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Surface-based morphometry study of the brain in benign 
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Background: The study aimed to explore cortical morphology in benign childhood epilepsy with 
centrotemporal spikes (BECTS) and the relationship between cortical characteristics and age of onset and 
intelligence quotient (IQ).
Methods: Cortical morphometry with surface-based morphometry (SBM) was used to compare changes in 
cortical thickness, gyrification, sulcal depth, and fractal dimension of the cerebral cortex between 25 BECTS 
patients and 20 healthy controls (HCs) with two-sample t-tests [P<0.05, family-wise error (FWE) corrected]. 
Relationships between abnormal cortical morphological changes and age of onset and IQ, which included 
verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), and full-scale intelligence 
quotient (FIQ) were investigated with Spearman correlation analysis (P<0.05, uncorrected).
Results: The BECTS patients showed extensive cortical thinning predominantly in bilateral frontal, 
temporal regions, and limbic system. Cortical gyrification increased in the left hemisphere and partial right 
hemisphere, and the decreased cortical gyrification was only in the left hemisphere. The increased sulcal 
depth was the left fusiform gyrus. There are no statistically significant differences in the fractal dimension. 
Correlation analysis revealed the negative correlation between age of onset and cortical thickness in the right 
precentral gyrus. It also revealed the negative correlation between the age of onset and cortical gyrification 
in the left inferior parietal gyrus. Also, there was negative correlation between VIQ and cortical gyrification 
in the left supramarginal gyrus of BECTS patients.
Conclusions: This study reveals aberrant cortical thickness, cortical gyrification, and sulcal depth 
of BECTS in areas related to cognitive functions including language, attention and memory, and the 
correlation between some brain regions and VIQ and age of onset, providing a potential marker of early 
neurodevelopmental disturbance and cognitive dysfunction in BECTS.
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Introduction

Benign childhood epilepsy with centrotemporal spikes 
(BECTS), also called Rolandic epilepsy, or self-limited 
epilepsy with centrotemporal spikes according to 2017 
International League Against Epilepsy (ILAE) seizure 
classification (1). BECTS accounts for 8–25% of epilepsy 
in children (1,2), most of the age of onset is 3–13 years, and 
the peak period (3) is 8–10 years. During nocturnal sleep, 
seizures characterize it with centrotemporal spikes in the 
electroencephalogram (2,4). 

Although BECTS typically displays an excellent 
prognosis with remission of seizures before adolescence, 
some prevenient  neuroimaging s tudies  revea led 
abnormalities of brain structure and cognitive function in 
patients with BECTS, which affect the academic and future 
career development of children on some degree (5-9). 
The earlier studies mainly reported the abnormal cortical 
thickness and volume (5,6,10-13). Furthermore, considering 
the influence of antiepileptic drugs and the range of 
patients’ age, the results require further validation.

Surface-based morphometry (SBM) offers more 
information for brain structural analysis, which might not 
be captured by voxel-based morphometry (VBM). Cortical 
characteristics acquired not only cortical thickness but also 
gyrification, sulcal depth, and fractal dimension associated 
with cognitive dysfunction and pathological changes in 
multiple neuropsychiatric disorders (14-17).

Therefore, we investigated the cortical morphological 
changes (cortical thickness, gyrification, sulcal depth, 
and fractal dimension) of drug-naive BECTS patients 
with SBM in this study. Also, we analyzed the correlation 
between abnormal brain regions and age of onset and 
intelligence quotient (IQ) to explore the possible influence 
of morphological changes on cognition. We present the 
following article in accordance with the MDAR reporting 
checklist (available at http://dx.doi.org/10.21037/atm-20-
5845).

Methods

Participants

Twenty-five drug-naive BECTS patients (age: 9.08± 
1.55 years, range: 7–13 years, 12 males) and twenty healthy 
volunteers (age: 9.50±1.53 years, range: 7–11 years,  
14 males) were recruited from the Affiliated Hospital of 
Zunyi Medical University. Inclusion criteria for BECTS 
patients: (I) BECTS were diagnosed according to the 2010 

version diagnostic criteria of the ILAE by intermediate 
grade pediatricians or higher; (II) not receiving antiepileptic 
drug treatment before the MRI study; (III) normal routine 
brain MRI examination; (IV) aged 6–16 years. Exclusion 
criteria are a history of drug dependence and neurological 
or psychiatric disorders other than BECTS. Inclusion 
criteria for the healthy controls (HCs): (I) aged 6–16 years 
of healthy volunteers; (II) no history of neurological or 
psychiatric disorders. All BECTS patients completed a 
neuropsychological assessment. Ages of seizure onset were 
collected retrospectively from patients’ medical files. 

The Ethical Committee approved the study of Affiliated 
Hospital of Zunyi Medical University, and all the informed 
written consents were obtained from the guardian of 
participants. All procedures performed in this study 
involving human participants were in accordance with the 
Declaration of Helsinki (as revised in 2013).

MRI acquisition

All participants underwent MRI examinations (3.0T HDxt, 
GE Healthcare, Milwaukee, WI) after neuropsychological 
assessment, including a 3D-T1 acquisition (repetition time 
=7.8 ms, echo time =3.0 ms, inversion time =450 ms, flip 
angle =15°, the field of view =256 mm ×256 mm, matrix 
=256×256, slice thickness =1 mm, slices =256, scan time 
=208 seconds). 

Neuropsychological assessment

An experienced neuropsychologist  conducted the 
neuropsychological assessment with the Wechsler 
Intelligence Scale (for Children-Chinese Revised) on the 
same day of MRI scan, which includes verbal intelligence 
quotient (VIQ), performance intelligence quotient (PIQ) 
and full-scale intelligence quotient (FIQ). 

Data processing

All 3D-T1WI data of participants were processed with the 
Computational Anatomy Toolbox (CAT12) (http://dbm.
neuro.uni-jena.de/cat/) within SPM12 with MATLAB 
R2015a (https://ww2.mathworks.cn/). The procedure 
includes image format conversion, spatial normalization, 
brain tissue segmentation, image modulation, and 
smoothing. The extracted cortical thickness and sulcal 
depth maps were smoothed with a 15 mm full-width at 
half maximum (FWHM) of Gaussian smoothing kernel, 
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gyrification, and fractal dimension maps were smoothed 
with a 25 mm FWHM of Gaussian smoothing kernel.

Statistical analysis

Two-sample t-tests were performed to assess the differences 
in age, education, and a chi-square test was used to assess 
the gender composition between the BECTS and HCs 
using SPSS (version 18.0; SPSS Inc., Chicago, IL). P<0.05 
was considered statistically significant. 

Two-sample t-tests were carried out to compare the 
abnormal brain regions of cortical thickness, gyrification, 
sulcal depth, and fractal dimension between the BECTS 
patients and HCs with age and gender as covariates. Family-
wise error (FWE) was chosen as a correction for multiple 
comparisons, cluster significance of a P<0.05, cluster size 
>30.

Spearman correlation analyses were used to demonstrate 
the relationships between cortical characteristics of 
abnormal brain regions and IQ, which included VIQ, PIQ, 
and FIQ. P<0.05 was considered statistically significant.

Results

Demographics and clinical characteristics

There were no significant differences in age (P=0.37), 
gender (P=0.13) composition, or years in education (P=0.18) 
between the BECTS patients and HCs (Table 1).

Cortical thickness

Compared with HCs, the BECTS patients showed 
extensive cortical thinning predominantly in bilateral 
frontal, temporal regions, and limbic system. These 
included the superior frontal gyrus, rostral middle frontal 
gyrus, pars orbitalis gyrus, medial orbitofrontal gyrus, 
precentral gyrus, fusiform gyrus, middle temporal gyrus in 
the bilateral hemisphere, parahippocampal gyrus, temporal 
pole, pars opercularis gyrus, caudal middle frontal gyrus, 
caudal anterior cingulate gyrus, lateral occipital gyrus and 
insula in the left hemisphere. Also, it included the superior 
temporal gyrus, paracentral lobule, inferior parietal gyrus, 
posterior cingulate gyrus, and inferior temporal gyrus in the 
right hemisphere (P<0.05, FWE corrected, Figure 1). 

Cortical gyrification

The BECTS patients showed significantly increased 
cortical gyrification in the left hemisphere and partial right 
hemisphere, including superior frontal gyrus, frontal pole, 
lingual gyrus, lateral occipital gyrus, isthmus cingulate 
gyrus, posterior cingulate gyrus, postcentral gyrus, inferior 
parietal gyrus, supramarginal gyrus, and pars opercularis 
gyrus in the left hemisphere, inferior temporal gyrus, 
middle temporal gyrus, pars orbitalis gyrus, superior 
frontal gyrus in the right hemisphere (P<0.05, FWE 
corrected, Figure 2). The decreased cortical gyrification 
was only in the left hemisphere, including the insula, 

Table 1 Demographic and clinical characteristics of the BECTS patients and healthy controls

Characteristic BECTS (n=25) HCs (n=20) P value

Gender (M/F) 12/13 14/6 0.13

Age (years) 9.08±1.55 (range: 7–13) 9.50±1.53 (range: 7–11) 0.37

Handedness 25R 20R –

Education (years) 3.00±1.35 (range: 1–6) 3.60±1.60 (range:1–6) 0.18

Duration (months) 8.20±16.05 (range: 1–72) – –

Age of onset (years) 8.56±1.82 (range: 5–13) – –

VIQ 101.84±12.30 (range: 81–124) – –

PIQ 104.32±13.07 (range: 61–125) – –

FIQ 103.28±11.17 (range: 76–122) – –

BECTS, benign childhood epilepsy with centrotemporal spikes; HCs, healthy controls; M, male; F, female; R, right; VIQ, verbal intelligence 
quotient; PIQ, performance intelligence quotient; FIQ, full-scale intelligence quotient.
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Figure 1 The difference of cortical thickness between the BECTS patients and HCs (P<0.05, FWE corrected). Representative views 
are shown with a color-coded depiction of abnormalities. Regions of reduced cortical thickness are shown in blue to yellow (color-coded 
according to t value). BECTS, benign childhood epilepsy with centrotemporal spikes; HCs, healthy controls; FEW, family-wise error.

Figure 2 The difference of cortical gyrification between the BECTS patients and HCs (P<0.05, FWE corrected). Representative views are 
shown with a color-coded depiction of abnormalities. Regions of increased cortical gyrification are shown in blue to yellow (color-coded 
according to t value). BECTS, benign childhood epilepsy with centrotemporal spikes; HCs, healthy controls; FEW, family-wise error.
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pars triangularis gyrus, pars opercularis gyrus, inferior 
temporal gyrus, lateral occipital gyrus, superior temporal 
gyrus, middle temporal gyrus and precentral gyrus (P<0.05, 
FWE corrected, Figure 3).

Sulcal depth

We found significantly increased sulcal depth in the left 

fusiform gyrus as the BECTS patients compared to HCs 
(P<0.05, FWE corrected, Figure 4).

Fractal dimension

There are no statistically significant differences in fractal 
dimension between the BECTS patients and HCs (P<0.05, 
FWE corrected).
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Figure 3 The difference of cortical gyrification between the BECTS patients and HCs (P<0.05, FWE corrected). Representative views are 
shown with a color-coded depiction of abnormalities. Regions of decreased cortical gyrification are shown in blue to yellow (color-coded 
according to t value). BECTS, benign childhood epilepsy with centrotemporal spikes; HCs, healthy controls; FEW, family-wise error.
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Correlation

Correlation analysis revealed the negative correlation 
between age of onset and cortical thickness in the right 
precentral gyrus (rs=−0.495, P=0.011, Figure 5), age of onset 
and cortical gyrification in the left inferior parietal gyrus 
(rs=−0.523, P=0.007, Figure 6), VIQ and cortical gyrification 
in the left supramarginal gyrus of BECTS patients 
(rs=−0.455, P=0.022, Figure 7).

Discussion

In the current study, we investigated differences in cortical 
thickness, gyrification, sulcal depth, and fractal dimension 
of drug-naive BECTS patients compared to HCs with 
SBM. We found aberrant morphology in thickness, 
gyrification, and sulcal depth, but the fractal dimension 
showed no difference. Specifically, the BECTS patients 
showed extensive cortical thinning predominantly in 
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Figure 4 The difference of sulcal depth between the BECTS patients and HCs (P<0.05, FWE corrected). The representative view is shown 
with a color-coded depiction of abnormalities. Regions of increased sulcal depth are shown in blue within the circle (color-coded according 
to t value). BECTS, benign childhood epilepsy with centrotemporal spikes; HCs, healthy controls; FEW, family-wise error.
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Figure 5 Scatter plots of the mean cortical thickness of the clusters 
in the right precentral gyrus, which were negatively correlated with 
age of onset in the BECTS patients. BECTS, benign childhood 
epilepsy with centrotemporal spikes.

Figure 6 Scatter plots of the mean cortical gyrification of the 
clusters in the left inferior parietal gyrus, which were negatively 
correlated with age of onset in the BECTS patients. BECTS, 
benign childhood epilepsy with centrotemporal spikes.

Figure 7 Scatter plots of the mean cortical gyrification of the 
clusters in the left supramarginal gyrus negatively correlated with 
VIQ in the BECTS patients. VIQ, verbal intelligence quotient; 
BECTS, benign childhood epilepsy with centrotemporal spikes.

bilateral frontal, temporal regions and limbic system, 
increased cortical gyrification in the left hemisphere and 
partial right hemisphere, decreased cortical gyrification was 
only in the left hemisphere and increased sulcal depth in the 
left fusiform gyrus. Also, we observed negative correlations 
between cortical thickness/cortical gyrification and age of 
onset, cortical gyrification and VIQ of BECTS patients.

Previous studies have shown abnormal cortical 
thickness in different brain regions of BECTS patients, 
in which thicker cortex is predominant, and only a few 
studies have found cortical thinning (5,6,11-13). We also 
found BECTS patients with extensive cortical thinning 
in bilateral frontal, temporal regions, and limbic system. 
Evidence suggests that the development of the human 
cortex is dynamic and expansion-renormalization (18,19). 
Learning induces cortical thickening in a brief time. Then 
inefficient connections were pruned to stabilize neural 
circuitry, including reducing dendritic arborizations and 
eliminating axonal projections selectively, etc., which lead 
to cortical thinning (19-21). Added studies showed that 
cortical development deviates from the normal trajectory in 
BECTS. For example, Overvliet et al. (6) revealed cerebral 
cortical thinning in the advance of BECTS patients. Garcia-
Ramos et al. (12) observed different brain regions of cortical 
thickening and thinning during the two years after the 
onset of BECTS, while the HCs showed extensive cortical 
thinning in bilateral cerebral hemispheres. In a word, 
cortical change is abnormal in BECTS patients.

As shown in some studies, BECTS patients existed 
cortical thickening in some brain regions (5,11). Other 
studies observed the increased volume of bilateral putamen 
in BECTS patients and the negative correlation between 
the age of epilepsy onset and volume in bilateral putamen 
(5,10,12,22). The more significant the area the putamen 
accompanies, the better executive function was observed 
and vice versa (22). It is considered that high performance 
is an adaptive change, which is beneficial to survival. 
Thus, cortical thickening of BECTS patients was due to 
epileptiform discharge caused compensatory hyperplasia in 
the discharge regions or adjacent areas. However, we only 
found extensive cortical thinning and no significant area of 
thickening in BECTS patients that may be associated with 
short duration time or distinct stages of brain development.

Also, we found increased cortical gyrification in the left 
hemisphere and partial right hemisphere and decreased 
cortical gyrification in the left hemisphere. Further, we 
found the BECTS patients’ neuropsychological scores 
were under or near normal, which was observed in some 
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studies (6,10,12,23). As we all know, BECTS has language 
impairment and has indeed been recognized to belong 
to the epilepsy aphasia spectrum (24,25). We observed a 
negative correlation between VIQ and cortical gyrification 
in the left supramarginal gyrus of BECTS patients. 
Therefore, the reason we found the change of cortical 
gyrification mainly located in the left hemisphere that same 
as the study in Jiang et al. (23) is probably the laterality of 
cognitive functions or regions with language dominance.

In the present and almost all previous studies about 
BECTS showed abnormalities of cortical thickness and 
gyrification in different brain regions that the Rolandic 
region was dominated but not confined to it (5,6,11-13,23). 
Brain network abnormalities of gray matter and white 
matter exceed the Rolandic region that even extends from 
the ipsilateral hemisphere to the contralateral hemisphere 
may be explained cortical abnormalities beyond the seizure 
onset zone, which probably means the propagation of 
epileptiform discharges through networks (26,27). In 
this study, we reported increased cortical gyrification in 
regions that avoided left temporal lobes and partial frontal 
lobes, but these regions were Rolandic and peripheral 
components that showed decreased cortical gyrification. 
Furthermore, our results showed that cortical gyrification 
was negatively correlated with intelligence, which is 
opposite to earlier studies in healthy subjects (19,28,29). 
The negative correlation between cortical gyrification and 
executive function was observed in schizophrenia (30). We 
infer pathology that leads to corticocortical connectivity 
decreased, interrupted, and then restored. Epileptic 
discharge in the Rolandic region may cause severe damage 
in this area and peripheral regions so that they do not 
restore.

We found abnormal cortical thickness and gyrification in 
a language center, including middle frontal gyrus, inferior 
frontal gyrus, middle temporal gyrus, and inferior temporal 
gyrus, which may be responsible for apparent language 
dysfunction in BECTS patients. It is well-known that the 
language center is not independent but interconnected 
with other brain regions. Previous researches also revealed 
reduced connectivity between the Rolandic region and 
Broca’s area associated with poor language in BECTS 
patients, which means an impaired interplay between 
motor and language networks as well as the correlation 
of epileptiform activity and language impairment (31,32). 
Another study found BECTS patients with abnormal 
connectivity from Broca’s area to the prefrontal cortex, 
lingual gyrus, hippocampus, etc. by granger causality 

analysis (33). Considering the above studies, we found 
widespread cortical thinning and abnormal gyrification 
not limited to language centers that may handle language 
dysfunction in BECTS patients.  

What should not be neglected is we found abnormal 
cortical thickness and gyrification in the limbic system, 
especially in the cingulate gyrus. The limbic system plays 
a vital role in memory, behavior, and emotion, etc. (34). 
Attention deficit hyperactivity disorder (ADHD)-related 
symptoms interpreted by abnormal default mode network 
(DMN) was accepted, and posterior cingulate gyrus served 
as a crucial region in DMN (35,36). The higher incidence 
of ADHD in BECTS patients may be associated with this 
structural change, although BECTS patients were not 
suspected of ADHD by pediatricians in this study (5,37,38). 
Further, posterior cingulate gyrus involved in multiple 
networks, including the executive control network, memory 
network, etc., a critical member in the “rich club” to 
facilitate communication in global information integration 
(39,40). Thus, morphological abnormalities in the posterior 
cingulate gyrus may play a role in the cognitive dysfunction 
of BECTS patients, particularly in attention, memory, and 
executive function. 

Increased sulcal depth in the left fusiform gyrus was 
found in BECTS patients. The change in sulcal depth 
resulting from cortico-cortical connections was supposed 
in previous studies, which can reflect cortical folding 
(41,42). However, there is no significant cortical gyrification 
reported in the left fusiform gyrus; the change of sulcal 
depth serves as a supplementary method. The decreased 
sulcal depth was observed in schizophrenia and Alzheimer’s 
disease, which decreased with disease progression (41,42). 
The decreased sulcal depth was observed with age in 
healthy adults (43). Therefore, the increased sulcal depth 
may not be the wrong way. The fractal dimension was 
used to estimate the complexity of the brain, which reflects 
neurodevelopment (44). Abnormal fractal dimension was 
observed in neuropsychiatric diseases, including pre-
manifested Huntington’s disease, frontotemporal dementia, 
etc. (45,46). In our study, there are no statistically significant 
differences in the fractal dimension that might be due to 
less prominence of neural changes or small sample sizes.

We found cortical thickness in the right precentral gyrus 
and cortical gyrification in the left inferior parietal gyrus 
were significantly negatively correlated with the age of 
onset. Also, it was determined that cortical gyrification in 
the left supramarginal gyrus was significantly negatively 
correlated with VIQ in BECTS patients. The change of 
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cortical thickness is dynamic, and intelligence is more related 
to the magnitude over time of cortical thickness changes 
during development than to cortical thickness per se (47). 
However, our results showed that cortical gyrification was 
correlated with intelligence, which was in line with earlier 
studies (19,28,29). For language function, studies presented 
a younger age of epilepsy onset with better prognosis 
through recombination, but it is also possible to lead severe 
damage due to early epileptic discharge, especially in the 
critical period of language formation (25,48,49). There is 
no relationship between VIQ and the age of onset in our 
study. Therefore, it is unclear whether younger or older 
age of onset will be suitable for the development of BECTS 
patients.

There are several limitations to this study. First, although 
neuropsychological assessment was employed in BECTS 
patients, the specific neuropsychological examination on 
the cognitive function was absent, including language, 
attention, and memory. Then, healthy controls lacked a 
neuropsychological assessment, but we propose that these 
individuals had better profiles due to this. Finally, as a cross-
sectional study with small subject numbers, large sample 
size and longitudinal follow-up are necessary to explain 
dynamic changes of cortical morphology and the causality 
with cognitive function.

Conclusions

This study reveals aberrant cortical thickness, cortical 
gyrification, and sulcal depth of BECTS in areas related 
to cognitive functions including language, attention and 
memory, and the correlation between some brain regions 
and VIQ and age of onset, which provides a new biomarker 
for the study of cognitive function in BECTS.
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