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Abstract: Radiomics is a novel approach for optimizing the analysis massive data from medical images 
to provide auxiliary guidance in clinical issues. Quantitative feature extraction is one of the critical steps of 
radiomics. The association between radiomics features and the clinicopathological information of diseases 
can be identified by several statistics methods. For instance, although significant progress has been made in 
the field of lung cancer, too many questions remain, especially for the individualized decisions. Radiomics 
offers a new tool to encode the characteristics of lung cancer which is the leading cause of cancer-related deaths 
worldwide. Here, we reviewed the workflow and clinical utility of radiomics in lung cancer management, 
including pulmonary nodules detection, classification, histopathology and genetics evaluation, clinical 
staging, therapy response, and prognosis prediction. Most of these studies showed positive results, indicating 
the potential value of radiomics in clinical practice. The implementation of radiomics is both feasible and 
invaluable, and has aided clinicians in ascertaining the nature of a disease with greater precision. However, it 
should be noted that radiomics in its current state cannot completely replace the work of therapists or tissue 
examination. The potential future trends of this modality were also remarked. More efforts are needed to 
overcome the limitations identified above in order to facilitate the widespread application of radiomics in the 
reasonably near future.
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Introduction

With the rapid development of genomics, proteomics, 
metabolomics, and powerful methods for analyzing large 
sets of data, precision medicine, with targeted, individualized 
treatment, has become an active field, especially for 
cancer therapy (1). As early as 2003, the relationship 
between tumor gene variations and response to radiation 
therapy was evident, and it was regarded as the prelude to  
radiogenomics (2). Changes at the molecular level are 
believed to be essential factors for clinical decisions. 
However, the spatial and temporal heterogeneity of tumors 

limit the repeated use of invasive biopsies for cancer patients 
(3,4). In contrast, medical imaging represents an ideal means 
to capture the tumoral heterogeneity via a non-invasive 
manner. The underlying gene-expression patterns are 
represented as specific imaging traits. Therefore, imaging 
features could serve as potential molecular surrogates 
to optimize the treatment selection and management of 
cancers (5-7) —a fact which has become a cornerstone 
of radiogenomics. In short, the major objective of 
radiogenomics is to decode the tumor-inherited phenotypes 
using noninvasive imaging (5,8,9). The initial concept 
of radiomics was put forward by Baumann M, a German 
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oncologist, in 2003, which was only focused on the specific 
relationship between gene expressions and radiosensitivity 
of tumors and was named as “radio-genomics” (5).

 The innovations in medical imaging over the past 
decades have allowed for the high-throughput extraction 
of image information by automatic software, and faciliated 
crucial progress in radiogenomics. Large-scale radiographic 
features held great promise in translating the genomic 
and proteomics patterns into macroscopic imaging data. 
This was supported by the fact that different radiographic 
findings, such as the distinctive contrast-enhanced and 
non-enhanced regions on computed tomography (CT) 
scans, could reflect the variable protein expressions of 
glioblastoma (10). Based on further advanced quantitative 
analysis, it was further found that tumor diagnosis, 
treatment response, and even survival could be predicted 
by imaging (11,12). Medical imaging’s great expansion 
from an ancillary diagnostic tool to a big data bank with 
a central role in precision medicine is synonymous with 
the rise of radiomics (13,14). In 2012, Lambin P, a Dutch 
researcher, introduced the scientific term of “radiomics” for 
the first time, and defined it as to extract a large number 
of image features with a high-throughput approach. This 
was updated in 2014 and was emphasized the automated (or 
semiautomated) extraction of great amounts of quantifiable 
information in radiographic images, as well as proposed 
the purpose of radiomics was to correlate the radiography 
and intrinsic heterogeneity, genetic characteristics or other 
phenotypes to improve the management of diseases (14).

Lung cancer is the most common cause of cancer-
related deaths worldwide (15). The management of lung 
cancer entails a multitude of difficulties, from diagnosis, 
to treatment options, to prognosis evaluation (16,17). 
With the evolution of radiomics, images have become 
informative data, rather than simply visible pictures, and 
their integration into lung cancer treatment may represent 
a paradigm shift in the field. Here, we review radiomics 
and its clinical application in lung cancer management, and 
summarize the limitations and future prospects. Literature 
published or online ahead of print in Pubmed, Embase, 
Ebsco, Web of knowledge, Ovid and China Biology 
Medicine disc in English or Chinese from 2010 with 
any study design were collected. We hope our review of 
radiomics in lung cancer would provide an idea about the 
value of radiomics in clinical practice, and help professionals 
understand radiomics in a more informed way.

The highlights and innovation of our review includes the 
following three points. First, we followed the real clinical 

process of lung cancer diagnosis and treatment to summarize 
the application of radiomics, which are pulmonary nodule 
detection and classification, histopathology and genetics 
diagnosis of lung cancer, clinical staging of lung cancer, 
therapy response and prognosis of lung cancer. This idea 
is consistent with the clinical practice. Therefore, it is apt 
to for readers to understand the clinical values of radiomics 
in the whole management process of lung cancer. Second, 
we have read and summarized the latest literature to keep 
readers abreast of advances. Third, research results of our 
group have been added and our real experience would make 
this review more readable to some extent. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at http://dx.doi.org/10.21037/
atm-20-4589).

Workflow of radiomics

All modalities of digital imaging, including CT, magnetic 
resonance imaging (MRI),  and positron emission 
tomography (PET), can be applied for radiomics analysis, 
with the workflow of radiomics across different types 
of imaging being essentially the same. But in the field 
of respiratory diseases, CT is the most commonly used 
modality. The main component of normal lung field is air 
with low density. When new lesions such as pulmonary 
nodules appear, local density increases and is significantly 
different from the surrounding normal tissues. The 
excellent density resolution of CT makes its wide use in 
pulmonary diseases, especially in pulmonary nodules.

Imaging acquisition

 The first step of radiomics is to acquire high-quality, 
standardized imaging. However, the criteria for image 
acquisition in radiomics have not yet been established. It 
is recognized that CT scanning technical parameters (e.g., 
radiation dose, scanning protocol, with or without contrast 
agent, and so on) directly influence the radiomics features 
(18,19). Berenguer et al. confirmed that changes of imaging 
parameters could lead to the radiomics factors being 
nonreproducible (20). At present, images for radiomics 
analysis are mostly in Digital Imaging and Communications 
in Medicine (DICOM) format, which is obtained by 
reconstructing from the raw data of CT scanning. The 
convolution kernel and slice thickness were also found to 
affect the performance of a radiomics model to predict 
the epidermal growth factor receptor (EGFR) status in 
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non-small cell lung cancer (NSCLC) (21). Moreover, 
post-processing can vary across vendors, and may thus 
yield different radiomic features (22). Therefore, it is 
hard to interpret results from studies based on the mixed 
heterogeneous cohorts with different CT parameters. Given 
these challenges, radiomic features must be reported with 
the image acquisition and reconstruction parameters. 

Image segmentation

Image segmentation is a process that defines the region 
of interest (ROI) from the background or neighboring 
structures. It is usually achieved by the manual inspection of 
experienced investigators or the semiautomated/automated 
inspection by software. The greatest challenge for manual 
segmentation is interobserver variability and its time-
consuming nature (23-26). Segmentation fully or partially 
guided by software is magnetic due to the improved 
efficiency, accuracy, reproducibility, and consistency this 
allows. Under certain circumstances, semiautomated/
automated segmentation produces results highly similar 
to those of the manual approach in tumor volume 
measurement (27). However, when the tumor outline is 
unclear, manual segmentation is highly necessary. 

Pulmonary nodule segmentation on CT images is based 
on detecting differences in density. The definite contrast 
between solid pulmonary nodules and perinodal normal 
lung tissues makes manual or semiautomated/automated 
segmentation simple. However, for subsolid pulmonary 
nodules, which includes pure ground glass nodules (pGGNs) 
and mixed ground glass nodules (mGGNs), segmentation 
is difficult, especially for the semiautomated/automated 
software, because of the vague margins (28). Difficulties 
also arise when drawing the outline of tumors affixed to 
the chest wall or mediastinum (29), and this might require 
hybrid methods of human–software interaction. Lacking 
this, most clinicians in pulmonary nodule studies continue 
to rely on accurate and reproducible manual segmentation 
(30-32). However, with the advent and development of deep 
learning, segmentation may be avoidable altogether, and an 
algorithm could be created to automatically extract features 
from an unsegmented image. This is one of the notable 
distinctions between radiomics and deep learning (33,34). 

Features extraction

Quantitative imaging features of the ROI are extracted 
using high-throughput methods, and both two-dimensional 

(2D) and three-dimensional (3D) features can be derived. 
Data from 2D refers to the information on a single-slice 
image, while 3D indicates the entire volume of a tumor with 
many slices (22). In general, 3D radiomics features are more 
informative, and they are applied when the intratumoral 
heterogeneity needs to be explored. To a greater extent, 2D 
radiomics is used in a much easier and faster way. However, 
one study compared 2D and 3D CT radiomics features in 
predicting the prognosis of NSCLC and revealed that both 
2D and 3D CT radiomic features have a certain prognostic 
ability. The authors of the study even recommended 
prioritizing 2D features (35). Therefore, for any given 
study, there is no definite option for the features selection. 

The extracted radiomic features are usually categorized 
as semantic and agnostic (36). Semantic features are those 
features that are expressible via the radiologist’s lexicon, and 
include size, shape, intensity patterns, and so on; whereas 
features derived by computer such as spatial complexity and 
other texture information are agnostic features. Semantic 
features were reported to be powerful in predicting gene 
expression patterns in hepatocellular carcinoma and efforts 
are being made to capture such semantic data with the 
aid of computers to achieve higher prediction value (36). 
However, with the development of radiomics, more and 
more agnostic features, such as textural analysis, were 
evaluated, which were found to be useful in identifying 
certain clinical responses in lung adenocarcinomas but not 
all-powerful (37). Moreover, in our exploration for EGFR 
mutation prediction by radiomics, we found that all of the 
meaningful parameters were agnostic. However, Wang et al. 
compared the predictive performance of various methods 
in predicting the EGFR mutation in NSCLC, and results 
revealed that semantic model was not always significantly 
worse than other models (38). 

Therefore, it might be regarded that both of semantic 
and agnostic features are indispensable in radiomics, and it 
is hard to say at this stage which is more important, even 
though agnostic ones seem to be more evident in some 
reports.  At the same time, the algorithms, mathematical 
definitions, and nomenclature can affect the extraction 
results. Therefore, certain criteria for feature extraction and 
the standard group of features need to be first established. 
Lambin et  a l .  recommended an image biomarker 
standardization initiative for quality control (39) and 
proposed a rigorous 16-component radiomics quality score 
(RQS) (40,41), which is technically required in radiomics 
research (42). 

In theory, the number of radiomic features that can be 
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extracted is almost unlimited, and depends on the filters, 
feature categories, and other parameters being used. If all 
possible features were included in a model, the result would 
be inevitably overfitted (40,41). Accordingly, extracted 
features are then moved into selection, which should be 
performed in a robust and transparent way. Features that 
have been identified as independent from other traits, 
reproducible, and prominent in the data should be selected, 
whereas variable features should be eliminated (42). 

Data analysis

Selected features are then analyzed to establish models 
to provide risk stratification on clinical issues. There are 
several methods for data analysis, including support vector 
machine (SVM), logistic regression, random forest, Xgboost, 
gradient boosting decision tree (GBDT), and other 
methods (43,44). Modelling methods also have been shown 
to affect the prediction value (45), and each of them has 
distinct inherent limitations. For example, the disadvantage 
of logistic regression is  independent assumption, 
and features appearing to be discretized in Bayesian  
networks (41). It is thus proposed that the performance 
of multiple modelling methodologies would ideally be 
compared in a specific study to choose the best one (41). 
Another principle for the choice of modelling method 
is that the work and results should be as reproducible as 
possible (41).

Application of radiomics in lung cancer

Pulmonary nodule detection and classification 

The detection of small pulmonary nodules is time-
consuming in daily practice and can oftern overlook these 
nodules, particularly if they are smaller than 5 mm in 
diameter or similar to the adjacent structures in density (46). 
In the National Lung Screening Trial (NLST), up to 8.9% 
of small lung cancers were not detected in the baseline 
scanning (47). There is great demand for computer-aided 
detection (CAD) tools to assist radiologists in nodule 
detection. In a proposed scheme, investigators used a 
nodular enhancement filter to segment the pulmonary 
nodule candidates and extract radiomic features, followed 
by a random forest method to quantify the heterogeneity 
and distinguish between the real nodules and false positive 
ones. The sensitivity of this scheme reached 88.9% with 4 
false-positive detections per CT scan (48). More recently, 

promising results with increasing sensitivity for nodule 
detection have been reported (49,50). 

 In addition to nodule detection, another important issue 
in CT scanning is the overdiagnosis of lung cancer. Results 
from the NLST indicated that only 3.6% of the detected 
nodules in the baseline screening were diagnosed as nascent 
lung cancer in the follow-up period, while the remaining 
96.4% of nodules were overdiagnosed (51). This was based 
on the criteria in which nodules over 4 mm in size were 
defined as positive findings (52). Diagnostic approaches for 
defining lung nodules as benign or malignant usually rely 
on size and growth. Representative images for different 
pathological types of pulmonary nodules were showed 
in Figure 1. Radiomics provides a mass of information, 
making it possible to develop new techniques to address 
the accurate malignancy differentiation among detected 
nodules. Another study used 2 cohorts of screen-detected 
lung cancer and benign pulmonary nodules for image 
feature extraction in order to predict the subsequent 
emergence of lung cancer. A total of 219 3D radiomics 
features, describing the nodules’ location, size, shape, and 
texture were obtained. The 23 stable features were used in 
a random forests classifier to predict nodules that would 
become cancerous in 1 and 2 years after the screening. The 
accuracies in the training and validation cohorts were of 
80% and 79%, respectively. These values were much better 
than those of the Lung Imaging Reporting and Data System 
and volume measurement, and were commensurate with the 
McWilliams risk assessment model. 

A system that uses radiomics risk biomarkers to 
prescribe an optimal follow-up scheme for the detected 
lung nodules has been envisioned (53). Another deep 
learning methodology, in conjunction with an evolutionary 
technique and the particle swarm optimization algorithm, 
was developed to optimize the convolutional neural network 
for reducing the false-positive rate in lung nodule detection. 
For the Lung Image Database Consortium and Image 
Database Resource Initiative (LIDC-IDRI), the accuracy of 
this model was 97.62%, while the sensitivity, specificity, and 
area under the receiver operating characteristic curve (AUC) 
were 92.20%, 98.64%, and 0.955, respectively (54). 

The differential diagnosis of pulmonary part-solid 
nodules remains a clinical challenge. Digumarthy et al. 
carried out a retrospective study including 36 patients with 
108 part-solid nodules, both with baseline and follow-up 
chest CT. The 3D radiomics features were extracted. Only 
2 out of 92 radiomic features in the baseline scanning were 
able to differentiate the malignant from the benign nodules, 
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with an AUC of 0.624; meanwhile, for the follow-up CT 
images, 52 out of 92 radiomic features could differentiate 
the 2 groups with an improved AUC of 0.708 (55). This 
study and others like it (56,57) demonstrate that radiomics 
has been embraced as an effective procedure for pulmonary 
diagnosis. 

 However, there are still a number of hurdles to 
overcome before these models can be widely applied in 
clinical practice. Subjects in the reported studies are from 
distinct cohorts, while there is variation in the original 
image data and in the methodologies implemented. Thus, 
the radiomic features and signatures are complicated and 
mutable. For example, in the study by Digumarthy et al., it 
was found that radiomics features in benign nodules were 
stable over time, whereas 63 out of 92 radiomics features 
of malignant nodules changed significantly between the 
baseline and follow-up chest CT scanning (55). Another 
study also indicated that the contrast-enhancement, 
reconstruction slice thickness and convolution kernel had 
a marked impact on the benign and malignant prediction 
of radiomics signatures (58). It is difficult to draw direct 
comparisons between the studies, and the value of this 
research is not yet directly applicable (59). Also, as the 
sample sizes of the datasets used have been relatively small, 

the scanner and scan protocols are insufficient, while the 
training and testing datasets are often not independent. 
The problem of overfitting is hard to avoid, and leads to 
difficulty in replicating the application of the models in 
separate datasets (39,60,61). Further research with much 
larger validated databases and comparable experimental 
protocols is likely needed.

Histopathology and genetics diagnosis of lung cancer 

Histopathology subtypes, such as NSCLC (squamous 
cell carcinoma, adenocarcinoma) and non-small lung 
cancer (SCLC), are also critical for lung cancer treatment 
(Figure 2). One study extracted a total of 440 radiomic 
features from 2 independent lung cancer cohorts with a 
combined size of 350 patients. In the univariate analysis, 
53 features were observed to be correlated with lung 
cancer histology, and the multivariate analysis revealed 
the highest performance of Naive Bayes classifier with 5 
radiomic features (AUC: 0.72). This study highlighted 
the impressive potential of non-invasive and cost-
effective radiomics in lung cancer histopathological  
classification (62). Similar results were achieved by Ferreira-
Junior et al.’s quantitative radiomics analysis. In their study 

A

C D

B

Figure 1 Representative CT images for inflammatory nodule (A), adenocarcinoma (B), squamous cell carcinoma (C) and small cell lung 
cancer (D).
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of 85 cases of lung cancer, they found that 45 features 
were associated with histopathology. A machine learning 
model yielded an AUC of 0.88 for prediction (63). Another 
multi-delineation analysis of 476 features in 4 cases of 
lung adenocarcinoma showed that robust features had 
high prognostic power in predicting the adenocarcinoma 
his to logy  subtypes  (64) .  Due to  the  remarkable 
heterogeneity of lung adenocarcinoma, there remains a 
need for the detailed classification of adenocarcinoma. 
For instance, in the classification criteria published by 
several oncology and respiratory societies, invasive lung 
adenocarcinomas were divided, primarily according to 
histologic features, into 5 pattern subtypes: lepidic, acinar, 
solid, papillary, and micropapillary (65). Micropapillary 
predominant lung cancers have been reported to have a 
poor prognosis (66). One study enrolled 339 patients with 
the determined amount of micropapillary component by the 
postoperative histologic examination. Radiomics analysis 
on the CT histogram, size, shape, gray-level co-occurrence 
matrix, intensity variance, and size zone variance revealed 
that intermediate grade, lower value of the minimum of the 
whole pixel, and lower value of the variance of the positive 
pixel, were predictors of the micropapillary component 
within lung adenocarcinoma. In the calibration plot, the 
combined radiomics features and clinical information 
yielded a prediction AUC of 0.751 (67). 

 Besides documenting the histopathology subtypes, 
genetic variation is also critical for clinical treatment 
modality. In a retrospective study, 219 3D CT radiomic 
features were extracted in 298 Asian patients with surgically 
resected peripheral lung adenocarcinoma, and 59 of these 
features were considered to be independent for further 
analysis. In addition to clinicopathological information 
(female, never smoking, lepidic predominant, and not 

highly differentiated), 11 radiomics features were found 
to be related with the EGFR mutation status. Finally, 
a multiple logistic regression model confirmed that a 5 
radiomics signature, along with clinical data, to predict the 
EGFR mutation with an AUC of 0.709. This model thus 
represents a possible method for EGFR mutation prediction 
in lung cancer patients when profiling is unavailable (68). 
Our research group conducted a multicenter clinical trial in 
China to investigate EGFR mutation prediction as well. A 
total of 485 radiomic features reflecting the heterogeneity 
and phenotype of tumors from 180 lung adenocarcinoma 
patients were extracted. A least absolute shrinkage and 
selection operator (LASSO) based on multivariable logistic 
regression was used, and the radiomics features were found 
to have prognostic ability in predicting EGFR mutation 
status. The AUCs for the training and validation cohorts 
were 0.8618 and 0.8725 respectively, which were superior to 
the clinical variables alone (69). These results were repeated 
in the most recent studies with different machine learning 
methods (70,71). A group of 35 qualitative features extracted 
from PET/CT in 80 NSCLC patients with stage II and 
III before operation were also found to be significantly 
associated with EGFR mutation status. A predictive 
model based on the PET/CT data was established, and 
the prediction AUC was 0.953 (72). A radiomics signature 
might be useful in differentiating the EGFR-positive and 
wild types in lung adenocarcinoma. 

Anaplastic lymphoma kinase (ALK) rearrangement is 
another driver mutation in NSCLC, and the echinoderm 
microtubule-associated protein-like 4 (EML4)-ALK fusion 
is regarded as the most common isoform (73). In a training 
set of 59 NSCLC patients with ALK positively rearranged, 
24 CT traits plus 6 clinical-pathologic covariates were 
screened. Ultimately, 3 imaging traits, including central 

A B

Figure 2 Representative histopathology images for lung adenocarcinoma (A ×200) and squamous cell carcinoma (B ×200). 
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tumor location, absence of pleural tail, and large pleural 
effusion, with the age of patients younger than 60 
years, were strongly associated with the positive ALK 
rearrangement. The sensitivity of the CT-radiomics-based 
model was 83.3% (15 of 18), and the specificity was 77.9% 
(74 of 95), with an accuracy of 78.8% (89 of 113) in the 
independent testing (74).

Crizotinib is recommended as the first-line treatment for 
positive ALK-fusion patients (75), and the success of recent 
research has elicited efforts to look for new oncogenic 
fusion genes, such as c-ros oncogene 1 (ROS1) and 
rearranged during transfection (RET) in NSCLC. A group 
of 539 pathologically confirmed lung adenocarcinoma 
patients with ALK/ROS1/RET fusion status were enrolled 
for radiomics analysis. Lower values for kurtosis and inverse 
variance on 3-voxel distance, combined with younger age, 
advanced tumor stage, and solid tumor on CT were applied 
to develop the prediction model for fusion status, yielding 
a sensitivity of 0.73 and a specificity of 0.70 (76). Other 
publications also produced similarly promising results in the 
genetics prediction of lung cancer (77-79). When biopsy 
tissues are unavailable, radiomics analysis may thus be a 
viable alternative. 

Clinical staging of lung cancer

Clinical stage of tumors, which consists of the tumor (T), 
lymph node invasion (N) and distant metastasis (M), is 
decisive in selecting a treatment option. In the first report of 
radiomics in lung cancer, the correlation between radiomics 
and the TNM staging was identified (80). Our research 
group also explored the possibility of predicting distant 
metastasis in lung cancer based on CT radiomics features. 
Across 348 subjects, 485 radiomics features were extracted 
from pretherapy CT images. Concave minimization and 
SVM were used to select and evaluate the features’ ability. 
The AUC of this model, consisting of 4 radiomic features 
and 3 clinical factors, was 89.09%, which was far superior 
to that of the clinical-variable-only model (81). The results 
of our study were reproduced by Ferreira-Junior et al., 
who found that 40 and 2003 quantitative CT features were 
associated with lung cancer distant metastasis and nodal 
metastasis, with AUCs of 0.92 and 0.84, respectively (63). 
Beyond CT features, radiomics characteristics extracted 
from PET/CT, including statistical, histogram-related, 
morphologic and texture features, have also been able to 
quantify the intratumor heterogeneity of lung cancer. A 
prognostic model based on PET/CT radiomics features 

for predicting distant metastasis development was shown 
capable of distinctly separating the high- from the low-risk 
groups with more power than models based on the tumor 
volume or standard uptake value (SUV) (82). Another 
retrospective study on 545 cases even showed that PET 
texture features were capable of differentiating the primary 
lung cancer and metastatic lung lesions, but the model 
developed on CT features failed for predicting (83). 

Standard lobectomy is the preferred treatment for 
most early stage lung cancer patients. Surgical dissection 
for lymph nodes should be avoided in subjects without 
nodal metastases (84). However, the accurate preoperative 
evaluation of lymph node metastases remains problematic. 
Although PET/CT is considered to be the best imaging 
modality, the false-negative rate and false-positive rate 
remain matters of concern (85,86), and new imaging 
methods must be developed. In one study, a group of 
649 pre-surgical CT-based stage IA NSCLC patients 
were enrolled, 21% of whom had confirmed lymph 
node metastases after surgery, with 396 CT radiomic 
features and clinical information being collected. Receiver 
operating characteristic (ROC) analysis showed that the 
predictive value of the radiomics model for lymph node 
metastasis was 0.851. When combined with clinical data, 
the model’s prediction performance improved to 0.860. 
This study provides further evidence for the potential of 
presurgical CT-based radiomics in predicting lymph node  
metastases (87).

The brain is one of the most frequent sites of the 
extrathoracic metastasis of lung cancer. Once there is brain 
metastasis, the natural median progression-free survival 
(PFS) for patients reduces to 2 months (88). It is necessary 
to explore effective approaches in predicting the brain 
metastasis of lung cancer. In a study of 132 lung cancer 
patients with ALK-positive fusion in clinical stage III/IV, 1 
radiomics feature of the pretreatment (but not during/after 
treatment) thoracic CT showed moderate discrimination 
ability for brain metastasis. This could be beneficial for 
risk stratification in advanced lung cancer patients (89). As 
for early-stage NSCLC, especially for category T1 lung 
adenocarcinoma in patients without any symptoms, there 
is still no consensus on the cost-effectiveness of routine 
screening for brain metastasis. If a robust prediction model 
for brain metastasis stratification with the visual assessment 
of thoracic CT were established, patients would benefit and 
the financial burden would be minimized. In another study, 
89 eligible patients with category T1 lung adenocarcinoma 
were classified according to the presence of brain 
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metastasis, and 1,160 radiomics features were extracted 
from the pretreatment unenhanced thoracic CT images. 
Prediction AUC of the radiomics model was 0.847, which 
increased to 0.871 when the model incorporated clinical  
information (90). Thus, thoracic CT-based radiomics 
analysis might be a promising approach for the clinical 
staging of lung cancer. 

Therapy response and prognosis of lung cancer 

Though the survival of lung cancer patients predominantly 
depends on the clinical stage, patients within the same stage 
exhibit wide variations in treatment response and outcome. 
Prognostic stratification is important for individualized 
management. An integrative analysis on 7 independent 
datasets with 1,194 NSCLC patients revealed that a 3D 
convolutional CT quantitative model could effectively 
predict the 2-year overall survival (OS) of patients treated by 
radiotherapy or surgery (91). In the recurrence-free survival 
(RFS) prediction for stage I NSCLC, 8 of 107 extracted CT 
features were used to develop a radiomics signature, which 
was helpful in stratifying patients into a high-risk (180/378) 
and low-risk group (198/378) with different RFSs (92). The 
response of SCLC patients to first-line chemotherapy was 
also investigated. A dataset including 92 patients receiving 
the standard first-line regimen of etoposide and cisplatin 
were divided into a response groups and no-response group. 
Twenty-one radiological features were used to establish 
a radiomics signature, and the AUC of its prediction 
performance was 0.797, which was better than that obtained 
by clinicopathological parameters. Therefore, CT-based 
radiomics has promise in chemotherapy response prediction 
as a guide for appropriate treatment planning in SCLC (93). 
Another study of 358 lung cancer patients extracted 665 3D 
radiomic features from PET/CT images using each of the 
7 gray levels. The most predictive feature vector discovered 
(FVX) was independent of the other known factors and 
was invariant to the type of PET/CT manufacturer. Using 
the median cutoff, FVX showed power in predicting a 
14-month survival difference in the validation cohort (94). 

However, negative results have also been observed. 
In a longitudinal study including 141 NSCLC patients 
and 3 external datasets of 94, 61, and 41 for validation, 
no model for locoregional recurrence could be trained or  
validated (95). Other research on survival prediction of lung 
cancer patients using PET/CT features found that the AUC 
of the PET/CT-based radiomics model in external validation 
was no higher than 0.55 for any clinical endpoint, and robust 

independent PET/CT radiomics features could not predict 
the survival endpoints (96). Taken together, the findings 
above indicate that clinical decision and risk stratification 
based on either CT or PET/CT radiomics features is still 
problematic for lung cancer. Dataset heterogeneity and 
small cohort sizes might be the cause of poor prediction 
performance, and thus further studies are needed.

Precision medicine is particularly important for NSCLC 
patients in stage III, as local therapies (radiation or surgery) 
are not beneficial for all patients, while the value of adding 
chemoradiation to surgery remains unclear (97,98). A 
cohort of 85 patients with resectable local-advanced (stage 
II–III) NSCLC were included in a study. Radiomics analysis 
was performed on 85 primary tumors and 178 lymph 
nodes to predict pathological response after neoadjuvant 
chemoradiation before surgery. Three radiomic features, 
which described the primary tumor sphericity and lymph 
node homogeneity, were significantly predictive of 
pathological complete response with equal performance. 
Two features that quantify lymph node homogeneity could 
effectively predict the gross residual disease, and they 
performed much better than features of the primary lesions. 
This study suggests that lymph node phenotype presents an 
underlying sensitivity to chemoradiation and may provide 
a possible way to make an adaptive therapy plan for lung 
cancer patients (99).

Targeted therapy has been widely applied for lung 
cancer with driver gene mutations. It is well known that the 
patients with sensitive EGFR mutations can benefit from 
EGFR tyrosine kinase inhibitors (TKIs), including gefitinib, 
erlotinib, and afatinib (100,101). According to the National 
Comprehensive Cancer Network (NCCN), EGFR-TKIs 
are recommended as the first-line therapy for sensitive 
EGFR-mutated patients (102). However, PFS was found 
to vary across these patients from shorter than 1 month to 
several years, due to primary or secondary drug resistance 
(103,104). Even though biopsy is informative, individual 
assessment of the potential progression to EGFR-TKIs 
therapy remains challenging. In some cases, especially 
those in which the patient is too weak or the location of 
the tumor too unsuitable for biopsy, noninvasive diagnostic 
images provide a new approach for the risk stratification of 
drug response. In 2018, our group published a multicenter 
retrospective data study of what was then the first CT 
radiomics model to predict PFS survival in stage IV EGFR-
mutant NSCLC patients with EGFR-TKI therapy. In total, 
117 patients treated with EGFR-TKI were used as the 
training cohort, and 1,032 radiomic features were extracted 
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from the pretreatment CT images. Twelve key features 
were screened out to develop the prediction model, and 
the performance was identified by the other three cohorts 
across three separate institutions. The AUC of this model 
was nearly 0.72 for the 10-month PFS prediction and 0.80 
for the 1-year PFS prediction. The proposed prognostic 
strategy may be achievable via CT radiomics prediction, 
enabling us to conduct precise pretherapy management for 
EGFR-mutated NSCLC patients (105). A similar study was 
conducted to explore a CT-based radiomics signature as a 
prognostic factor in ALK-positive NSCLC with crizotinib 
therapy. In this research, 481 quantitative 3D features 
were derived from 63 stage IV cases. A radiomics model 
containing 3 features showed an effective value for the PFS 
prediction, with an AUC of 0.824 (106).

Immunotherapy has substantially changed the therapeutic 
strategies in lung cancer. Unfortunately, only a small 
portion of patients respond to treatment (107). There is 
an urgent need to develop methods to identify patients 
who are most likely to benefit from immunotherapy. 
The expressions of programmed cell death protein  
(PD)-1 and anti-programmed cell death ligand 1 (PD-L1) 
were at first encouraging, but later found to yield mixed 
results (108). In one study, CT-based radiomic features  
were extracted from 135 patients with advanced solid malignant 
tumors for training, 30 of whom had lung cancer. First, the 
tumor infiltration of CD8 cells was assessed by combining 
contrast-enhanced CT images and RNA-sequencing genomic 
data. A radiomics signature including 8 variables demonstrated 
an AUC of 0.67 for CD8 cell infiltration in the The Cancer 
Genome Atlas dataset for validation. 

Sun et al.  reported that in patients treated with 
immunotherapy, a higher baseline radiomics score was 
observed in cases with an objective response at 3 months 
and 6 months, with a much better OS. The results showed 
that radiomics could allow for the evaluation of tumor 
immune infiltration and thus be a novel predictor for the 
efficacy of immunotherapy (109). Another 203 patients 
with advanced melanoma and NSCLC undergoing anti-
PD1 therapy were also analyzed, and 1,055 contrast-
enhanced CT images for primary and metastatic lesions in 
pretreatment were collected. Quantitative features were 
used to distinguish between responding and nonresponding 
cases. The biomarker reached a significant performance on 
NSCLC lesions (AUC: up to 0.83), resulting in a 1-year 
survival difference of 24% (110). Furthermore, changes 
(“delta”) in the CT radiomic texture (DelRADx) before and 
after 2–3 cycles of immunotherapy were acquired from 139 

NSCLC patients. A cluster of 8 DelRADx features was used 
to predict the immunotherapy response, yielding AUCs 
of 0.85 and 0.81 in 2 validation cohorts. Delta-radiomics 
risk-score might be another indicator for immunotherapy 
response (111). 

Therefore, the workflow and clinical application of 
radiomics in lung cancer management were summarized in 
Figure 3.

Limitations and future prospects

Despite adding important information for clinical decisions, 
several limitations of radiomics should be also be addressed. 
The first major limitation is the lack of imaging criteria, 
which is the initial step of the radiomics workflow. As 
mentioned above, differences in scanning parameters, 
including dose administration, reconstruction kernels, and 
slice thicknesses, produce acquisition variability. Second, 
lesion segmentation has not been standardized to prevent 
the diversity in picking up features. For example, manual 
segmentation usually leads to variations in lesion boundary 
due to interobserver variability, while the process of 
automatic/semiautomatic segmentation is also not uniform. 
Third, the methods for feature selection are different across 
studies, making it exceedingly difficult for biomarkers to 
be reproduced. Finally, studies of radiomics have been 
retrospective in nature, and, although many correlations 
have been demonstrated, causality cannot be definitively 
confirmed. 

These challenges notwithstanding, radiomics has 
enriched the research methods for exploring the biological 
behaviors of tumors. It is hoped the that the above-
mentioned limitations will be gradually resolved in the 
future, with each of the workflow steps likely attaining 
standardization. Radiomics metrics, which are the least 
vulnerable to acquisition or reconstruction method 
flaws, might be explored in the future in more extensive 
applications. Moreover, the rapid progress of artificial 
intelligence will provide more tools for radiomics analysis, 
and facilitate its implementation, while the development 
of human-machine-assisted interpretation will make 
radiomics analysis more flexible and improve the accuracy 
of its results. Additionally, what are concerned is the role 
of radiologists and clinicians allied with radiomics. The 
work of radiologists and clinicians is not only to read 
and interpret images, but also to make comprehensive 
analysis and judgment in combination with other clinical 
information of patients. Many technical and legal problems 
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in radiomics and artificial intelligence have not been 
solved yet. Therefore, it is unlikely that radiomics replace 
radiologists and clinicians in the near future. However, the 
development and application of radiomics will not only 
greatly improves the diagnosis level of primary medical 
institutions, but also greatly reduces the working pressure 
of doctors. 

Conclusions

Here, we have reviewed the workflow and clinical utility 
of radiomics in lung cancer management, and remarked 
upon the potential future trends of this modality. A 
series of studies have shown the added value of applying 
radiomics analysis in the treatment of lung cancer. The 
implementation of radiomics is both feasible and invaluable, 
and has aided clinicians in ascertaining the nature of a 
disease with greater precision. However, it should be noted 
that radiomics in its current state cannot completely replace 
the work of therapists or tissue examination. More efforts 
are needed to overcome the limitations identified above in 
order to facilitate the widespread application of radiomics in 
the reasonably near future.
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