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Background: Neural stem cells (NSCs) are undifferentiated precursor cells that have the ability to self-
renew and proliferate and have the capacity to become either glia (oligodendrocytes and astrocytes) or 
neurons. NSCs can act as beneficial adjuncts for many neurological disorders, such as cerebral infarction, 
spinal cord injuries, Alzheimer’s disease, and Parkinson’s disease. Long noncoding RNAs (lncRNAs) play 
essential roles during cell differentiation, proliferation, and metabolism. This study aimed to explore the 
role played by adipocyte differentiation-associated long noncoding RNA (ADNCR) in the self-renewal and 
multipotency of NSCs.
Methods: In this study, we identified NSCs and verified that these cells were able to regenerate and 
differentiate into both astrocytes and neurons. Then we studied the relation between expression of ADNCR 
and transcription factor 3 (TCF3) and proliferation of NSCs.
Results: ADNCR and TCF3 expression have been shown to decrease during the differentiation of 
NSCs into both neurons and astrocyte induction cells. However, the expression of the microRNA miR-
204-5p increased over time during the differentiation of NSCs into both neurons and astrocyte induction 
cells. ADNCR acts as a competing endogenous RNA (ceRNA) for miR-204-5p, and the overexpression of 
ADNCR suppressed miR-204-5p expression and enhanced TCF3 expression in NSCs, which resulted in 
enhanced proliferation and suppressed neural differentiation.
Conclusions: These data suggested that the use of ADNCR may represent a new strategy for expanding 
the interventions used to treat neurological disorders.
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Introduction

Neural stem cells (NSCs) are undifferentiated precursor 
cells that have the ability to self-renew and proliferate and 
have the capacity to become either glia (oligodendrocytes 
and astrocytes) or neurons (1-3). NSCs have been widely 
investigated for potential clinical uses (4-6). Several 
studies have suggested that NSCs can act as beneficial 
adjuncts and could potentially be used to treat for many 
neurological disorders, such as cerebral infarction, spinal 
cord injuries, Alzheimer’s disease, Parkinson’s disease, 
epilepsy, and neurasthenia (4,7-10). Although the functional 
characteristics of NSCs have been widely investigated, 
the molecular mechanisms underlying NSC migration, 
differentiation and self-renewal remain unknown (11-13). 
Thus, studying the molecular mechanisms that modulate 
migration, differentiation and self-renewal is crucial to 
understanding the determinants of NSC cellular fates.

Long noncoding RNAs (lncRNAs) are RNAs that are 
longer than two hundred nucleotides (nts) in length and 
belong to one class of noncoding RNAs (ncRNAs) (14-17).  
Recent studies have revealed that several lncRNAs play 
essential roles in a large range of functions, including cell 
fate, differentiation, proliferation, invasion, and metabolism 
(18-21). The expression of many lncRNAs was found to 
be dysregulated during human diseases, such as tumor, 
intervertebral disc degeneration, spinal cord injuries, and 
Parkinson’s disease (22-25). Recently, growing evidence has 
suggested that lncRNAs also play roles in the development, 
self-renewal, and differentiation of NSCs (26-28). A 
new lncRNA, adipocyte differentiation-associated long 
noncoding RNA (ADNCR), was recently identified and 
found to suppress the differentiation of adipocytes (29). 
However, the role played by ADNCR in the self-renewal 
and multipotency of NSCs remains unknown.

In our study, we first identified NSCs and found that 
these cells could regenerate and differentiate into both 
astrocytes and neurons. ADNCR expression was found 
to decrease during the differentiation of NSCs into 
both neurons and astrocyte induction cells. The ectopic 
expression of ADNCR suppressed the proliferation of 
NSCs and the differentiation of NSCs into neurons.

Methods

Cell culture and transfection

Primary NSCs were cultured using a modified method 
based on previously published protocols (26,30). Primary 

NSCs were isolated from 13.5-day rat embryos and 
maintained in DMEM medium, supplemented with N2, 
epidermal growth factor (EGF) and basic fibroblast growth 
factor (bFGF, R&D). pcDNA-control, pcDNA-ADNCR, 
miR-NC, miR-204-5p, siRNA-control, and siRNA-
transcription factor 3 (TCF3) were acquired from Ambion 
(Thermo). These vectors were transfected into primary 
NSCs using Lipofectamine 3000 (Invitrogen, USA), 
according to the manufacturer’s instructions.

Immunocytochemistry

Cells were first fixed with 4% paraformaldehyde and 
permeabilized with Triton-X100 (0.2%). After blocking 
in 10% serum, the cells were treated with mouse anti-
β-tubulin III monoclonal antibody (clone SDL.3D10, 
RRID:AB_2210370; Catalog No. T8660; Sigma-Aldrich), 
at 4 ℃ for 12 hours, and followed by incubation with 
secondary antibodies.

Cell proliferation

Cell growth was determined using Cell Counting kit 8  
(CCK8) analysis (Dojindo, Japan), according to the 
manufacturer’s instructions. The growth rate was analyzed 
at different time points after transfection. The absorbance 
was detected at 450 nm by a microplate reader.

qRT-PCR

Total RNA was extracted from the cells using a TRIzol kit 
(Invitrogen, CA, USA). The expression levels of miRNA, 
lncRNA and mRNA were determined by quantitative 
real-time reverse transcription polymerase chain reaction 
(qRT-PCR) analysis using SYBR Green (QIAGEN, 
Germany) on a 7500 PCR detection system (Applied 
Biosystems, Thermo). The primers used were as follows: 
β-tubulin III, 5'-AGCAAGGTGCGTGAGGAGTA-3' 
and 5'-TCTAGTGTCTCATGGCTCTGGTTTT-3'; 
Nestin, 5'-GATCTAAACAGGAAGGAAATCCAGG-3' 
and 5'-TCTAGTGTCTCATGGCTCTGGTTTT-3'; 
GAPDH, 5'-CTCCTCCTGTTCGACAGTCAGC-3' 
and 5'-CCCAATACGACCAAATCCGTT-3'. The data are 
shown as 2−ΔΔCT means.

Western blot

Cells were lysed with cell lysis buffer (Pierce, Thermo 
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Fisher Scientific) to obtain total protein. Protein was 
resolved on a 10% SDS-PAGE gel and then transferred 
into a polyvinylidene difluoride (PVDF) membrane. The 
membrane was blocked with milk for 2 hours and then 
blotted with mouse anti-β-tubulin III monoclonal antibody 
(clone SDL.3D10, RRID: AB_2210370; Catalog No. 
T8660; Sigma-Aldrich), mouse anti-TCF3 monoclonal 
antibody (clone 5G2, RRID: AB_2255610; Catalog No. 
SAB1404452; Sigma-Aldrich) and Mouse anti-GAPDH 
monoclonal antibody (clone CL3266, RRID: AB_10597731; 
Catalog No. AMAB91153; Sigma-Aldrich). The blot 
was incubated with secondary antibodies, and an ECL 
kit (Millipore, USA) was used to visualize the proteins. 
GAPDH was used as a loading control.

Luciferase reporter assay

The mutant (Mut) or wild-type (WT) 3’UTR of TCF3 was 
cloned into the pGL3-luciferase reporter vector (Promega, 
USA). NSCs were co-transfected with miR-204-5p mimic 
or miR-NC, and Mut or WT TCF3 3’UTR, and Renilla 
luciferase (Promega, USA), using Lipofectamine 3000 
(Invitrogen, USA). Luciferase activity was determined with 
the Dual-Luciferase kit, according to the manufacturer’s 
instructions.

Statistical analysis

The results are presented as the mean ± SD (standard 

deviation), and statistical analyses were performed using 
SPSS. Student’s t-test was used to measure significant 
differences between two groups. A P value of <0.05 was 
defined as statistically significant.

Results

NSCs have regenerative abilities and can differentiate into 
astrocytes and neurons

Isolated NSCs have regenerative abilities and can be 
shaped into neurospheres, which were positive for nestin 
(Figure 1A), which is a specific marker for NSCs. After the 
removal of bFGF, FBS, and EGF, the NSCs differentiated 
into astrocytes and neurons, which were identified by 
immunostaining using the neuron-specific marker β-tubulin 
III (Figure 1B) and the astrocyte-specific marker glial 
fibrillary acidic protein (GFAP) (Figure 1C).

Decreased ADNCR and TCF3 and increased miR-204-5p 
expression levels during NSC differentiation

To study the functional role of ADNCR during the 
differentiation of NSCs, we measured ADNCR expression 
levels during NSC differentiation using qRT-PCR. The 
data showed that ADNCR expression decreased during the 
differentiation of NSCs into both neurons (Figure 2A) and 
astrocytes (Figure 2B). In addition, the expression level of 
miR-204-5p increased over time during the differentiation 

Figure 1 NSCs have regenerative abilities and can differentiate into astrocytes and neurons. (A) Cells were immunostained with the NSC-
marker nestin; (B) differentiated cells, immunostained with the neuron-specific marker β-tubulin III; (C) differentiated cells, immunostained 
with the astrocyte-specific marker GFAP. NSC, neural stem cell; GFAP, glial fibrillary acidic protein.
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of NSCs into both neurons (Figure 2C) and astrocytes 
(Figure 2D). Moreover, TCF3 was downregulated during 
the differentiation of NSCs into both neurons (Figure 2E) 
and astrocytes (Figure 2F).

ADNCR acts as a competing endogenous RNA (ceRNA) for 
miR-204-5p and regulates TCF3 expression

ADNCR expression was upregulated in NSCs transfected 
with the pcDNA-ADNCR vector (Figure 3A). The miR-
204-5p expression levels increased in the NSCs after 
transfection with the miR-204-5p mimic (Figure 3B). 
We used bioinformatics analysis to show that TCF3 is a 
potential target for miR-204-5p (Figure 3C). The dual-
luciferase reporter assay showed that the ectopic expression 
of miR-204-5p decreased the luciferase activity of WT 
TCF3 3'-UTR but not Mut TCF3 3'-UTR (Figure 3D). 
The overexpression of ADNCR inhibited miR-204-5p 
expression, according to the qRT-PCR analysis (Figure 3E).  
The ectopic expression of ADNCR enhanced TCF3 
expression, as assessed by western blot (Figure 3F).

The ectopic expression of ADNCR promoted cell 
proliferation and suppressed the neuronal differentiation 
of NSCs

As shown in Figure 4A, the elevated expression of ADNCR 
enhanced NSC growth, as assessed by the CCK-8 assay. 
In addition, ectopic ADNCR expression increased nestin 
expression in NSCs (Figure 4B). Furthermore, our data 
showed that β-Tubulin III expression was inhibited in neural 
induction cells treated with pcDNA-ADNCR (Figure 4C,D).  
The immunocytochemical staining of β-Tubulin III also 
indicated that the overexpression of ADNCR suppressed 
NSC neuronal differentiation (Figure 4E).

The inhibition of TCF3 expression abolishes the effects 
of ADNCR overexpression on NSC differentiation and 
proliferation

To further confirm the contributions of TCF3 to the 
functions of ADNCR during NSC differentiation and 
proliferation, we suppressed TCF3 expression in ADNCR-
overexpressing NSCs. As shown in Figure 5A, TCF3 
expression was downregulated in NSCs after treatment with 
siRNA-TCF3. We also found that the protein expression 
of TCF3 was decreased in NSCs after treatment with 

siRNA-TCF3 (Figure 5B). By using CCK-8 analysis, the 
results indicated that the knockdown of TCF3 expression 
suppressed cell growth in ADNCR-overexpressing NSCs 
(Figure 5C). The inhibition of TCF3 expression also 
decreased nestin expression in ADNCR-overexpressing 
NSCs (Figure 5D). Furthermore, the knockdown of 
TCF3 expression promoted β-Tubulin III expression in 
ADNCR-overexpressing NSCs (Figure 5E). In addition, 
the immunocytochemical staining of β-Tubulin III also 
showed that the suppression of TCF3 enhanced NSC 
differentiation into neurons (Figure 5F).

Discussion

In our study, we first identified NSCs and determined that 
these cells have regenerative abilities and can differentiate 
into astrocytes and neurons. ADNCR and TCF3 expression 
levels decreased during the differentiation of NSC into 
both neural and astrocyte induction cells. However, the 
expression of miR-204-5p increased over time during the 
differentiation of NSCs into both neural and astrocyte 
induction cells. The ectopic expression of ADNCR 
induced cell proliferation and suppressed the neuronal 
differentiation of NSCs. ADNCR acts as a ceRNA for 
miR-204-5p, and the overexpression ADNCR suppressed 
miR-204-5p expression and enhanced TCF3 expression in 
NSCs. The ectopic expression of ADNCR induced NSC 
proliferation and suppressed the neuronal differentiation of 
NSCs, partly by regulating miR-204-5p/TCF3 expression.

NSCs share two requisite properties with all stem 
cells, self-renewal, and multipotency, and they can 
differentiate into both astrocytes and neurons (3,31,32). 
The differentiation and maintenance of NSCs are tightly 
regulated by molecular networks (33,34). Recently, the 
functions of lncRNAs during the control of NSCs self-
renewal and multipotency has been investigated. Zhang 
et al. (35) showed that the lncRNAs Rik-203 and Rik-201 
suppressed neural differentiation via the regulation of miR-
467a-3p and miR-96, respectively. Li and colleagues found 
that the lncRNA lnc158 increased the differentiation of 
neural precursor cells into oligodendrocytes by modulating 
nuclear factor-IB (36). Winzi et al. demonstrated that 
the lncRNA lncR492 suppressed embryonic stem cell 
differentiation into neurons (37). In addition, Li et al. 
reported that the novel lncRNA ADNCR suppressed the 
differentiation of adipocytes (29). However, the role played 
by ADNCR in the self-renewal and multipotency of NSCs 
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Figure 2 Decreased ADNCR and TCF3 and increased miR-204-5p expression levels during the differentiation of NSCs. (A) ADNCR 
expression was decreased during the differentiation of NSCs into neuron induction cells; (B) the expression of ADNCR was measured by 
qRT-PCR assay; (C) the expression levels of miR-204-5p increased over time during the differentiation of NSCs into neuron induction 
cells; (D) the expression of miR-204-5p was measured by qRT-PCR assay; (E) the expression level of TCF3 was decreased during the 
differentiation of NSCs into neuron induction cells; (F) the expression of TCF3 was determined by qRT-PCR assay. ADNCR, adipocyte 
differentiation-associated long noncoding RNA; NSC, neural stem cell; TCF3, transcription factor 3.
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Figure 3 ADNCR acts as a ceRNA for miR-204-5p and regulates TCF3 expression. (A) The expression of ADNCR was detected by qRT-

PCR assay; (B) the expression of miR-204-5p was measured by qRT-PCR assay; (C) TCF3 is a potential target of miR-204-5p, according 

to the results of the dual-luciferase reporter assay; (D) the ectopic expression of miR-204-5p decreased luciferase activity of WT (wild-type) 

TCF3 3'-UTR but not Mut (mutated) TCF3 3'-UTR; (E) the overexpression of ADNCR inhibited miR-204-5p expression, as assessed by 

qRT-PCR; (F) the ectopic expression of ADNCR enhanced TCF3 expression, as assessed by western blot. **, P<0.01. ADNCR, adipocyte 

differentiation-associated long noncoding RNA; TCF3, transcription factor 3.
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remains unknown. In this study, ADNCR expression was 
shown to decrease during the differentiation of NSCs into 
both neuron and astrocyte induction cells. The ectopic 
expression of ADNCR enhanced NSC proliferation and 
suppressed NSC differentiation into neurons.

Previous studies indicated that TCF3 played important 
functional roles associated with the modulation of 
neurogenesis (38). TCF3 acted as a suppressor of Wnt 
expression and functions as an activator of β-catenin (39). 
For instance, Kuwahara et al. (40) demonstrated that TCF3 
expression was downregulated in cells that differentiate 
into neurons. TCF3 maintains populations by inhibiting 
the Wnt/β-catenin signal pathway during neocortical 
development. Wang and colleagues found that miR-506-3p  
modulated NSC differentiation and proliferation by 
regulating TCF3 expression (3). In our study, we found 
that TCF3 expression decreased during the differentiation 
of NSCs into both neuron and astrocyte induction cells. 

We used bioinformatics analysis to show that TCF3 is a 
potential target of miR-204-5p. In a dual-luciferase reporter 
assay, the ectopic expression of miR-204-5p decreased 
the luciferase activity of WT TCF3 3’-UTR but not Mut 
TCF3 3’-UTR. The overexpression of ADNCR inhibited 
the expression of miR-204-5p and enhanced the expression 
of TCF3. The ectopic expression of ADNCR enhanced 
NSC proliferation and suppressed NSC differentiation into 
neurons, partly via the regulation of TCF3 expression.

In summary, our data revealed that both ADNCR and 
TCF3 expression decreased during the differentiation 
of NSCs into both neuron and astrocyte induction cells, 
and the ectopic expression of ADNCR enhanced NSC 
proliferation and suppressed NSC differentiation into 
neurons, partly via the regulation of TCF3 expression. 
These data suggested that the use of ADNCR may 
represent a new strategy for expanding the interventions 
used to treat neurological disorders.

Figure 4 Ectopic expression of ADNCR promoted NSC proliferation and differentiation into neurons. (A) Increased expression of 
ADNCR promoted NSCs growth, as assessed by CCK-8 assay; (B) the expression of nestin was determined by qRT-PCR analysis; (C) 
β-Tubulin III expression was inhibited in neural induction cells treated with pcDNA-ADNCR; (D) the protein expression of β-Tubulin 
III was determined by western blot; (E) the immunocytochemical staining of β-Tubulin III also indicated that the overexpression 
of ADNCR suppressed NSC differentiation into neurons. *, P<0.05; **, P<0.01. ADNCR, adipocyte differentiation-associated long 
noncoding RNA; NSC, neural stem cell.
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Figure 5 Inhibition of TCF3 expression abolishes the effects of ADNCR overexpression on NSC differentiation and proliferation. (A) 
The expression of TCF3 was analyzed by qRT-PCR assay; (B) the protein expression of TCF3 was determined by western blot; (C) CCK-
8 analysis results indicated that the knockdown TCF3 expression induced cell growth in ADNCR-overexpressing NSCs; (D) the expression 
of nestin was detected by qRT-PCR assay; (E) the expression of β-Tubulin III was determined by qRT-PCR assay; (F) immunocytochemical 
staining of β-Tubulin III also showed that the suppression of TCF3 enhanced NSC differentiation into neurons. *, P<0.05; **, P<0.01. 
TCF3, transcription factor 3; ADNCR, adipocyte differentiation-associated long noncoding RNA.
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