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Innate immune checkpoints for cancer immunotherapy: expanding 
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With the recent progresses in the field of immuno-
oncology, harnessing the power of the immune system 
to fight cancer has become one of the pillars of cancer 
care, together with the traditional approaches of surgery, 
chemotherapy, targeted oncogene pathway inhibition, 
and radiation therapy. Treatment with monoclonal 
antibodies against immune checkpoint targets on T-cells, 
including the programmed cell death protein 1 (PD-1)  
pathway, was proven clinically effective in a variety of 
cancers and was approved for several indications over 
the past few years (1). However, only a subset of patients 
respond to immunotherapy and complete response 
remains uncommon across cancer types (2). Among 
the mechanisms of resistance to immunotherapy, the 
establishment of a highly immunosuppressive tumor 
microenvironment (TME), composed of cells such as 
regulatory T cells (Tregs), myeloid-derived suppressor 
cells (MDSCs), cancer-associated fibroblasts and M2 
macrophages (TAMs), was reported as having a major role 
in limiting effective antitumor immunity (3,4). Tumor-
associated myeloid cells, particularly TAMs, constitute 
a major component of the TME and recent studies 
support their key contribution to the suppression of CD8+ 
T-cell function and is associated with poor prognosis 
in many cancers (5,6). Taking advantage of the highly 
plastic nature of myeloid cells, a number of strategies to 
reprogram the function of innate immunity towards an 
immunostimulatory state have been attempted to enhance 

the activity of checkpoint inhibitors in cancer. Those 
include targeting PI3Kγ (7,8), CSF-1R (9,10), IDO (11), 
VEGF/VEGFR (12,13) or CD40 (14-16).

Many pathways expressed by TAMs have been 
shown to control their phenotypic state, either by 
directly inhibiting effector cell activity (phagocytosis, 
antigen-presentation, cytokine production) or by 
promoting cell expansion, infiltration and activity (17).  
Proteins expressed on the surface of tumor cells, such 
as CD47, PD-L1 and VISTA, have the ability to trigger 
inhibitory “don’t eat me” signals on TAMs and protect 
tumors from immunosurveillance mechanisms. Approaches 
pioneered by Dr. Weissman’s research group at Stanford 
University found that disruption of the interaction between 
CD47 and signal-regulatory protein α (SIRPα), expressed 
on CD11b+ myeloid cells [including macrophages and 
dendritic cells (DCs)], effectively enhances phagocytosis 
toward tumor cells in vitro and reduces tumor growth  
in vivo (18-24). However, variations of the responsiveness 
to CD47-SIRPα blockade exist (21,25). In this new 
manuscript by Barkal et al., the authors describe CD24 as 
a novel don’t eat me signal expressed in several cancers, 
particularly ovarian (OC) and triple-negative breast 
cancers (TNBC) (25). CD24 is a heavily glycosylated 
glycosylphosphatidylinositol-anchored surface protein 
that was shown previously to interact with the inhibitory 
receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10), 
which is expressed on the surface of TAMs (26,27). 
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Through binding to Siglec-10, CD24 elicits an inhibitory 
signal by activating the phosphatases-SHP-1 and/or SHP-
2. The interaction between CD24 and Siglec-10 was first 
identified and described to negatively regulate the Danger-
associated molecular patterns (DAMPs) signaling through 
toll-like receptors (TLRs) in dendritic cells (DCs) (26). 

Although authors in this paper mainly focused on 
the characterization of CD24 as a don’t-eat-me signal, 
the functional contribution of CD24 as a sensor for the 
DAMPs signals certainly deserves further investigation 
since DAMP signals are found to be released from 
necrotic tumor cells upon anti-cancer therapies (28-30). 
Proteins that similarly act as negative regulators of TLR-
signaling, such as IL-37 (31) and SIGIRR/IL-1R8 (32,33), 
have already been described to act in the cancer-immune 
crosstalk with potential implications in therapeutic efficacy. 
In fact, the release of certain DAMP molecules such as 
high mobility group box 1 (HMGB1) is a key component 
of an immunogenic type of cell death triggered by 
anticancer agents—such as some classes of chemotherapy 
(anthracycl ines,  oxal iplat in and bortezomib) and 
radiotherapy—which mediate their efficacy by enhancing 
antitumor immunity (34,35).

Barkal et al. describe CD24 initially as a highly expressed 
transcript across several cancer types, particularly TNBC 
and OC, and an association between its expression and 
poorer prognosis. Interestingly, CD24 expression in 
TNBC cells appeared substantially higher than classic 
immune checkpoints on tumor cells such as PD-L1 and 
with higher specificity than CD47, in the TNBC patient 
population tested. However, as opposed to PD-L1—
whose expression presents an inducible nature in response 
to inflammatory stimulus such as IFNγ—no discussion 
regarding the potentially inducible nature of CD24 was 
presented. In addition, the remaining evidence presented 
of high CD24 expression in ovarian and breast tumor cells 
and Singlec-10 expression in TAMs by FCS raise questions 
as no comparisons with other tumor cell or immune cell 
populations are made. Similarly, even though the expression 
of Siglec-10 in macrophages is shown to be dependent 
on M2 macrophage-polarizing cytokines (such as IL-
10, TGF-b and IL-4), the exact mechanism by which this 
inhibitory pathway is engaged is still unknown.

Considering the fact that Siglec-10—like other members 
of the Siglecs family (sialic-acid-binding immunoglobulin-
like lectins) which exhibit preferential binding to sialylated 
proteins—binds to sialylated CD24 with higher affinity 
and that the sialylation of CD24 contributes to the 

suppression of tumor cell phagocytosis by macrophages (25),  
the authors highlight an important—yet not much 
explored—mechanism of tumor cell hyper-sialylation 
in the suppression of innate immunity. While heavy 
glycosylation is known as a tumor cell feature, aberrant 
sialylation is appreciated as the most consistent and 
prominent form of glycosylation among different tumor 
types (36). Therefore, if sialylation of proteins expressed 
on tumor cells suppress phagocytosis to a certain degree, 
the implication of the following should be considered. (I) 
Inhibition of sialyltransferase expression: Since there has 
been at least 9 sialyltransferases characterized to be essential 
in catalyzing the linkage of sialic acids onto the growing 
glycan structures during malignant tumor progression 
(36-38), blocking these sialyltransferases is likely to help 
reducing the sialylation and hence improving the tumor cell 
phagocytosis by macrophages. (II) Blockade of hexosamine 
biosynthesis pathway: it has been shown that tumor cells 
can utilize the hexosamine metabolism pathway driven by 
certain oncogenic stimuli to increase the production of 
cytosine monophosphate (CMP)-sialic acid and therefore 
sialylated glycoconjugates (36,39,40), the blockade of this 
pathway is hence worthwhile considering to reducing the 
surface sialylation on tumor cells. 

Further in vitro studies testing the therapeutic potential 
of CD24 blockade with monoclonal antibodies in order to 
disrupt CD24-Singlec-10 signaling demonstrated enhanced 
tumor cell engulfing by TAM, using for instance models 
of labeled human TNBC cells (MCF-7). Not surprisingly, 
induction of phagocytosis by anti-CD24 treatment was 
apparently dependent on the expression of CD24 on tumor 
cells and was largely increased upon addition of CD47 
blocking antibodies. Interestingly, the synergy observed 
by the authors between anti-CD24 and anti-cancer agents 
(cetuximab) suggest again that studies evaluating the 
modulatory role of CD24 over DAMP signaling might 
be a promising avenue of research. In their final results, 
the authors explore the inhibitory role of CD24 on 
phagocytosis using in vivo models. The findings go along 
with their previous results and reinforce the assumption 
that the macrophage-dependent clearance of tumor cells 
relies on CD24 expression. It is important to note that no 
experiment was performed to address in a more definitive 
way the contribution of CD24-Singlec-10 interactions 
in the outcome of differential phagocytosis and tumor 
growth, such as by using conditional knockout mice for 
Siglec-G (the mouse version of Siglec-10). In addition, all 
mouse experiments were performed on immunodeficient 



Annals of Translational Medicine, Vol 8, No 16 August 2020 Page 3 of 5

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(16):1031 | http://dx.doi.org/10.21037/atm-20-1816

Figure 1 Molecular targets to enhance innate immunity in cancer therapy. Left, inhibitory checkpoints on the surface (Siglec-10, SIRPα) 
or cytoplasm (PI3Kγ, IDO) of tumor-associated macrophages (TAMs) suppress their effector functions of phagocytosis and antigen-
presentation to T-cells. To escape from immune surveillance, tumors cells evolve with multiple pathways including IDO-derived 
L-Kynurenine which mediates T-cell suppression and the overexpression of CD24 and/or CD47, which suppress phagocytosis by engaging 
to Siglec-10 and/or SIRPα expressed in macrophages. Proposed mechanisms regarding Siglec-10 in down modulation of TLR-signaling 
is still unclear. Right, blockade of CD47 and CD24 or stimulation of CD40 using mAbs and of IDO and PI3Kγ using small molecule 
inhibitors can potentiate the activation state of TAMs towards a pro-inflammatory antitumoral phenotype. Therapeutic strategies to 
enhance myeloid cell activation can result in increased adaptive immunity and tumor control and can be exploited in combination with other 
immunotherapies.
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NSG mice, which lack adaptive immunity. Although 
the paper focuses on crosstalk between tumor cells and 
macrophages and made use of more simplified systems 
to address CD24 signalling through Singlec-10, it is 
increasingly clear how the adaptive immune system 
influences innate immune function, by means of cytokine/
chemokine secretion and inhibitory/stimulatory signals 
(CD40/CD40L, PD-1/PD-L1, VISTA) for instance 
(16,41,42). The net sum of signals may ultimately alter the 
phenotypic outcome of myeloid cell function. Therefore, 
the use of murine immunocompetent models would be a 
valuable tool to confirm CD24’s value as a target for cancer 
immunotherapy.

In summary, overcoming immunotherapy resistance 
is a major focus of research in the scientific community 
and identifying mechanisms in myeloid cells  that 
could be exploited to switch their function towards an 
immunostimulatory state has the potential to enhance 
antitumor immunity and generate more effective 
immunotherapeutic combination strategies (Figure 1). The 
results presented by Barkall and collaborators propose a 

novel therapeutic target with particular promise for the 
treatment of ovarian and breast cancers, which currently 
lack immunotherapy options. Recent clinical successes of 
CAR-T cells and immune checkpoint inhibitors have led 
to a T-cell centric view of tumor immunity. Given that 
the onset and proper maintenance of T cell responses are 
highly dependent on the interplay between adaptive and 
innate immunity, harnessing the function of myeloid cells—
to either overcome suppression or enhance their effector 
function of phagocytosis/antigen-presentation—open up 
new possibilities for more durable and robust tumor control 
with immunotherapies.
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