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Background: Serum samples of patients with hemorrhagic cerebral infarction (HCI), cerebral infarction 
(CI), and healthy controls (HCs) were used to screen statistically different protein peaks as potential 
biomarkers and to establish a decision tree classification model. 
Methods: The serum samples from clinically confirmed patients with HCI and CI from November 2018 
to October 2019 were collected, along with those of HCs who visited our hospital during the same period. 
Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with 
CM10 ProteinChip was used to analyze the differences in serum protein expression profiles of 30 patients 
with HCI, 32 patients with CI, and 31 HCs in the training group, and a decision tree classification model 
was established. At the same time, the blind test group (18 patients with HCI, 21 patients with CI, and 17 
HCs) was tested by a blind method.
Results: Model 1 was successfully established by software analysis with a mass-to-charge ratio of 3,495.2, 
8,941.0, and 15,890.4 as a differential protein peak. The sensitivity, specificity, and accuracy of model 1 in 
distinguishing HCI from HCs were 86.8%, 87.1%, and 86.9%, respectively. After verification of model 1 by 
the blind test group, the results showed that the sensitivity, specificity, and accuracy were 88.9%, 94.1%, and 
91.4%, respectively. The sensitivity, specificity, and accuracy of model 2 with a mass-to-charge ratio of 2,941.3 
as a differential protein peak were 86.7%, 75.0%, and 80.6%, respectively. After verification of model 2 by 
the blind test group, the results showed that the sensitivity, specificity, and accuracy were 83.3%, 90.4%, and 
87.2%, respectively. 
Conclusions: Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-
TOF-MS) and CM10 ProteinChip can be used to screen serum protein markers in patients with HCI. Mass-
to-charge ratio of 3,495.2, 8,941.0, 15,890.4, and 2,941.3 may be potential protein biomarkers of HCI and 
used to distinguish HCI patients from HCs and CI.

Keywords: Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS); 

hemorrhagic cerebral infarction (HCI); protein biomarkers

Submitted Aug 18, 2020. Accepted for publication Sep 09, 2020.

doi: 10.21037/atm-20-6071

View this article at: http://dx.doi.org/10.21037/atm-20-6071

1186

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-6071


Han et al. Serum protein biomarkers in hemorrhagic cerebral infarction

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(18):1186 | http://dx.doi.org/10.21037/atm-20-6071

Page 2 of 11

Introduction

Cerebrovascular disease is a major disease that endangers 
the health and life of middle-aged and elderly people 
in China. It has become the primary cause of death and 
disability in China, with cerebral infarction (CI) accounting 
for the majority cases. CI is also known as ischemic 
stroke resulting from acute thrombosis or other effects of 
thrombosis metastasis leading to local cerebral vascular 
occlusion. Hemorrhagic cerebral infarction (HCI) refers 
to the hemorrhage in the infarct area that occurs after CI. 
Compared with CI, HCI has a lower diagnostic rate and a 
higher mortality rate (1).

Currently, HCI is still diagnosed by imaging methods 
such as computed tomography (CT) and magnetic 
resonance imaging (MRI) (2,3). However, CT and MRI 
are invasive examinations that produce radiation which 
adversely affects cells in the brain tissue during the 
diagnosis of CI. Furthermore, CT and MRI equipment 
is expensive and not available in all hospitals, while the 
inspection appointment cycle is long. Therefore, finding a 
safe, effective, and specific method for the diagnosis of early 
HCI is urgently needed in clinical practice.

In recent years, mass spectrometry has been widely used 
in clinical disease research. In particular, the applications of 
the surface-enhanced laser desorption/ionization time-of-
flight mass spectrometry (SELDI-TOF-MS) has provided 
a new research platform for the search of disease protein 
biomarkers.

The SELDI-TOF-MS technology consists of three parts: 
proteinchip arrays, a time-of-flight mass spectrometer, and 
protein biological system analysis software. Proteinchips 
come in chemical and biological types, according to the 
different properties of the material located on the surface 
of the chip. The chemical proteinchip arrays incorporate 
hydrophobic exchanger (H50), weak cationic exchanger 
(CM10, WCX2), anionic exchanger (SAX2), metal ion 
exchanger (IMAC30), or hydrophilic exchanger (NP20) 
spots which are best suited for protein expression profiling 
studies. The biological proteinchip arrays have pre-activated 
‘‘biological surfaces’’ designed for coupling biomolecules 
to applications in antibody–antigen assays, receptor–ligand 
interaction studies, and DNA-protein binding experiments.

The SELDI chip has 8–24 sampling spots. When a 
sample is added to the chip, some proteins in the samples 
bind to the modified surface, while others are washed 
off. Then, an energy-absorbing molecule is applied to the 
surface for crystallization with the sample peptides. In 

the binding and washing off steps, the surface-bound 
proteins are left for analyses. Samples spotted on an 
SELDI chip surface are typically analyzed with time-of-
flight mass spectrometry (TOF-MS). The proteins that 
are bound to the chip undergo desorption and ionization 
under a certain intensity of laser bombardment. These 
ions are then accelerated through an electric field and 
proceed down into the flight tube. Because these ions have 
different mass-to-charge ratios, they are not in flight for 
the same amount of time in a vacuum tube. The detector 
then measures the ions as they reach the end of the tube. 
The measured proteins appear as a series of peaks, which 
are plotted as mass spectrograms (4).

SELDI-TOF-MS technology has been widely used in the 
research of many diseases, including cancers (5), infectious 
diseases (6), and neurological diseases (7). For instance, 
Whelan et al. reviewed the diagnosis and detection of 
various cancers by SELDI-TOF-MS technology and found 
that a high sensitivity and specificity could be achieved 
in distinguishing between cancer patients and controls in  
17 cancers. SELDI-TOF-MS also has demonstrated ability 
to predict the chemosensitivity in cancers therapy by testing 
plasma from pre- and post-treatment patients (8).

The combination of SELDI-TOF-MS and proteinchip 
technology can analyze a variety of complex biological 
samples, such as serum and urine. Additionally, samples 
can be applied in minuscule amounts, and only 0.5 to  
5 microliters are required for each analysis. The detectable 
molecular weight range is wide, and is particularly suitable 
for proteins with a molecular weight below 20 kDa. 
Therefore, it is also suitable for the detection of a low 
abundance of protein or polypeptide. The analysis of one 
sample can be done in dozens of minutes, and process far 
more information than two-dimensional electrophoresis. 
Finally, the analysis software can quickly detect differential 
proteins with varied disease-specific changes, which can 
be used to find one or a group of biomarkers related to 
the disease and provide the best combination index for the 
diagnosis of the disease (8). However, a major disadvantage 
is that the sequence of proteins/peptides concerned cannot 
be given by SELDI-TOF-MS (9).

In addition to this, SELDI-TOF-MS is also fast and 
high-throughput-capable, and can simultaneously detect a 
variety of proteins, which is optimal for screening disease 
biomarkers. Previous studies on markers of proteins related 
to HCI have mainly focused on single proteins. However, 
few studies have attempted to screen serum protein markers 
for HCI by using mass spectral techniques of proteomic 
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methods. Therefore, the purpose of this study was to 
analyze the serum protein profile of HCI and controls 
by using SELDI-TOF-MS technology, so as to screen 
potential serum protein biomarkers for patients with HCI. 
We present the following article in accordance with the 
STARD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-6071).

Methods

Patient characteristics

All procedures performed in this study involving human 
participants were performed in accordance with the 
Declaration of Helsinki (as revised in 2013). The research 
scheme was approved by the ethics committee of Beijing 
Xiaotangshan Hospital. All subjects signed informed 
consent before the study. Data from 48 patients with HCI, 
53 patients with CI, and 48 healthy controls (HCs) were 
collected in this study (Table 1). The collection time was from 
November 2018 to October 2019. All cases were diagnosed 
according to their clinical symptoms, physical examination, 
and head CT or MRI scan, which were in accordance with 
the “Diagnostic criteria of cerebrovascular diseases in China 
(version 2019)” (10). CI cases caused by tumor, brain trauma, 
cardiac disease, and blood disease were excluded. The HCs 
group consisted of individuals who visited our hospital for 
physical examination during the collection period outlined 
above. Those with tumor, autoimmune disease, genetic 
disease, blood disease, liver and kidney disease, pregnancy, or 
cerebrovascular disease history were excluded.

Serum sample collection and preservation

All samples were collected by drawing fasting blood in the 
morning into a 5 mL BD Vacutainer (Becton Dickinson 
Vacutainer Systems, Franklin Lakes, NJ, USA) without 
anticoagulant. The samples were left to clot at room 
temperature for 1 h, centrifuged at 3,500 rpm for 10 min, 
and stored at –80 ℃ for further analysis.

Instruments and reagents

A SELDI-TOF-MS spectrometer  (PBSII-c )  was 
purchased from Ciphergen Biosystems company (Austin, 
TX, USA), and CM10 chips were purchased from Bio-
Rad Laboratories, Inc. (Hercules, CA, USA). Urea, 3- 
[3-(cholamide propyl) dimethylamino] propyl sulfonate, 
dithiothreitol, sodium acetate, water for high-performance 
liquid chromatography (HPLC), and sinapinic acid were 
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Sample pretreatment

The serum samples were thawed and centrifuged at 4 ℃ for 
10,000 rpm for 5min. The supernatant was removed, and  
3 μL of each sample was mixed with 6 μL 0.5% U9 buffer (9M 
urea, 0.2% 3- [3- (cholamide propyl) dimethylamino] propyl 
sulfonate, 0.1% dithiothreitol). Samples were then incubated 
for 30 min at 4 ℃ on a platform shaker set at 600 rpm. Next, 
108 μL of binding buffer (50 mM sodiumacetate pH4.0) was 
added to the above-mentioned 9 μL sample. The CM10 chip 
was removed and loaded into the bioprocessor. Then, 200 μL 
of sodium acetate buffer (50 mM, pH4.0) was added to each 
well and incubated for 5 min at 4 ℃ and shaken at 600 rpm. 
The liquid was removed and retained, and the procedure 
was repeated. After removing the buffer, 200 μL of sodium 
acetate buffer was added into each well and incubated for  
5 min at 4℃ and shaken at 600 rpm. Samples retained from 
different patients were added to separate wells (100 μL/well), 
incubated for 1 h at 4 ℃, and shaken at 600 rpm. They were 
then washed twice with 200 μL of sodium acetate buffer 
for 5 min at 4 ℃, shaken at 600 rpm, and rinsed twice with  
200 μL of HPLC water. Prior to SELDI-TOF-MS, the chip 
was removed from the bioprocessor, and 0.5 μL of a saturated 
solution of sinapinic acid in 50% acetonitrile and 0.5% 
trifluoroacetic acid was added to each chip array and air dried 
at room temperature.

SELDI-TOF-MS analysis

The prepared CM10 chips were placed on Protein 

Table 1 Basic characteristics of subjects (mean ± standard deviation)

Sample type Sample, n Male/female Age range, years Mean age ± SD Training set Blind test set

HCI 48 32/16 29–97 65.00±15.81 30 18

HCs 48 31/17 63–87 70.00±6.22 31 17

CI 53 29/24 43–95 70.19±12.76 32 21
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Biological System II-c mass spectrometer reader (PBSII-c; 
Ciphergen Biosystems), the automatic baseline correction 
was applied, and the peak of molecular weight between  
1 and 50 kDa was automatically detected. Data were 
collected by averaging 80 laser shots collected on each spot 
at a laser intensity of 175 and a detector sensitivity of 8. The 
quality range was from 1,000 to 50,000 mass-to-charge ratio 
(m/z) and the highest m/z to 50,000. External calibration of 
the instrument used the all-in-one peptide molecular mass 
standards and NP20 chip (Ciphergen Biosystems).

Data processing

Ciphergen ProteinChip 3.2.1, Biomarker Wizard 3.1.0, and 
BPS 5.0 software are all available data analysis support software 
provided by Ciphergen Biosystems and were used in this study. 
Ciphergen ProteinChip 3.2.1software was used to analyze 
the protein peaks with a m/z between 1,000 and 50,000. To 
avoid interference from polymers, energy molecules, and other 
possible chemical contaminants, protein peaks with an m/z 
between 0 and 1,000 were excluded. Protein peak detection 
involved baseline correction, quality accuracy calibration, 
and automatic peak detection. Biomarkers were generated 
using Biomarker Wizard 3.1.0 software. Differential protein 
peaks were selected according to the differences in protein 
peak intensities between groups using Biomarker Wizard 
3.1.0 software. A decision tree classification algorithm was 
constructed by using Biomarker Patterns 5.0 software (BPS, 
Ciphergen Biosystems). BPS is an implementation of the 
classification regression tree (CART) decision tree system, 
which uses the peak information generated by the training 
set of a known sample to construct a binary decision tree 
algorithm (11). The algorithm allocates each sample in the 
data set to one of two nodes and makes rules according to the 
specific peak or strength of the allocator.

Statistical analysis

The spectra of 149 serum samples were randomly divided 
into a training group (a total of 93 patients, including 
30 HCI, 31 HCs, and 32 CI patients) and a blind test 
group (a total of 56 patients, including 18 HCI, 17 HCs, 
and 21 CI patients). Our aim was to build a decision tree 
classification model by using the training group. The 
data of the clinical diagnosis and proteomic spectrum of 
each sample are available. The decision tree classification 
model was applied to the blind test data to estimate the 
accuracy of the model. All results are expressed as mean 
± standard deviation. Independent samples t-test was 
used for comparison between groups, and a one-sample 
Kolmogorov-Smirnov test was used for the normality 
hypothesis test. P values <0.05 were considered statistically 
significant. Sensitivity was defined as the possibility of 
predicting the diagnosis of HCI, and specificity was 
defined as the possibility of predicting the diagnosis of CI 
or HCs. Accuracy was considered to be the ratio of correct 
classification.

Results

Instrument calibration and repeatability

SELDI-TOF-MS was calibrated with the all-in-one 
peptide molecular mass standard before the beginning of 
the experiment, which included five polypeptides, including 
1,084.247 (arginine 8-vasopressin), 1,637.903 (growth 
hormone inhibitor), 3,495.941 (bovine insulin B chain), 
5,807.653 (human insulin), and 7,033.614 (hirudin) (Figure 1). 
The mass accuracy of SELDI-TOF-MS reached 0.09%. 

The standard quality control serum was measured eight 
times according to the sample processing procedure. The 
coefficient of variation of the mass-to-charge ratio ranged 
from 0.02 to 0.04, while the protein peak strength ranged 
from 0.30 to 0.68. The mean variance coefficient based on 
the standard quality control serum was lower than 17% 
(Figure 2). Therefore, the diurnal variation from samples, 
instruments, and chips could be ignored.

Comparison of serum protein profiles of the HCI group 
and the HCs group (model 1)

In a comparison of the mass spectra of 30 patients with 
HCI and 31 with HCs, it was found that 122 protein peaks 
were detected in the m/z range of 1,000 to 50,000. After 

Figure 1 Mass spectrogram of the all-in-one peptide molecular 
mass standard.
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Figure 2 Mass spectrograms of four independent analyses of standard quality control serum. CV, coefficient of variation.

statistical analysis, nine differential protein peaks were 
screened out, including m/z 1,258.3, 2,000.1, 2,016.4, 
2,034.7, 3,495.2, 4,426.9, and 8,941.0, which were higher in 
the HCI group than in the HCs group. The expressions of 
m/z 4,161.7 and 15,890.4 in the HCI group were lower than 
those in the HCs group (Table 2). To develop biomarker 
patterns for the diagnosis of HCI, three differential protein 
peaks (m/z 3,495.2, 8,941.0 and 15,890.4) were selected to 

establish the decision tree classification model (Figure 3). 
Figure 4 shows the tree structure and sample distribution. 
The sensitivity, specificity, accuracy, and area under the 
receiver operating characteristic (ROC) curve of model 1 
for the diagnosis of HCI were 86.8%, 87.1%, 86.9%, and 
0.899, respectively (Table 3 and Figure 5). The sensitivity, 
specificity, and accuracy of the blind test validation of model 
1 were 88.9%, 94.1%, and 91.4%, respectively (Table 3).

Table 2 Comparison of mean intensity of serum differential protein peaks between the HCI group and HCs group

Protein peak, m/z t P value
HCI group (n=30) HCs group (n=31)

Mean SD Mean SD

1,258.3 2.601 0.012 5.81 2.56 4.34 1.79

2,000.1 2.382 0.020 7.53 7.26 4.05 3.60

2,016.4 2.248 0.028 20.02 12.17 13.15 11.69

2,034.7 2.512 0.015 6.92 7.19 3.25 3.72

3,495.2 2.036 0.046 7.31 9.23 3.51 4.70

4,161.7 −2.316 0.024 0.11 1.57 1.39 2.60

4,426.9 2.157 0.035 4.39 2.22 3.28 1.78

8,941.0 2.973 0.004 11.37 5.56 7.98 3.04

15,890.4 −2.304 0.025 0.44 0.32 0.88 1.00

HCI, hemorrhagic cerebral infarction; HCs, healthy controls.
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Comparison of serum protein profiles of the HCI group 
and CI group (model 2)

In a comparison of the mass spectra of 30 patients with 
HCI and 32 with CI, it was found that 122 protein peaks 
were detected in the m/z range of 1,000 to 50,000. After 
statistical analysis, 14 differential protein peaks were 
screened, which were m/z 1,135.3, 1,258.3, 1,479.2, 
1,505.1, 2,941.3, 3,379.0, 3,452.7, 4,233.9, 4,277.6, 4,426.9, 
4,481.6, 8,941.0, 9,152.1, and 17,417.2. The expressions of  
m/z 1,135.3, 1,479.2 and 2,941.3 in the HCI group were 
lower than those in the CI group, while the expressions of 
other m/z values were higher than those in the CI group 
(Table 4). m/z 2,941.3 was selected to establish the decision 
tree classification model between the HCI group and CI 
group (Figure 6). Figure 7 shows the tree structure and 
sample distribution. The sensitivity, specificity, accuracy, 

Figure 4 Decision tree classification model of the HCI group 
and HCs group in the training set (model 1). HCI, hemorrhagic 
cerebral infarction; HCs, healthy controls.

Figure 3 The three selected differential expression protein peaks m/z 3,495.2, 8,941.0, and 15,890.4 in the HCI group and HCs group. 
HCI, hemorrhagic cerebral infarction; HCs, healthy controls.
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Table 3 Blind test results of classification model 1 for the HCI and HCs groups

Group/clinical group Cases, n Correct cases Accuracy Sensitivity Specificity 

Training set 86.9% 86.8% 87.1%

HCI 30 26

HCs 31 27

Blind test set 91.4% 88.9% 94.1%

HCI 18 16

HCs 17 16

HCI, hemorrhagic cerebral infarction; HCs, healthy controls.
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Figure 5 ROC curve and AUC values of each decision tree classification model. (A) Values for HCI and HCs; (B) values for HCI and CI. ROC, 
receiver operating characteristic; AUC, area under the curve; HCI, hemorrhagic cerebral infarction; HCs, healthy controls; CI, cerebral infarction.

Table 4 Comparison of the mean intensity of serum differential protein peaks between the HCI group and CI group

Protein peak, m/z t P value
HCI group (n=30) CI group (n=32)

Mean SD Mean SD

1,135.3 −2.771 0.007 7.50 3.13 9.80 3.40

1,258.3 2.175 0.034 5.81 2.56 4.58 1.84

1,479.2 −2.098 0.040 2.03 2.11 3.23 2.37

1,505.1 2.43 0.018 4.57 2.90 3.03 2.05

2,941.3 −5.141 0 10.32 6.91 21.03 9.24

3,379.0 2.482 0.016 13.67 11.49 7.98 5.86

3,452.7 2.75 0.008 12.41 9.96 7.04 4.64

4,233.9 2.492 0.015 7.24 5.22 4.51 3.21

4,277.6 2.367 0.021 6.93 5.77 4.13 3.28

4,426.9 2.359 0.022 4.39 2.22 3.20 1.73

4,481.6 2.406 0.019 2.75 2.04 1.71 1.30

8,941.0 2.194 0.032 11.37 5.56 8.66 4.10

9,152.1 2.309 0.024 2.84 1.56 1.98 1.38

17,417.2 2.157 0.035 0.42 0.27 0.30 0.19

HCI, hemorrhagic cerebral infarction; CI, cerebral infarction.

and area under ROC curve of the model 2 were 86.7%, 
75.0%, 80.6%, and 0.808 respectively (Table 5, Figure 5).  
The sensitivity, specificity, and accuracy of the blind 
test validation model were 83.3%, 90.4%, and 87.2%, 
respectively (Table 5). 

Discussion 

Stroke is the primary cause of death and disability in Chinese 
adults, and has a high incidence, disability, mortality, and 
recurrence rate (1). CI is also known as ischemic stroke. In 
2016, the incidence rate of CI in China was 276.25/10 million, 
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Figure 6 The one selected differential expression protein peak m/z 2,941.3 in the HCI group and CI group. HCI, hemorrhagic cerebral 
infarction; CI, cerebral infarction 
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Figure 7 Decision tree classification model of the HCI group and 
CI group in the training set (model 2). HCI, hemorrhagic cerebral 
infarction; CI, cerebral infarction.
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Table 5 Blind test results of classification model 2 for the HCI and CI groups

Group/clinical group Cases, n Correct cases Accuracy Sensitivity Specificity 

Training set 80.6% 86.7% 75.0%

HCI 30 26

CI 32 24

Blind test set 87.2% 83.3% 90.4%

HCI 18 15

CI 21 19

HCI, hemorrhagic cerebral infarction; CI, cerebral infarction.

the prevalence rate was 1,762.77/10 million, the recurrence 
rate was 17.1%, and the mortality rate was 56.9/10 million (1).  
HCI, also known as post-CI hemorrhage transformation, 
refers to a hemorrhage caused by blood flow reperfusion 
after CI (4). Compared with CI, HCI is more elusive and has 
a worse prognosis (12). There are four types of mechanism 
proposed for HCI. The first type is ischemic injury. After 
cerebral infarction, ischemia leads to endothelial cell damage 
and basement membrane degradation, resulting in the 
destruction of neurovascular unit function and structure, 
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and the gradual exudation of blood components (including 
blood cells), resulting in hemorrhagic transformation (13).  
The second type is reperfusion injury which includes cerebral 
vascular embolization, embolus rupture, dissolution, or 
distal vascular paralysis after dilation of the embolus with 
blood flow to the distal end of the vessel, under the action 
of blood pressure rupture bleeding and the formation of 
hemorrhagic transformation (14). The third type is coagulation 
function disorder. The use of thrombolytic, anticoagulant, 
anti-platelet drugs can lead to coagulation factor dysfunction 
or thrombocytopenia and increase the risk of hemorrhagic 
transformation (15). The fourth type is blood-brain barrier 
breakdown. The activation of oxidative stress reaction, 
inflammatory reaction, and vascular reaction after cerebral 
infarction releases a series of inflammatory factors, oxygen-free 
radicals, and cytokines which destroy the blood-brain barrier 
and lead to hemorrhagic transformation (16,17). After ischemia, 
the activation of extracellular matrix proteolytic enzymes (mainly 
matrix metalloproteinases) degrades the extracellular matrix 
(including collagen and laminin), which destroys the tight 
connections between endothelial cells, leading to the destruction 
of the blood-brain barrier and ultimately to the occurrence of 
hemorrhagic transformation (18-20).

In addition to the above differences, the treatment 
methods between CI and HCI also differ. For patients 
with a definite diagnosis of CI, intravenous thrombolysis, 
anticoagulation, and defibrillation should be applied (21), 
while for patients with HCI, thrombolysis, anticoagulation, 
and coagulation factor supplementation should be  
stopped (21). At present, the imaging mainstays of MRI (2)  
and CT (3) are the gold standard for the diagnosis of HCI. 
These require that patients visit a hospital equipped with 
MRI and CT equipment, and several days are needed to 
perform the relevant examinations, which increases the 
corresponding treatment time (22). Therefore, the early 
and accurate diagnosis of HCI would a valuable tool in 
the treatment of HCI. In this study, SELDI-TOF-MS 
and CM10 ProteinChip were used to search for potential 
protein markers in the serum of HCI, and a decision 
tree classification model was established to identify new 
indicators for early clinical diagnosis.

In this experiment, CI, which is closely related to HCI in 
clinic, was selected as the differential diagnosis disease while 
a healthy physical examination group was used as the control 
group, with serum samples being collected from all groups 
for the experiment. Previous studies on markers of proteins 
related to HCI have mainly focused on single proteins, such as 
matrix metalloprotein-9, S100B, glial fibrillary acidic protein, 

neural specific enolase, high-sensitivity C-reactive protein, 
vascular adhesion protein, semicarbazide-sensitive amine 
oxidase, ferritin, and cell junction protein (23). However, 
few studies have attempted to identify the screening serum 
protein markers for HCI or to establish diagnostic models 
by mass spectral techniques of proteomic methods. Among 
these methods, SELDI-TOF-MS combined with protein 
chip is a very useful technology in screening biomarkers, as it 
can directly analyze complex samples. It can detect proteins 
lower than 20 kDa, and these proteins with a small molecular 
weight may have biological significance, as they might have 
been cut or shed due to disease. For example, Schlichtemeier  
et al. screened four proteins with SELDI-TOF-MS, using 
a method which could distinguish hepatocellular carcinoma 
from adjacent non-neoplastic liver tissues (24). Meanwhile, 
Allard et al. used SELDI-TOF-MS and SAX chip (strong 
anion) technology to analyze the serum of patients with 
ischemic stroke and hemorrhagic stroke, and found four 
differential protein peaks. Among these, apolipoprotein CI 
(APOC-I) and apolipoprotein CIII (APOC-III) could ably 
distinguish patients with ischemic stroke from those with 
hemorrhagic stroke (25).

Through comparison with the diagnostic model established 
in this experiment, it was found that there was a marked 
difference in the serum proteome between the HCI, CI, and 
HCs groups. The accuracy of the diagnosis model1 established 
by the HCI and HCs group was 86.9%, and the accuracy of 
the diagnosis model2 established by the HCI and CI group was 
80.6%. Furthermore, by combining the ROC curve and the 
area under the curve (AUC) value, the established diagnostic 
model could ably distinguish the HCI group from the CI 
and HCs groups. Meanwhile, the expression of m/z 8,941.0 
in the HCI group was higher than that in the CI group and 
HCs group. In a review of the relevant literature, it was found 
that Shi et al. combined SELDI-TOF-MS and WCX chip 
technology to analyze the differential protein peak, m/z 8,937, 
and identified acute lymphoblastic leukemia as a complement 
C3a (26). m/z 8,941.0 is the closest to m/z 8,937, and it is likely 
that they are the same protein. Complement components play 
an important role as mediators of inflammatory and immune 
responses. Complement 3 is composed of α and β chains, and 
is the most abundant complement component in serum (27).  
Studies have shown that tissue fibrinogen activator can 
promote the cleavage of complement 3 into complement 3a 
and complement 3b, thereby leading to enhanced permeability 
of endothelial cells related to the complement 3a receptor 
and increased hemorrhagic transformation in patients with 
ischemic stroke (28).
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The next step in research will be to identify the 
differential protein peaks by secondary mass spectrometry 
methods like liquid chromatography-mass spectrometry, 
and to verify them using immunological techniques. The 
confirmation of differential protein can provide a sound 
basis for studying the pathogenesis of HCI. The reason for 
the small sample size included in this study is that reports 
on SELDI-TOF-MS being used to study HCI are rare. We 
referred to the literature on acute cerebral infarction using 
the same method, which included 32 patients with acute 
cerebral infarction and 60 healthy controls (29).

In conclusion, SELDI-TOF-MS combined with 
proteinchip technology, which is mature and common in 
clinic, was used in this study to analyze the differential 
protein peaks in HCI, CI, and HCs serum samples, and to 
establish the corresponding diagnosis model for the early 
diagnosis of HCI. Compared with the previous studies 
which focused on a single protein, the construction of this 
model type has the advantages of simple operation, high 
throughput, and high accuracy; it can also aptly address the 
challenges in HCI diagnosis, which include the difficulty of 
acquiring early imaging findings. Furthermore, we believe 
the study of differential protein in the serum of HCI patients 
and differential diagnosis of disease for HCI can be more 
useful for the early diagnosis of HCI, and has important 
reference significance for the study of other diseases.
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