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Background: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, 
the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a 
comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA 
microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying 
crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis.
Methods: Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find 
differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. 
A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top 
three molecular complex detection (MCODE) score. A correlation analysis between hub genes and clinical 
indicators was also performed.
Results: In total, 84 upregulated DEGs and 49 downregulated DEGs were identified. Enriched pathways 
of the upregulated DEGs included extracellular matrix (ECM) receptor interaction, focal adhesion, human 
papillomavirus infection, malaria, and cell adhesion molecules. The downregulated DEGs were mainly 
enriched in ascorbate and aldarate metabolism, arginine and proline metabolism, endocrine- and other 
factor-regulated calcium reabsorption, mineral absorption and longevity regulating pathway, and multiple 
species signaling pathway. Seventeen hub genes were identified, and correlation analysis between unexplored 
hub genes and clinical features of DKD suggested that EGF, KNG1, GADD45B, and CDH2 might have 
reno-protective roles in DKD. Meanwhile, ATF3, B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and 
CD24 might promote the progression of DKD. Finally, most hub genes were found present in the immune 
cells of diabetic kidneys, which suggest the important role of inflammation infiltration in DKD pathogenesis.
Conclusions: In this study, we found seventeen hub genes using a scRNA-seq contained multiple-
microarray analysis, which enriched the present understanding of molecular mechanisms underlying the 
pathogenesis of DKD in cells’ level and provided candidate targets for diagnosis and treatment of DKD. 
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Introduction

Diabetic kidney disease (DKD) is considered to be one of 
the most common microvascular complications and affects 
approximately 30% of the global population. It is also the 
main cause of end-stage renal disease in many populations 
and is associated with high mortality and increased medical 
care costs (1-3). The key pathogenesis of DKD is renal 
fibrosis, which was induced at least by renal hemodynamic 
changes, inflammatory processes and overactive renin-
angiotensin-aldosterone system (RAAS), ischemia and 
over-reactive oxidative stress (4). Recent molecular and 
cellular researches explored new fields of pathophysiology 
of DKD, such as mitochondria dysfunction (5), podocyte  
autophagy (6), and genetic and epigenetic regulation (7).  
The interventional managements for DKD included 
intensive control of blood glucose, blood pressure and lipid, 
and smoking cessation, which could significantly improve 
the prognosis of cardiovascular events and help to slow 
down the progression of micro-albuminuria to macro-
albuminuria in DKD (8). Besides, more and more novel 
treatment based on molecular changes have been developed 
such as protein kinase C inhibitor (9), endothelium 
A receptor antagonists (10), vitamin D analogs (11),  
JAK inhibitor (12), non-steroidal mineralocorticoid  
antagonist (13) and so on. Thus, tracking the biological 
changes in DKD at the genomic level should be a valuable 
strategy both for pathogenesis and treatment of DKD. 

In recent years, gene sequencing technology combined 
with intensive bioinformatic analysis has been conducted 
to identify multiple disease-related genes, which might 
be considered therapeutic targets in the future. Within an 
extremely short time, bioinformatic analysis could process 
large amounts of samples and provide useful information 
about diseases, and several genes closely associated with 
DKD have been found in previous years and driven 
research innovations. For example, Tang et al. analyzed 
gene expression profiles in a microarray including 22 
microdissected human renal glomerular and 22 tubule 
samples from healthy patients and patients with DKD, and 
identified 10 novel potential therapeutic targets for DKD, 
including ETS proto-oncogene 1, transcription factor, 
lipopolysaccha-ride induced TNF factor, nuclear factor, 
erythroid-derived 2, retinoic acid receptor, γ and signal 
transducer, and activator of transcription 5A (14). Cui et al. 
reported three potential microRNA (miRNA) biomarkers 
including miR-17-5p, miR-20a, and miR-106a, with the 
predicted targets of NR4A3, PTPRO, and KLF9 being 

involved in the pathogenesis of DKD (15). Furthermore, 
Kiyanpour et al. re-analyzed two mRNA microarray datasets 
related to glomerular and tubulointerstitial compartments 
of human diabetic kidneys, and found two novel miRNAs, 
miR-208a-3p and miR-496a-3p, that were overexpressed in 
the cortex of diabetic kidneys (16). Also, Yang et al. found 
BMP7, CD55, CSF1R, INHBC, and F5 playing crucial 
roles in the pathogenesis of DKD (17). Additionally, Tang 
et al. identified Nertin G1 and hepatocyte growth factor as 
reliable biomarkers for DKD (18). However, the results of 
one or two microarray analyses seemed to be disputable due 
to the false-positive rates, and thus more integrated analysis 
of different kinds of DKD datasets should be considered 
and unearthed from different perspectives. 

Single-cell RNA sequencing (scRNA-seq) is a well-
established and powerful method for investigating 
transcriptomic variation, and can be used to provide 
insights into physiological and pathological processes in 
various cell types. In addition, after assigning cell types, 
probable interactions between each cell type based on 
gene expression profiles can be quantified, which aids in 
understanding the interactions between different cellular 
components (CCs). To provide novel insight into the 
pathogenesis and therapeutic biomarkers of DKD, we 
re-analyzed scRNA microarray data, and integrated the 
information with two other microarray datasets downloaded 
from the Gene Expression Omnibus (GEO) and as far as 
we know this was a first bio-informative analysis integrated 
with scRNA-seq datasets in DKD.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-5171).

Methods 

Microarray data 

Microarray data were downloaded from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo). The GSE131882 
dataset included data on kidney samples from patients with 
DKD (n=3) and healthy controls (n=3) on the GPL24676 
(Illumina NovaSeq 6000) platform. The GSE30122 
dataset included data on kidney samples from patients with 
DKD (n=19) and healthy controls (n=50) on the GPL571 
(Affymetrix Human Genome U133A 2.0 Array) platform. 
The GSE30529 dataset included data on kidney samples 
from patients with DKD (n=41) and controls (n=20) based 
on the GPL17586 (Affymetrix Human Transcriptome Array 
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2.0) platform. 

Microarray data processing 

The R software package was applied to process the microarray 
data and to normalize the unqualified files. For the dataset 
in GSE131882, data preprocessing included conversion 
from probes into gene symbols, data quality control, batch 
normalization, principal component (PC) analysis, and cluster 
analysis. DropletUtils package (19) in R software was used to 
detect the expression of each cell, and the scater package (20)  
was subsequently used to count the expression of genes 
in cells. Cells were filtered according to the proportion of 
mitochondrial genes (≤5%) and ribosomal genes (≥10%). 
Seurat package (21) in R software was further utilized to 
standardize the expression of filtered samples and find the 
top 2,000 genes with the most obvious difference between 
cells. ScaleData in the Seurat package was used to scale the 
expression data linearly, while the RunPCA in Seurat package 
was used for PC analysis. The PCs with larger standard 
deviation (cumulative standard deviation higher than 70%) 
were selected, and the FindNeighbors and FindClusters in the 
Seurat package were used for cell cluster analysis. The cells 
were labeled and clustered according to the existing notes 
utilizing CellMarker (22) in the Seurat package. 

For the datasets in GSE30122 and GSE30529, raw 
data in the format of CEL was obtained, and the Affy 
package (23) in R software was used to perform background 
correction and normalization. 

Identification of differentially expressed genes (DEGs) 

DEGs from the datasets in GSE30122 and GSE30529 
were identified using the limma package in R software (24). 
DEGs from the dataset in GSE131882 were identified by 
the FindMarkers in the Seurat package. Samples with an 
absolute value of log fold change greater than 1.5 and a 
P value less than 0.05 were considered DEGs. Probe sets 
without corresponding gene symbols or genes with more 
than 1 probe set were removed or averaged, respectively. 
If some genes were upregulated in one data set and 
downregulated in another data set, they were removed in 
the subsequent analysis. 

Enrichment analysis 

All identified DEGs in GSE30122 and GSE30529 were 
used for subsequent analysis as the inadequate numbers 

of DEGs in the intersection of the two data sets. Based 
on the database of gene ontology (GO) (25) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
database (26) via DAVID online tools, the DEGs were 
analyzed by functional enrichment analysis. GO analysis 
consists of biological processes (BP), cellular component 
(CC), and molecular function (MF) analyses. The Fisher’s 
exact test was used to find out which specific functional 
items were most related to a group of DEGs. Each item in 
the analysis results corresponded to a statistical value p-value 
to express the significance, and FDR was calculated. 

Protein-protein interaction (PPI) network creation and 
hub gene identification

To establish a PPI network of DEGs, Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) (27) 
was used to retrieve interacting genes. Interaction with a 
combined score >0.7 was set as the cutoff point. The PPI 
network was drawn by Cytoscape software (28). A node was 
defined as the protein product of a DEG in the network, and 
it was required that all nodes in the network were DEGs. 
Significant modules and hub genes in the PPI network were 
identified by molecular complex detection (MCODE) (29). 
The parameters of DEG clustering and scoring were set as 
follows: MCODE score ≥3, degree cutoff =2, node score 
cutoff =0.2, max depth =100, and k-score =2.

Clinicopathological correlation analysis 

The Pearson’s correlation analysis between hub genes and 
glomerular filtration rate (GFR) (30,31) and urine albumin 
to creatinine ratio (ACR) (30) in patients with DKD were 
performed using Nephroseq v5 online database. The 
statistical analyses were carried out using GraphPad prism 
7.0 (GraphPad Software Inc. La Jolla, CA, USA). 

Ethical statement 

All data were obtained from an open-access database, 
and not directly from patients or animals directly. Thus, 
acquiring ethical approval was not necessary. 

Results 

Identification of DEGs 

For the GSE131882 dataset which was a scRNA-seq 
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microarray, we firstly performed a series of filtrations and 
standardizations and selected the top 2,000 genes with high 
intercellular differences. The top 10 genes with the largest 
standard deviation are shown in Figure S1. We then used 
a PC analysis to select the PC with the larger standard 
deviation for subsequent clustering analysis. In both healthy 
and DKD kidney samples, 10 clusters were identified 
including nephron epithelial cells, epithelial cells, B cells, 
regulatory T (Treg) cells, mast cells, T helper 9 (Th9) cells, 
plasmacytoid dendritic cells, mesangial cells, neutrophils, 
and endothelial cells (Figure 1A). We selected the genes 
based on the classification of cell groups, and the top 10 
marker gene expressions were listed as a cluster heap map 
(Figure 1B). The DEGs were then selected accordingly in 
each cell clusters (Figure 1C).

For the microarray datasets GSE30122 and GSE96804, 
we used genes with significant differences in mean  
(P value ≤0.05) to do PC analysis (Figure S2) and 
subsequently created the correlation heat map (Figure 2A,B). 
After standardization of the microarray results, 472 DEGs 
were identified from the GSE30122 dataset, including 
286 upregulated genes and 186 downregulated genes 
(Figure 2C). Similarly, 1,851 DEGs were screened from the 
GSE96804 dataset, including 988 upregulated genes and 
863 downregulated genes (Figure 2D). The cluster heatmaps 
of the DEGs are shown in Figure 2E,F. 

Functional enrichment analysis of DEGs 

All identified DEGs in the GSE30122 and GSE96804 
datasets were used for subsequent analysis as the limited 
numbers of DEGs in the intersection of the two datasets. 
We then used an intersection between DEGs in the 
scRNA dataset and the union DEGs in GSE30528 and 
GSE30529 for further analysis. A total of 84 upregulated 
(Figure 3A, Table S1) and 49 downregulated (Figure 3B, 
Table S2) DEGs were identified. On the basis of the GO 
biological process, the top 10 most significantly enriched 
GO terms are presented. The upregulated genes in GO 
terms were primarily associated with multicellular organism 
development, neurogenesis, nervous system development, 
generation of neurons, and epithelial cell differentiation 
(Figure 3C). The downregulated genes in GO terms 
were primarily associated with negative regulation of cell 
population proliferation, kidney development, chloride ion 
homeostasis, metanephric nephron tubule development, 
and renal system development (Figure 3D). The top 10 most 
significantly enriched GO terms in MF and CC analysis are 

shown in Figure S3. 
To explore enriched pathways of DEGs, KEGG pathway 

analysis was done using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) online 
tools. Results of this analysis revealed that upregulated 
DEGs were mainly enriched in extracellular matrix (ECM) 
receptor interaction, focal adhesion, human papillomavirus 
infection, malaria, and cell adhesion molecules (Figure 3E). 
Meanwhile, the downregulated DEGs were mainly enriched 
in ascorbate and aldarate metabolism, arginine and proline 
metabolism, endocrine– and other factor–regulated calcium 
reabsorption, mineral absorption, and longevity regulating 
pathway multiple species (Figure 3F).

PPI network analysis and hub gene recognition 

To identify most significant clusters of DEGs, a PPI 
network of DEGs was constituted by STRING and 
visualized by Cytoscape (Figure 4A). The three most 
significant modules were recognized by the MCODE plug-
in of Cytoscape. Among these modules, a total of 17 hub 
genes were identified including DUSP1, GADD45B, ATF3, 
and BTG2 (Figure 4B); EGF, B2M, CDH2, CLDN4, and 
SPP1 (Figure 4C); CD24, JAG1, PROM1, VCAM1, F5, 
C3, SOX9, and KNG1(Figure 4D). Furthermore, to better 
understand the hub genes’ role in cell-cell interaction 
and regulation, we listed the distributions of hub genes in 
each cell clusters using the data from scRNA microarray  
(Table 1). 

The association between hub genes and clinical features of 
DKD 

To verify the potential roles of hub genes in DKD, 
correlation analysis and subgroup analysis between hub 
genes and clinical features were conducted using the 
Nephroseq v5 online tool. First, the results showed that 
mRNA expression of EGF, KNG1, GADD45B, and CDH2 
positively correlated with in DKD patients (Figure 5),  
suggesting that these genes may have reno-protective roles 
in DKD. Meanwhile, the mRNA expression of ATF3, 
B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and 
CD24 negatively correlated with GFR in DKD patients 
(Figure 6), indicating that these hub genes might promote 
the progression of DKD. Moreover, the mRNA expression 
of ATF3 and BTG2 positively correlated with ACR, also 
suggesting that these two genes might contribute to the 
progression of DKD (Figure 7). 
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Figure 1 Identification of DEGs in the GSE131882 datasets. (A) Cell types of each cluster in DKD samples and control samples. (B) The 
heatmap of the top 10 markers of gene expression in different cell clusters. (C) The DEGs in different cell clusters. DEGs, differentially 
expressed genes.
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Figure 2 DEGs in the GSE30122 and GSE96804 datasets. (A,B) Correlation heat map of GSE30122 and GSE96804 data. (C,D) 
Volcano plot of GSE30122 and GSE96804 data. (E,F) Hierarchical clustering heat map of DEGs in GSE30122 and GSE96804 data. The 
upregulated genes are indicated as red dots; the downregulated genes are indicated as blue dots; the DKD group is located in cyan line area, 
while the control group is located in the orange line area. DEGs, differentially expressed genes; DKD, diabetic kidney disease.
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Figure 3 Functional enrichment analysis of DEGs. (A,B) Venn diagram of selected upregulated DEGs (A) and downregulated DEGs 
(B). (C,D) GO enrichment result of DEGs. The x axis represents the gene ratio, and the y axis represents the GO terms. (E,F) KEGG 
enrichment results of upregulated DEGs (E) and downregulated DEGs (F). The x axis represents the gene ratio, and the y axis represents 
the KEGG terms. The size of the circle represents the gene count. The different colors of circles represent different adjusted P values. 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 A PPI network and three significant modules of DEGs. (A) A PPI network of DEGs created by STRING. Circles represent 
genes, and lines represent PPIs. (B) The most significant module identified by MCODE (score =4). (C) The second most significant 
module identified by MCODE (score =3.5). (D) The third most significant module identified by MCODE (score =3.429). PPI, protein-
protein interaction; DEGs, differentially expressed genes; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; MCODE, 
molecular complex detection.
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Discussion 

DKD is the result of multiple gene interactions; thus, by 
using bioinformatics analysis, an extensive application 
of gene expression can offer the possibility to study 
the pathogenesis of DKD. In our study, a set of 2,178 
DEGs from the GSE30122 and GSE30529 datasets were 
identified, including 1,202 upregulated genes and 976 
downregulated genes. Among them, the expression of 133 
DEGs (84 upregulated genes and 39 downregulated genes) 
were validated by an ScRNA-seq dataset GSE131882. 
According to the functional enrichment analysis, we 
found a set of upregulated DEGs were most significantly 
enriched in ECM receptor interaction including COL4A1, 
ITGB6, SPP1, and THBS2. In fact, the structural features 
of DKD was characterized by increased amounts of 
ECM which may be pathologically essential as it could 
lead to glomerulosclerosis and tubulointerstitial fibrosis 
accompanied by subsequent nephron loss. Thus, it was 
not surprising that ECM receptor interaction pathway 
was one of the most active pathways in the KEGG 
analysis. Furthermore, a series of downregulated DEGs 
were discovered to be most significantly enriched in the 
pathway of ascorbate and aldarate metabolism, and included 
ALDH7A1, MIOX, and UGT2B7. In a previous report, 
genes in ascorbate and aldarate metabolism had been found 
to be involved in the pathogenesis of DKD by a genome-
wide association analysis (32). Also, Wang et al. found 
that ascorbate-aldarate metabolism played key roles in the 
development of diabetic retinopathy, which was another 
important predictor of DKD (33). 

In the 133 DEGs, we further selected 17 DEGs as hub 

genes. Among these hub genes, DUSP1, GADD45B, and 
BTG2 showed the highest MCODE score of 4; EGF, 
B2M, CDH2, CLDN4, and SPP1 showed an MCODE 
score of 3.5; CD24, JAG1, PROM1, VCAM1, F5, C3, 
SOX9, and KNG1 showed an MCODE score of 3.429. 
There have been many studies about the relationships 
between the identified hub genes and DKD, such as EGF 
(34,35), F5 (36,37), and KNG1 (38,39). Some genes such 
as DUSP1 and B2M have been found dysregulated under 
hyperglycemia associated with changed renal function, 
although the inner mechanism still remained unknown. 
The DUSP1 encoded a threonine-tyrosine dual-specificity 
phosphatase which dephosphorylated and inactivated 
extracellular signal-regulated kinase, p38, and c-Jun 
N-terminal kinase in a context-dependent manner. Sheng 
et al. reported that DUSP1 was downregulated by chronic 
hyperglycemia stimulus, while overexpression of DUSP1 
interrupted mitochondrial fission, reducing hyperglycemia-
mediated mitochondrial damage and subsequently 
improving renal function (40). B2M was found to encode 
the β-chain of the major histocompatibility complex (MHC) 
class I molecules and to be upregulated in inflammatory and 
tumor cells. Monteiro et al. reported that mRNA expression 
of B2M in cells of the urinary sediment was higher in type 1 
diabetic patients with kidney diseases (41). 

The pathophysiology of DKD included thickening of 
the glomerular basement membrane, mesangial expansion, 
segmental glomerulosclerosis or global glomerulosclerosis, 
tubulointerstitial fibrosis, and afferent and efferent arteriole 
hyalinosis (42), in which renal fibrosis is the key process. 
Our study identified several hub genes that were directly 
associated with renal fibrosis, including SPP1, VCAM-1, 

Table 1 The distributions of hub genes in each cell cluster of the scRNA microarray

Cell type Upregulation Downregulation

Endothelial cell EGF –

Epithelial cell SPP1 –

Mesangial cell – BTG2

B cell BTG2, CD24, EGF, JAG1, SPP1 –

Regulatory T (Treg) cell EGF KNG1

Mast cell ATF3, B2M –

T helper9 (Th9) cell CD24 ATF3, GADD45B

Plasmacytoid dendritic cell ATF3, CDH2, CLDN4, SOX9, SPP1, VCAM1 GADD45B

Neutrophil ATF3, C3, CLDN4 BTG2, F5, GADD45B
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SOX9, and JAG1. SPP1 encodes osteopontin which has 
been shown to cause glomerular damage (43) and interstitial 
fibrosis (44) in DKD. Cai et al. also found the epigenetic 
regulation of SPP1 was also very important in DKD, and, 
with the targeting of histone markers such as H3K9ac, 
H3K4me1, H3K4me3, and H3K27me3, might provide an 
new method to protect kidneys from deleterious effects 
of glucose (45). VCAM-1, an adhesion molecule which 
predominantly promotes the adhesion of lymphocytes, 
monocytes, eosinophils, and basophils, has been reported 
to be significantly upregulated in the tubulointerstitium of 
DKD (46). Also, serum levels of VCAM-1 have been found 
to be significantly elevated in patients with type 2 diabetes 
and correlated with the extent of albuminuria (47,48). 
SOX9 is a cartilage-specific transcription factor, which 
has been found to be mainly involved in the deposition of  

ECM (49). Kishi et al. reported that SOX9 protein 
induced a chondrogenic phenotype of mesangial cells and 
contributed to advancement of DKD (50). Meanwhile, 
JAG1 was revealed to encode one of five cell surface 
proteins that interact with four receptors in the Notch 
signaling pathway. Morrissey et al. reported a TGFβ1-
mediated upregulation of JAG1 in kidney tubules utilizing a 
mouse model of renal fibrosis (51). 

Usually, the expression of genes under one constant 
pathological condition maintains the same regulation 
pattern. In our study, we found the hub gene ATF3 to 
be upregulated in mast cells, plasmacytoid dendritic 
cells, and neutrophils, but downregulated in Th9 cells, a 
phenomenon which has hitherto not been reported. The 
ATF3, a member of the ATF/CREB family of transcription 
factors, which was originally isolated from a serum-induced 

Figure 5 Hub genes positively correlated with GFR in DKD patients. (A) The expression of EGF positively correlated with GFR (P<0.001, 
r=0.666). (B) The expression of KNG1 positively correlated with GFR (P<0.001, r=0.780). (C) The expression of GADD45B positively 
correlated with GFR (P<0.001, r=0.753). (D) The expression of CDH2 positively correlated with GFR (P=0.016, r=0.730). CG, Cockcroft 
Gault; DKD, diabetic kidney disease; GFR, glomerular filtration rate; MDRD, modification of diet in renal disease; mRNA, messenger 
RNA.
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HeLa cell cDNA library (52), has been implicated in cell 
cycle progression (53), immune response pathways (54), 
and endoplasmic reticulum stress response (55). However, 
because the functions of ATF3 depend on its transcriptional 
milieu, ATF3 could have the opposite effects on different 
types of cells (56). In an animal model of DKD, Zhang et al.  

reported that ATF3 expression was elevated and this 
overexpression of ATF3 increased podocyte apoptosis 
and decreased expression of podocin, the cell marker 
of podocyte; in contrast, ATF3-small interfering RNA 
knockdown was shown to be reduce podocyte apoptosis and 
increase podocin expression (57). 

Figure 6 Hub genes negatively correlated with GFR in DKD patients. (A) The expression of ATF3 negatively correlated with GFR (P<0.001, 
r=–0.559). (B) The expression of B2M negatively correlated with GFR (P<0.001, r=–0.666). (C) The expression of VCAM1 negatively 
correlated with GFR (P<0.001, r=–0.524). (D) The expression of CLDN4 negatively correlated with GFR (P<0.001, r=–0.537). (E) The 
expression of SPP1 negatively correlated with GFR (P<0.001, r=–0.718). (F) The expression of SOX9 negatively correlated with GFR 
(P<0.001, r=–0.593). (G) The expression of JAG1 negatively correlated with GFR (P=0.043, r=–0.722). (H) The expression of C3 negatively 
correlated with GFR (P<0.001, r=–0.600). (I) The expression of CD24 negatively correlated with GFR (P<0.001, r=–0.763). CG, Cockcroft 
Gault; DKD, diabetic kidney disease; GFR, glomerular filtration rate; MDRD, modification of diet in renal disease; mRNA, messenger 
RNA.
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Although the majority of the hub genes selected have 
been reported in DKD, some hub genes, including BTG2, 
CDH2, GADD45B, and CLDN4, have not been studied 
in detail. By using the Nephroseq v5 online tool, we found 
that the mRNA expression of GADD45B of CDH2 was 
positively correlated with GFR, the mRNA expression 
of CLDN4 was negatively correlated with GFR, and the 
mRNA expression of BTG2 was positively correlated with 
ACR. These findings, taken together, offered new potential 
targets in future DKD research.

In our study, we also screened gene expression across 
all cell types present in the DKD microenvironment 
by using the cluster analysis in single-cell dataset. We 
identified four major cellular compartments on the basis of 
canonical marker expression: endothelial cell, immune cell, 
mesangial cell, and epithelium cell. Within the immune 
cell clusters, various cell types were found, including 
Th9 cells, B cells, Treg cells, neutrophils, plasmacytoid 
dendritic cells, and mast cells. We also found the hub 
genes we selected were most differently expressed in the 
immune cell clusters, indicating the importance of immune 
regulation in DKD. Recently, increasing evidence from 
clinical and experimental studies has shown that both 
systemic and local renal inflammation have crucial roles 
in the development and progression of DKD. Actually, 
in the glomeruli and interstitium of renal biopsy samples 
across all stages of DKD, the infiltration of immune cells 
appears to be common. Moon et al. reported that the 
number of activated T cells was increased in the kidneys 

of type 2 diabetic patients, and the number of T cells such 
as CD4+ and CD20+ cells was correlated with the degree 
of proteinuria in these patients (58). Lim et al. reported 
that under diabetic conditions, Rag1−/− mice who lacked 
mature T and B lymphocytes had milder albuminuria when 
compared to wild-type controls, suggesting that T or B 
cells promote the development of albuminuria (59). Similar 
to previous reports, our study also found the cell marker 
CD24 expression was upregulated both in B cells and Th9 
cells, which provided further evidence of immune cell 
proliferation in DKD (60,61). 

The implications of these findings should be considered 
alongside some limitations in our study. First, these 
predictions were not confirmed by experiments, and the 
number of samples used for analysis was still small. In 
further studies, more samples will be combined, and the 
predictions will be verified by experimental in DKD animal 
models and DKD cohort. 

Conclusions 

A total of 84 upregulated and 49 downregulated DEGs 
were identified from 3 microarray datasets, including a 
scRNA-seq dataset. The upregulated DEGs were most 
significantly enriched in ECM receptor interaction while 
the downregulated DEGs were most significantly enriched 
in the pathway of ascorbate and aldarate metabolism. We 
further selected 17 hub genes, among which BTG2, CDH2, 
GADD45B, and CLDN4, have rarely been reported in 

Figure 7 The correlation between hub genes and ACR in DKD patients. (A) The expression of ATF3 positively correlated with GFR 
(P=0.048, r=0.881). (B) The expression of BTG2 positively correlated with GFR (P=0.004, r=0.979). ACR, urine albumin to creatinine ratio; 
DKD, diabetic kidney disease; ATF3, activating transcription factor 3; GFR, glomerular filtration rate.

600

500

400

300

200

600

500

400

300

200

A
C

R
 (μ

g/
m

g)

A
C

R
 (μ

g/
m

g)

–1                      0                       1                      2 1.0                   1.5                    2.0                   2.5
Median-centered log2 ATF3 expression value Median-centered log2 BTG2 expression value

P value: 0.048
R value: 0.881

P value: 0.004
R value: 0.979

A B



Annals of Translational Medicine, Vol 8, No 16 August 2020 Page 13 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(16):997 | http://dx.doi.org/10.21037/atm-20-5171

relation to DKD, indicating the potential new targets for 
this condition. Moreover, using scRNA-seq, we found 
most of the hub genes to be dysregulated in immune 
cells, showing the importance of inflammation in DKD. 
Altogether, these findings may provide significant insight 
into the etiology and underlying molecular events of DKD.
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Figure S1 Top 10 genes with the largest standard deviation in diabetic and control kidney cells.

Figure S2 Principal component analysis in GSE30122 (A) and GSE96804 (B) datasets.

Supplementary



Figure S3 The top 10 most significantly enriched GO terms in MF and CC analysis. (A,B) Up-regulated genes (C,D) Down-regulated 
genes. The x axis represented gene ratio and y axis represented GO terms. CC, cellular component; MF, molecular function. GO, Gene 
Ontology; MF, molecular function; CC, cellular component.
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Table S1 A list of 84 upregulated DEGs

ACSM2B CTSH GPX3 NUDT16 SLC6A13

ALDH7A1 CUBN HES1 OGDHL SPATA18

ARHGAP24 CYB5A HSD11B2 PARD6B TACC2

ATF3 CYFIP2 HSPA1A PDK4 TGFBR3

BAIAP2 DEFB1 HSPA1B PDZK1IP1 TIPARP

BCAM DLG2 KL PLCG2 TMEM207

BTG2 DUSP1 KLF9 PPARGC1A TMEM52B

CA12 EGF KNG1 PRODH2 TNNT2

CALB1 ENPEP LINC00472 PTGDS TSPAN2

CDH16 ERRFI1 MAGI2 PTH1R UGT2B7

CKB F5 MIOX RASD1 UMOD

CLCNKB FLRT3 MT1G SERPINA5 USP2

CPM FN3K MT1H SLC12A3 WDR72

CPNE8 FRY NAPSA SLC16A12 WT1-AS

CRYAB FTCD NKD1 SLC17A3 ZBTB16

CSRNP1 FTL NPR3 SLC36A2 ZFP36

CSRP1 GADD45B NUAK2 SLC5A12

DEGs, differentially expressed genes.

Table S2 A list of 49 downregulated DEGs

ACSL4 CDH2 JAG1 PLSCR1 SPP1

AMOTL1 CDH6 KCNQ1OT1 PROM1 SYTL2

ANKRD36B CHRM3 LPGAT1 RAPGEF5 TCF4

ANXA1 CLDN4 LRP2BP RAPH1 THBS2

ATP13A3 COL4A1 MAP3K1 SKIL TNFRSF11B

B2M DOCK11 MEST SLC4A7 TNFRSF12A

BHLHE41 FILIP1L NPIPB5 SLFN5 TNFSF10

BICC1 FMNL3 NR2F2-AS1 SMG1P1 TPM4

C3 HIF1A PDE1A SOX4 VCAM1

CD24 ITGB6 PLEKHA1 SOX9

DEGs, differentially expressed genes.


	997-ATM-20-5171（含附录）
	997-ATM-20-5171（含附录） - 附录

