrate-binding 
specificities (42,43). The sugar-binding specificity of 
different members of the galectin family can differ greatly, 

e.g., galectin-1 (Gal1) recognizes α2,3 sialylated, but not 
α2-6 sialylated, glycans; Gal2 does not bind glycans that 
are sialylated with either linkage; Gal3 binds internal 
N-acetyllactosamine (LacNAc) within polyLacNAc (42); 
and depending on cellular microenvironment, sialylation 
may also affect Gal3 binding and signaling (44). Thus, 
on the basis of fine distinctions in carbohydrate-binding 
specificities, each galectin may interact with a discrete 
spectrum of glycoprotein receptors, with resulting specific 
downstream effects. For example, the affinity of Gal1 for the 
blood group A tetrasaccharide is approximately 100-fold lower 
than that for Gal3 (45), and only Gal8, but not Gal1, Gal2, 
Gal3, or Gal7, interact with the glycans of podoplanin, a 
lymphatic vessel glycoprotein (46). 

Galectin-glycan lattices

All lectins are either dimers or oligomers, and this 
multivalency enables formation of lectin-carbohydrate 
lattices to cross-link and clusterize cell surface receptors 
including growth factor receptors and integrins. The 
diverse functions of galectins are thought to result from 
the formation of galectin-glycan lattice (47-49), by 
which the glycoprotein receptors are trapped, and as 
a result, prevented from undergoing endocytosis (50). 
By this mechanism, the interactions between galectins 
and N-glycans of the cell surface receptors regulate the 
density and distribution of cell surface receptors as well as 
cell responsiveness to the receptor ligand (47-50). Thus, 
Gal3 interacts, in a carbohydrate-dependent manner with 
the N-glycans of the epidermal growth factor (EGF) 
receptor which defers its constitutive endocytic removal 
and promotes EGF signaling (50). Likewise, studies in 
our laboratory have shown that Gal3 stimulates epithelial 
cell migration and formation of lamellipodia by activating 
α3β1-integrin-Rac1 signaling, and carbohydrate-mediated 
interaction between Gal3 and complex N-glycans on the 
α3β1 integrin is inherent in Gal3-induced lamellipodia 
formation and cell migration (18). It should be noted that 
cytoplasmic Gal3 also promotes re-epithelialization of 
wounds, however, by mechanisms that are independent of 
galectin-glycan lattices (51). 

Role of galectins in wound healing

Galectin-3 (Gal3)

Gal3 expression occurs in inflammatory cells, epithelia, and 



Annals of Translational Medicine, Vol 2, No 9 September 2014 Page 3 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2014;2(9):89www.atmjournal.org

fibroblasts of a variety of tissues (27). It is present on the cell 
surface, within ECM, and in the cytoplasm. Gal3 influences 
cell-matrix interaction by binding to the ECM and cell 
surface glycosylated counter receptors (e.g., growth factor 
receptors, integrins, certain isoforms of laminin, fibronectin 
and vitronectin). Furthermore, Gal3 in the nucleus of cells 
may influence cell-matrix interactions indirectly by its effect 
on the expression of well-known cell adhesion molecules 
(e.g., α6β1 and α4β7 integrins) and cytokines (e.g., IL-1). 

Role of Gal3 in corneal wound healing
Gal3 is present in high density at sites of corneal epithelial 
cell-matrix adhesion (25), an ideal placement for influence 
on cell-matrix interactions and cell migration. To examine 
whether Gal3 plays a role in re-epithelialization of corneal 
wounds and to determine whether the rate of wound 
closure rate is impaired in Gal3-deficient mice, we utilized 
two different models of corneal wound healing. In this 
study, corneas with either excimer laser ablations or alkali-
burns were allowed to partially heal in vivo or in vitro 
for up to 22 h, at which time remaining wound areas 
were quantitated and compared among the study groups. 
Whether the corneas were injured by excimer laser or by 
alkali treatment and whether the corneas healed in vivo 
or in vitro, epithelial wound closure rate (mm2/h) was 
significantly slower in Gal3−/−mice compared with Gal3+/+ 
mice (Figure 1A-E) (25). However, no differences were 
found in the wound closure rates between Gal1+/+ and Gal1−/− 

groups (Figure 1F). Whether delayed re-epithelialization of 
corneal wounds in Gal3−/− mice is due to a deficiency in the 
rate of corneal epithelial cell proliferation is the question 
addressed by the next experiment. In order to identify cells 
undergoing DNA synthesis, normal and healing Gal3+/+ 
and Gal3−/− corneas were labeled with BrdUrd. This study 
found no significant difference in the number BrdUrd-
labeled cells between Gal3+/+ and Gal3−/− corneas (25). Thus 
the rate of corneal epithelial cell proliferation seemed not 
to be perturbed in Gal3−/− mice. It follows that delayed re-
epithelialization of corneal wounds found in Gal3−/− mice 
is more likely caused by impairment in the cell migration 
process. The next experiments set out to learn whether 
exogenous Gal3 would stimulate re-epithelialization of 
corneal wounds. In this study, Gal3+/+ mouse corneas with 
alkali-burn wounds were incubated in serum-free media 
with varying amounts of recombinant Gal3. The remaining 
wound areas were quantified following the healing period 
of 22-24 h. The rate of wound closure was stimulated by 
exogenous Gal3 in a concentration-dependent manner 

Figure 1 Corneal epithelial wound closure rate is significantly 
slower in gal3–/– mice. Corneas of gal3+/+ and gal3–/– mice with 2-mm 
transepithelial excimer laser ablations or alkali-burn wounds were 
allowed to partially heal in vivo for 16-18 h or in vitro for 20-22 h in 
serum-free media. At the end of the healing period, wound areas 
were quantified. Regardless of injury by excimer laser (A and B) 
or by alkali treatment (C and D) or whether corneas were allowed 
to heal in vivo (A and C) or in vitro (B and D), corneal epithelial 
wound closure rate expressed in mm2/h was significantly slower 
in gal3–/– mice compared with that in the gal3+/+ mice. A value 
of 1.0 was assigned to the healing rate of gal3+/+ corneas. The 
values for gal3–/– corneas are expressed as a change in healing rate 
with respect to gal3+/+ corneas. Wound closure rates expressed as  
mm2/h among different groups were: (A) excimer laser in vivo: 
gal3+/+, 0.076±0.003; gal3–/–, 0.060±0.004; (B) excimer laser in vitro: 
gal3+/+, 0.051±0.003; gal3–/–, 0.035±0.005; (C) alkali injury in vivo: 
gal3+/+, 0.182±0.003; gal3–/–, 0.150±0.008; and (D) alkali injury in vitro: 
gal3+/+, 0.106±0.005; gal3–/–, 0.081±0.004. Panel (E) shows outlines 
of remaining wound areas from one of the experiments (group: alkali 
injury, healing in vivo). There was no difference in wound closure rate 
between galectin-1+/+ and galectin-1–/– mice corneas (F). Mean ± SE 
of two or more experiments are shown. *, P<0.05 compared with the 
respective gal3+/+ group [Reprinted from (25)].
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in Gal3+/+ mice (Figure 2). In the presence of 10 and  
20 μg/mL Gal3, the acceleration rate of re-epithelialization of 
wounds was 43% and 71%, respectively over control corneas 
incubated in media alone without Gal3. It was further shown 
that a competing disaccharide, β-lactose, but not an irrelevant 
disaccharide, sucrose, can nearly completely undermine the 
stimulatory effect of Gal3 on the rate of corneal epithelial 
wound closure, indicating that the lectin CRD is directly 
involved in the positive effect of the exogenous lectin on 
the wound closure. Parallel experiments demonstrated that 
recombinant Gal1 did not increase the healing rate of corneal 
epithelial wound. Other studies have subsequently revealed 
that exogenous Gal3 advances re-epithelialization of wounds 
in rat corneas (52), monkey corneas (53) as well as in a rat dry 
eye model (54). 

Role of Gal3 in intestinal wound healing
Gal3 is expressed to a high degree in enterocytes and 
subepithelial macrophages of the GI react (55,56), and is 
thought to have a wound healing function. Scratch wound-
healing assays in which colonic epithelial cells (T84 cells) 
were treated with Gal3 for 24 hours demonstrated 
improved healing with a 60.4%±4.4% reduction in wound 
width (20). The Gal3-induced reduction in wound width 
was inhibited by a pan-inhibitor of galectins, β-lactose, 
and an anti-Gal3 neutralizing antibody (–9.8%±24.8%). 
It is of interest to note that epithelia derived from IBD 
tissues (57-59) have reduced levels of Gal-3, but it is 
yet to be shown whether this is a causative factor in 
the wound healing related complications of patients 
with IBD. However, from in vitro experiments, it was 
learned that matrix metalloproteinase-7 (MMP7), highly 
expressed in IBD tissues (57,58), cleaves Gal3, and the 
addition of MMP7 to Gal3 abrogates the wound healing 
and cell migration induced by Gal3 (20). Based on these 
findings, Puthenedam and colleagues (20) proposed 
that cleavage of Gal3 may be one mechanism by which 
MMP7 inhibits wound healing. This study is important 
to our understanding of delayed wound healing in chronic 
intestinal diseases such as intestinal ulcers and IBD, in 
which MMP7 protein expression is elevated, with an 
accompanying decrease in Gal3 protein expression.

Role of Gal3 in skin wound healing
In a recent study, using Gal3−/− mice and cells isolated 
from these mice, Liu et al. (51) demonstrated that the 
absence of Gal3 impairs keratinocyte migration and skin 
wound re-epithelialization. Interestingly, in this study, 

Figure 2 Exogenous Gal3 stimulates re-epithelialization of corneal 
wounds. Corneas with 2-mm alkali-burn wounds were allowed 
to heal in organ culture in serum-free media in the presence and 
absence of recombinant lectins and saccharides for 20-22 h. At 
the end of the healing period, wound areas were quantified and 
compared. (A) Galectin-3 stimulated corneal epithelial wound 
closure in a dose-dependent manner; (B) the stimulatory effect 
of exogenous galectin-3 on corneal epithelial wound closure is 
inhibited by β-lactose, a disaccharide that contains galactose 
but not by sucrose, which lacks galactose; (C) unlike galectin-3, 
galectin-1 did not accelerate corneal epithelial wound closure 
in gal3+/+ mice. A value of 1.0 was assigned to the healing rate of 
control corneas incubated in media alone. The value of corneas 
incubated in media containing galectins and saccharides is 
expressed as change in the healing rate with respect to the control 
corneas. Means ± SE of two or more experiments are shown. *, 
P<0.05 compared with the other three groups in panel (A); **, 
P<0.05 compared with gal3 (10 μg/mL) and gal3 + Suc groups in 
panel (B); Lac, β-lactose (0.1 M); Suc, sucrose (0.1 M) [Adapted 
from (25)].
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the promigratory function of the lectin was attributed to 
cytosolic Gal3, and, therefore, is likely to be carbohydrate 
independent. 

Galectin-7 (Gal7)

As a prototype galectin that forms homodimers (60), Gal7 can 
cross-link cell surface receptors. Gal7 is expressed preferentially 
in stratified epithelia including epidermis, oral cavity, cornea, 
esophagus and anorectal epithelium (61). During re-
epithelialization of corneal wounds, and in some cancers 
such as skin tumors (62), significant changes in the levels of 
Gal7 expression have been detected. Gal7 is considered a 
marker for stratified epithelia (61). Nevertheless, this lectin 
has been found to be present in cilia isolated from cultured 
human airway, and in most of the cilia of multiciliated cells 
in human airway epithelia primary cultures (61,63,64). 
Gal7 expression is evident as well in the primary cilia of 
Madin-Darby canine kidney (MDCK) cells (65), LLC-PK1 
porcine kidney, and mpkCCDc14 mouse kidney cells and on 
cilia in the rat renal proximal tubule (19). Gal7 plays a role 
in wound healing of not only stratified epithelium which 
lack cilia such as that of cornea and skin, but also of simple 
epithelia such as that of kidney epithelium (19). 

Role in corneal wound healing
Gal7 expression is upregulated substantially in mouse 
corneas upon injury and exogenous Gal7 was shown to 
stimulate corneal wound re-epithelialization in organ 
culture specimens (24). The stimulation of wound closure 
by Gal7 is partly undermined by β-lactose, a competing 
disaccharide, but not by sucrose, an irrelevant disaccharide, 
again suggesting that the Gal7 CRD is directly involved 
in stimulatory effect of the exogenous lectin in promoting 
wound closure. 

Role in skin wound healing
Gendronneau et al. (23) have used Gal7 knockout mice 
to assess the role of this lectin in skin wound healing. 
Superficial scratches were made along the sagittal axis of 
the tail of Gal7+/+ and Gal7−/− adult mice. Tissue sections of 
healing tails at 24 and 48 h after experimental injury were 
stained with hematoxylin and eosin and distance between 
the two wound margins was measured. The process of 
wound closure was judged to be less efficient in the Gal7-/- 

mice compared to the Gal7+/+ mice. Additionally, according 
to an ex vivo wound healing assay, outgrowth of keratinocyte 
from Gal7−/− skin explants was also reduced in comparison 

with the Gal7+/+ controls. It was further shown that Gal7 
accumulates in podosomes, which are specialized cell-
matrix adhesion complexes connecting the ECM to the 
microfilament network, and that distribution of cortactin, 
an actin-binding protein implicated in membrane ruffle 
formation, is severely affected in migrating keratinocytes 
lacking Gal7, suggesting that that the formation and/
or stabilization of actin-based lamellipodia is abnormal 
in Gal7 null keratinocytes. In the in vivo model, even 
when proliferation was blocked by mitomycin-C, the 
rate of wound closure rate was slower in Gal7 null mice, 
supporting a conclusion that as shown with Gal3, Gal7 also 
promotes re-epithelialization of skin wounds by influencing 
cell migration and not cell proliferation. 

Role of Gal7 in wound repair of polarized kidney 
epithelial cells
Rondanino et al. (19) compared the length of cilia and 
wound closure rate between the Gal7 shRNA knockdown 
and control kidney epithelial cells. In this study, the 
control cells exhibited significantly longer cilia than Gal7 
knockdown cells. A 33% reduction in wound healing was 
observed in scratch wound assays for Gal7 knockdown cells 
compared to control cells (19). 

Role of Gal7 in uterine repair
Gal7 is also thought to be important for normal uterine 
repair following menstruation (66). Gal7 immunoreactivity 
is detected in the endometrial luminal and glandular 
epithelium during the late secretory and menstrual phases, 
and exogenous Gal7 enhances endometrial epithelial wound 
repair in vitro. Also, Gal7 immunoreactivity is significantly 
reduced in the endometrium of women with amenorrhoea 
compared with normally cycling women, suggesting the 
putative role of Gal7 in uterine repair. 

Galectins-2 and -4

Gal2 and Gal4 are of particular interest relative to the GI 
tract. Both are expressed specifically in GI tissues, but not 
in various other tissues including brain, kidney, skeletal 
muscle, liver, or lung tissues (67).

Role of galectins-2 and -4 in intestinal epithelial wound 
healing
In several models of intestinal inflammation, exogenous 
Gal2 was demonstrated to ameliorate colitis (68). In an 
effort to elucidate the function of Gal2 in wound healing, 



Panjwani. Role of galectins in re-epithelialization of wounds

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2014;2(9):89www.atmjournal.org

Page 6 of 11

Paclik et al. (21) employed scratch wound assays to assess 
the influence of exogenous Gal2 on cell migration. 
Confluent monolayers of Caco-2 cells were injured with 
a surgical blade and incubated for 24 hours either with or 
without 50 μg/mL Gal2, after which wound closure rate 
was quantified. Gal-2 significantly enhanced epithelial cell 
migration over the wound edge (21). In the study by Paclik 
et al. (21), exogenous Gal4 also promoted wound closure, 
whereas Gal1 did not. Both Gal2 and -4 promoted cell 
migration as well as proliferation of Caco-2 cells suggesting 
that both processes may be involved in resealing the 
disrupted epithelial barrier in GI disorders (21). In contrast, 
as described above, Gal3 and Gal7 promote cell migration, 
but not cell proliferation of corneal and skin epithelial cells. 

Molecular mechanism by which galectins 
modulate wound healing

Gal3 promotes wound healing by activating α3β1-
integrin-Rac1 signaling

Cell migration is complex and requires first, the extension 
of protrusions, e.g., lamellipodia or filopodia, from the cell; 
secondly, the interaction of the surface molecules of these 
protrusions with the permissive ligands in the underlying 
matrix to create transient cell-matrix adhesions; and 
thirdly, actomyosin-mediated cell contraction and forward 
movement with a concurrent detachment of adhesions 
at the rear end (69). Contributing to regulating the cell 
migration process are transmembrane integrin receptors 
that mediate cell-matrix adhesions and intracellular 
signaling pathways, leading to cytoskeletal reorganization 
and cell motility (69). Nearly all integrins are glycosylated 
proteins, and various recent studies have demonstrated 
modulation of transmembrane signaling by integrin 
glycans (70,71). That interactions between integrin 
glycans and carbohydrate-binding proteins, galectins, 
have an essential function in integrin-dependent cell 
adhesion and migration has specifically been demonstrated 
(44,72-78). Lagana et al. (74) demonstrated that Gal3 
interactions with N-acetylglucosaminyltransferase V 
(GnT-V)-modified N-glycans on mammary carcinoma 
cell surface support α5β1 integrin activation and cell 
motility. Studies in our laboratory aimed at characterizing 
the molecular mechanism by which Gal3 promotes 
epithelial cell migration during corneal wound closure, 
have demonstrated that Gal3, by interacting with GnT-V-
modified complex N-glycans, activates α3β1-integrin-Rac1 

signaling to induce formation of lamellipodia in epithelial 
cells, and, this in turn, promotes cell migration and re-
epithelialization of wounds (18). 

Galectin-3 promotes wound healing by interacting with 
N-glycans of laminin-332

Laminin-332 (Lm332; also known as laminin-5), a 
component of basement membranes in the cornea, skin 
and other stratified squamous epithelial tissues (79-81), 
is overexpressed at the leading edge of wounds during 
healing and promotes cell migration (82-84). It is believed 
to have a critical role in wound re-epithelialization. A null 
mutation of Lm332 causes a lethal blistering disease of 
the skin. Laminins are heavily glycosylated; nevertheless, 
the role of Lm332 has not been widely studied relative to 
its glycosylation pattern. The glycosyltransferase GnT-V 
catalyzes addition of the β1,6-linked GlcNAc branch 
which serves as a substrate for polylactosamine, the high 
affinity ligands for Gal3. By contrast, GnT-III adds 
GlcNAc to the inner β-linked mannose to form bisecting 
GlcNAc, which suppresses both further processing by 
branching enzymes, such as GnT-V, and elongation 
of N-glycans (85-87), resulting in downregulation of 
interaction with Gal3 with a concomitant reduction in cell 
migration and cancer metastasis (88). Therefore, it may 
be inferred that the sugar chains are an on/off switch for 
galectin binding during wound healing. This is particularly 
relevant since changes in glycosylation are observed 
during re-epithelialization of wounds. Kariya et al.’s 
elegant study (84) has shown that Gal3 binds to Lm332 
coated wells, which greatly enhances Lm332-dependent 
keratinocyte motility. On the other hand, exogenous Gal3 
did not induce an increase in cell migration on GnT-III-
Lm332 substratum because modifying Lm332 by GnT-
III diminishes its ability to bind to Gal3. These results 
led authors to propose that Gal3 may be a cofactor for 
Lm332-induced cell motility during wound healing and 
squamous cell carcinoma tumor progression, conditions 
that are associated with GnT-V overexpression (84).

Galectin-3 promotes wound healing by interacting with 
N-glycans of CD147

Subsequent to the injury, epithelial cells are required to 
change their shape and rearrange their position to assume 
a migratory phenotype. It is well established that induction 
of matrix metalloproteinase activity contributes to the 
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disassembly of intercellular junctions and the degradation 
of the ECM to mitigate the physical constraint to cell 
movement. CD147 (EMMPRIN) is a widely distributed 
cell surface glycoprotein highly enriched on the surface 
of keratinocytes during wound healing. A major function 
of CD147 is stimulation of MMP synthesis through 
homophilic interactions involving both heterotypic and 
homotypic cell-cell interactions. In a recent study, Mauris 
and colleagues (26) have demonstrated that Gal3 plays a key 
in destabilizing cell-cell interactions by interacting with and 
clustering CD147 on the epithelial cell surface. In this study, 
the authors identified CD147 as a membrane receptor for 
galectin-3 in human keratinocytes and demonstrated that 
Gal3 initiates keratinocyte cell-cell disassembly by inducing 
MMP expression in a CD147-dependent manner. Thus, one 
of the mechanisms by which Gal3 promotes cell migration 
and re-epithelialization of wound is by destabilizing cell-
cell contacts to promote the epithelial rearrangement and 
cellular plasticity that are associated with cell motility.

Galectin-3 promotes cell migration by interaction with Alix

Alix, is a protein component of the endosomal sorting 
complex required for transport (ESCRT) machinery (89) 
and has been reported to attenuate EGFR endocytosis 
(90). Galectin-3 is an intracellular partner of Alix (91) 
and Liu and colleagues (51) have demonstrated that 
cytoplasmic Gal3 promotes keratinocyte migration and 
skin wound re-epithelialization by modulating intracellular 
trafficking of EGFR by interacting with Alix. Unlike Gal3 
interactions with the glycans of cell surface receptors, 
interactions between intracellular Gal3 and Alix are likely 
to be carbohydrate-independent. Thus, both extracellular 
and intracellular galectins play a role in wound healing by 
distinct mechanisms.

Therapeutic implications 

As described in the introduction, there is an ongoing and 
expanding need for effective treatment of chronic wounds 
in the elderly, decubitus ulcers, and venous stasis ulcers 
of the skin. Paralleling this need, wound healing related 
complications in various GI diseases including IBDs remain 
a major clinical challenge, as does the treatment of persistent 
epithelial defects of the cornea. In ophthalmology we find 
an example of a contemporary development that expands 
the scope of the challenge to find the key to wound healing. 
It has been estimated that in the United States alone in a 

given year nearly half a million excimer laser keratectomy 
procedures are performed to obviate the need for eyeglasses 
and contact lenses to correct myopia (92). Considering that 
over 25-30% of the adult population worldwide is myopic, 
the potential number of myopia surgeries is enormous. In 
some cases following excimer laser surgery, there is a delay 
in epithelial healing, which puts the pre-surgically healthy 
cornea at risk of developing postoperative haze, infectious 
keratitis, and ulceration.

The quest has led to investigations of EGF, transforming 
growth factor-α, fibroblast growth factor, keratinocyte 
growth factor, and hepatocyte growth factor, all of which 
are known to stimulate cell proliferation, as possible 
drug targets to promote wound healing. Generally, the 
results have been disappointing (1,5,93-96). The extent of 
acceleration of re-epithelialization of wounds was far less 
in most of these studies using growth factors (92,94) than 
that observed with galectins in some of the studies discussed 
above. Additionally, it was found that treating corneas 
with growth factors such as EGF resulted in hyperplastic 
epithelium, a clearly undesirable condition (93,97,98). In 
this respect, the lectins Gal3 and Gal7 do not induce cell 
mitosis in healing corneas and skin, implying that galectin-
based drugs may be more attractive as they do not have 
the disadvantage of causing epithelial hyperplasticity. 
In summary, findings that galectins stimulate the re-
epithelialization of corneal, dermal, intestinal and kidney 
wounds provide the basis for developing novel therapeutic 
strategies for the treatment of nonhealing wounds. 
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