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Background: Drug resistance is the primary cause of failure in the treatment of cancer. Identifying 
signatures of chemoresistance will help to overcome this problem. Current drug resistance studies focus 
on protein-coding genes and ignore non-coding RNAs (ncRNAs), rendering it a challenging task to 
systematically identify ncRNAs involved in drug resistance. 
Methods: In this study, protein-protein, miRNA-target gene, miRNA-lncRNA interactions were 
integrated to construct a mRNA-miRNA-lncRNA network. Then, the random walk with restart (RWR) 
method was extended to the network for identifying ncRNA signatures of drug resistance. The leave-one-
out cross validation (LOOCV) and receiver operating characteristic curve (ROC) were used to estimate the 
performance of ncDRMarker. Wilcoxon rank-sum test was used to validate the identified ncRNAs in NCI-
60 cancer cell lines. KEGG pathway enrichment analysis was implemented to characterize the biological 
function of some identified ncRNAs.
Results: We performed this method on ten common clinical chemotherapy drugs and analyzed the results 
in detail. The region beneath the ROC was up to 0.881–0.951, which did not change significantly in the 
incomplete network, indicating the high performance and robustness of the method. Further, we confirmed 
the role of the identified ncRNAs in drug resistance, i.e., miR-92a-3p, a candidate chemoresistance ncRNA 
of tamoxifen and paclitaxel, can significantly classify cancer cell lines into sensitive or resistant to tamoxifen 
(or paclitaxel). We also dissected the mRNA-miRNA-lncRNA composite network and found that some hub 
ncRNAs, such as miR-124-3p, were involved in resistance of multiple drugs and engaged in many significant 
cancer-related pathways. Lastly, we have provided a ncDRMarker platform for users to identify candidate 
ncRNAs of drug resistance, which is available at http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index. 
Conclusions: Our findings suggest that ncDRMarker is an effective computational technique for 
prioritizing candidate ncRNAs of drug resistance. Additionally, the identified ncRNAs could be targeted to 
overcome drug resistance and help realize individualized treatment.
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Introduction

Chemotherapy is currently the primary treatment strategy 
for patients with resectable or advanced tumors. However, 
patients with similar clinical features are usually treated 
with standard protocols without considering individual 
responses. Tumor heterogeneity in different patients may 
lead to significant variations in the effect of chemotherapy, 
resulting in drug resistance and eventually failure of 
chemotherapy (1-3). Identifying chemoresistance signatures 
can help overcome this problem (4,5).

Numerous studies have shown that the cancer genome 
strongly influences clinical responses to treatment and can 
be used as molecular signatures to determine which patients 
are likely to benefit from treatment (4). Analyzing the 
genomic changes of cancer cell lines with drug treatment 
is a direct and effective method. Baseline gene expression 
and in vitro drug sensitivity in cell lines are also widely 
used to reveal the mechanism of action and to predict 
clinical drug response (5,6). However, drug effectiveness 
depends not only on the direct control of its targets, but 
also on the impact of other regulatory factors, complex 
biological networks and physiological system activities, 
which have led to the development and comprehensive 
analysis of network-based algorithms for predicting drug 
response. For example, Garnett et al. proposed elastic net 
(EN) regression, a penalized linear modeling technique, 
which made full use of cooperative interactions among 
multiple genes and transcripts across the genome, to 
predict the signature response of each drug (7). Emad et al. 
proposed a computational method (ProGENI) to identify 
genes associated with the variation of drug response by 
integrating network information (8). Research on the 
prediction of chemoresistance signatures, along with high-
throughput technologies and mature algorithms, has made 
great progress. Most current research on chemoresistance 
signatures, however, focuses on protein-coding genes. 

Emerging evidence demonstrates that ncRNAs, 
especially microRNAs (miRNAs) and long non-coding 
RNAs (lncRNAs), are key regulators of many cancers and 
play an important role in the drug resistance of tumor cells  
(9-13). For example, miRNA-195 can increase the sensitivity 
of colon cancer cells to doxorubicin by targeting BCL2L2 
mRNA (14). Wen et al. found that by targeting NRAS 
and E2F2, miR-26a can enhance the sensitivity of gastric 
cancer cells to the chemotherapeutic drug cisplatin (15).  
Moreover, lncRNA TUG1 mediates cell proliferation and 
chemoresistance in small cell lung cancer by regulating 

LIMK2b via EZH2 (16). Fang et al. found that lncRNA 
UCA1 regulates SF1 by acting as a competing endogenous 
RNA for miR-184 to promote proliferation and modulate 
the resistance of oral squamous cell carcinoma to  
cisplatin (17). Briefly, ncRNAs influence drug resistance 
directly or indirectly and may be new chemoresistance 
signatures. Thus, the identification of ncRNA signatures of 
drug resistance would be meaningful to precision medicine.

In this study, we have described ncDRMarker, a 
computational method for the identification of ncRNA 
signatures of drug resistance. The method took full 
consideration of the heterogeneous biological interactions 
and achieved reasonable efficacy. The role of identified 
ncRNA signatures in drug resistance were further verified 
by literature, cancer cell lines and biological function 
analysis. We also developed a user-friendly platform to 
identify candidate ncRNAs of drug resistance, which was 
available at http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/
index. The identified ncRNAs may be potential biomarkers, 
which can be targeted to overcome drug resistance and 
help to realize individualized treatment. We present the 
following article in accordance with the MDAR checklist 
(available at http://dx.doi.org/10.21037/atm-20-603).

Methods

Dataset collection

The known ncRNAs (miRNAs and lncRNAs) related to 
drug resistance were downloaded from ncDR (http://www.
jianglab.cn/ncDR/) (18) and the database of Genomic 
Elements Associated with drug Resistance (GEAR) (19). 
The ncDR database is a comprehensive cheminformatics 
resource that collects drug resistance-related ncRNAs 
through manual curation from literature before 2016. 
GEAR is a database of genomic elements associated 
with drug resistance that aims to provide comprehensive 
information about chemoresistance biomarkers. Moreover, 
we queried the PubMed database and manually extracted 
experimental ly  val idated drug res istance-ncRNA 
relationships from literature published between Jan 2016, 
and Mar 2018, to supplement the known ncRNAs related 
to drug resistance. We further standardized drug names 
and miRNA symbols via DrugBank (20) and miRBase (21), 
and finally, we collected 3,414 drug resistance-ncRNA 
relationships involving 67 drugs and 808 ncRNAs (758 
miRNAs and 50 lncRNAs). 

In addition, for method comparison, we collected 

http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index
http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index
http://dx.doi.org/10.21037/atm-20-603
http://www.jianglab.cn/ncDR/
http://www.jianglab.cn/ncDR/
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protein-coding genes related to drug resistance. The 
compilation of relevant information from the dispersed 
published literature is a monumental challenge, so we 
extracted chemoresistance genes from Catalogue Of 
Somatic Mutations In Cancer (COSMIC v86) (22), 
HerceptinR (23) and GEAR (19). Finally, 1,317 drug 
resistance-gene relationships, including 54 drugs and 656 
genes were used for the performance comparison of our 
method.

In this study, the NCI-60 cell line panel and its related 
drug screens were obtained from CellMiner (24), which 
were widely used to pioneer the approach of linking drug 
resistance to genomic data. The miRNA expression profiles 
for the 60 human cancer cell lines and drug activity data 
in terms of the 50% growth inhibitory concentration 
(GI50) of 1,429 small molecule drugs were collected and 
preprocessed. These cancer cell lines were used to verify 
whether the identified chemoresistance miRNAs can 
accurately characterize the cell line as either sensitive or 
resistant to anti-cancer drugs.

Constructed composite network

In this study, we constructed a large-scale composite 
network by integrating heterogeneous biological 
interactions, which were all experimentally validated. 
The protein-protein interactions (PPIs) were from the 
Human Protein Reference Database (HPRD, HPRD_
Release9_041310) (25). All PPIs in HPRD were credible as 
they were manually extracted from the studies performed 
by expert biologists. MiRNA-target gene data were 
downloaded from miRTarBase (Release 7.0), which collects 
miRNA-target interactions by manually surveying the 
relevant literature (26). MiRNA-lncRNA interactions were 
collected from starBase v2.0 (27) and DIANA-LncBase 
v2.0 (28), which contain experimentally validated miRNA-
lncRNA interactions. We further standardized RNA 
symbols and removed repeating interactions, and acquired 
16,710 mRNAs, 2,602 miRNAs, 6,759 lncRNAs and 
481,511 interactions. Finally, these RNAs and interactions 
were used to construct a mRNA-miRNA-lncRNA 
composite network.

Identifying candidate ncRNAs based on the composite 
network

The ncDRMarker could identify candidate ncRNAs 
involved in drug resistance by fully exploiting the 

heterogeneous biological interactions. With the composite 
network mentioned above, we extended the random walk 
with restart (RWR) method to the network. The RWR 
algorithm was derived from graph theory and simulated 
a random walker, which started from the seed nodes and 
repeated an iterative transition until all vertices achieved 
the steady state probability. At each step, the walker moved 
from the current nodes to their immediate neighbors 
with probability 1-r or stayed at the current nodes with 
probability r, according to the probability transition matrix. 
In this method, the RWR is defined as:

1 0(1 )t tP r WP rP+ = − +  [1]

In the above-mentioned formula, rϵ(0,1) indicates 
the restart probability, which was set as 0.2 in this study  
(Figure S1). The initial probability vector P0 is a 
normalized unit vector, in which each seed node (known 
ncRNAs involved in chemoresistance of the drug) has 
equal probabilities. Pt represents a vector in which the 
i-th element holds the probability of being at node i at 
step t. The transition matrix W is a column-normalized 
adjacency matrix of the composite network, in which Wij is 
the transition probability from node i to node j. When the 
difference between Pt and Pt+1 falls below 10-10, it achieves 
the steady state. The result is a list of ncRNAs ranked by 
the probability scores, in which top ranked ncRNAs are 
defined as candidate ncRNA signatures of drug resistance. 
The flowchart of ncDRMarker is shown in Figure 1.

Performance measurement

Cross validation is widely used to evaluate the performance 
of prediction algorithms. The receiver operating 
characteristic curve (ROC) plots the true (sensitivity) 
versus false positive rate (1-specificity) at different 
cutoffs, and area under curve (AUC) is commonly used 
to represent the results of cross validation. In this study, 
we used leave-one-out cross validation (LOOCV) for 
known drug resistance-ncRNA relations to estimate the 
performance of ncDRMarker. For every drug, each known 
drug resistance-ncRNA relation was considered as one 
test case, the remaining known drug resistance-related 
ncRNAs were considered as seed nodes, and the held out 
ncRNA and other ncRNAs in the composite network were 
considered as candidates. Then, we could obtain a rank list 
of all candidates by performing the RWR method. Finally, 
the ROC and AUC intuitively displayed a result of the 
performance.

https://cdn.amegroups.cn/static/public/ATM-20-603-supplementary.pdf
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Figure 1 Schematic data flowchart of ncDRMarker. GEAR, Genomic Elements Associated with drug Resistance; PPI, protein-protein 
interaction; CCLE, Cancer Cell Line Encyclopedia.
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NCI-60 cancer cell lines and their related drug screens from 
CellMiner database were used to validate the identified 
chemoresistance ncRNAs. Due to the scarce lncRNA 
expression profiles relevant to pharmacogenomics, we only 
tested whether the identified miRNAs could accurately 
classify the cancer cell lines into sensitive or resistant to 
drug according to drug concentrations. For each identified 
miRNA-drug resistance relation, we firstly extracted two 
groups of cell lines from 60 cancer cell lines according 
to the expression of the miRNA: the top 25% cancer cell 
lines were group 1, and the bottom 25% cancer cell lines 
were group 2. Next, we collected the drug concentrations 
(normalized GI50 values) across the cancer cell lines in two 
groups, then the comparisons were performed by using 
Wilcoxon rank-sum test on two groups. We deemed that 
the identified miRNAs could significantly classify the cancer 
cell lines into drug sensitive or resistant when there was 
significant difference between two groups (P value <0.01).

Enrichment analysis was implemented to characterize 
the biological function of some identified ncRNAs involved 
in multiple drug resistance. Since most of the ncRNA 
functions remain unclear, we studied the biological function 

of ncRNAs based on the protein-coding genes related to 
ncRNAs. We downloaded target genes of miRNAs from 
miRTarBase for enrichment analysis. Meanwhile, we 
collected 28 human RNA-seq datasets generated under 
different experimental conditions from the NCBI Sequence 
Read Archive (SRA) database (29). Then, we calculated the 
Pearson correlation coefficients (PCC) between lncRNA 
and mRNA expression and obtained the co-expressed 
protein-coding genes of lncRNA with a strict threshold (P 
value <0.01 and PCC values ranked in the top or bottom 
0.1%). Then, we implemented KEGG (Kyoto Encyclopedia 
of Genes and Genomes) (30) pathway enrichment analysis 
for each identified ncRNA using Metascape with default 
parameters (31). 

Framework and web interface

We provided a web tool for users to identify candidate 
ncRNAs involved in drug resistance. The website was 
developed using JavaEE platform and operated on Tomcat 
6.0 web server. All the data were stored in a MySQL 5.6 
relationship database management system. The server-side 
was implemented with Java 1.7 scripts, and the web server 
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was written in JSP. ncDRMarker is freely available at http://
bio-bigdata.hrbmu.edu.cn/ncDRMarker/index.

Results

Evaluating the performance of ncDRMarker

To assess ncDRMarker’s performance, we assessed its ability 
to identify known ncRNAs involved in drug resistance. 
We chose drugs with at least two known chemoresistance 
ncRNAs in the composite network and obtained 56 anti-
cancer drugs. For each drug, the LOOCV method was 
applied on known drug resistance-ncRNA relations. 
We performed ROC by plotting the true positive rate 
(sensitivity) versus the false positive rate (1-specificity) 
at various threshold settings to evaluate the overall 
performance. We found that all drugs achieved high 
predictive performances, the AUC values ranged from 0.816 
to 0.998 (Table S1). Furthermore, the drugs that had at 
least five known chemoresistance ncRNAs in the composite 
network achieved a higher performance, and the AUC 
values ranged from 0.881 to 0.998. We selected ten common 
clinical anti-cancer drugs (imatinib, erlotinib, docetaxel, 
gemcitabine, sorafenib, 5-fluorouracil, doxorubicin, 
paclitaxel, cisplatin, and tamoxifen) for later analysis.  
Figure 2 shows the ROC curves of these drugs for 
identifying chemoresistance ncRNA signatures, with 
the AUC values ranging from 0.881 to 0.951. The 
ncDRMarker’s high predictive power indicates that the 
approach utilizing multi-omics data interactions from 
the composite network has high efficiency in identifying 
candidate ncRNA signatures involved in drug resistance.

In addition, we adopted different types of seed nodes 
to compare the method and evaluate the performance of 
ncDRMarker. Because of the scarcity of ncRNA signatures 
involved in chemoresistance, we collected experimentally 
verified protein-coding genes related to drug resistance 
to supplement the seed nodes. Further, based on the type 
of seed nodes, we divided the test case into three groups: 
known ncRNAs related to drug resistance were defined as 
group 1 (ncRNA); known experiment verified RNAs related 
to drug resistance were defined as group 2 (ncRNA+mRNA); 
and known experiment verified protein-coding genes 
related to drug resistance were defined as group 3 
(mRNA). We implemented ncDRMarker with different 
groups and obtained results as expected (Figure 3A).  
The results showed that when only ncRNAs were used as 
seed nodes, the algorithm had the highest efficiency, and 

the AUC values were between 0.881 and 0.951. Secondly, 
when ncRNAs+mRNAs were used as seed nodes, the 
algorithm also had a high performance, and the AUC 
values were between 0.799 and 0.921. The research on 
ncRNAs involved in drug resistance has been relatively 
limited and scattered, and highly credible and large-scale 
drug resistant-ncRNA data are still scarce. Therefore, if 
the number of known ncRNAs involved in drug resistance 
is small (the number of nodes is less than five), the model 
of mRNA+ncRNA can be used as the complementary 
algorithm in this study. Finally, when we used mRNAs 
as seed nodes, the AUC values were between 0.640 and 
0.881, which were lower than other groups. This suggested 
that the efficiency of the algorithm was higher when prior 
knowledge of ncRNAs related to drug resistance was used.

We evaluated the robustness of ncDRMarker by 
randomly deleting the regulatory relationship (edge) of 
the composite network. We deleted 10%, 20% and 30% 
regulatory relationships in the network at random and 
repeated five times for each deletion. Then, we applied the 
algorithm to the new incomplete network and evaluated 
the prediction results using the LOOCV. The mean AUC 
value from five repetitions is as shown in Figure 3B. The 
results showed that some relationships in the network had 
been discarded randomly, and the AUC of the method did 
not change significantly, suggesting that the ncDRMarker 
approach is robust to changes in the network.

Identifying chemoresistance ncRNA signatures

We constructed an mRNA-miRNA-lncRNA composite 
network that included 26,071 nodes (16,710 mRNAs, 
2,602 miRNAs and 6,759 lncRNAs) and 481,511 edges. 
The RWR algorithm, which makes full use of the network 
topology, was applied to identify candidate ncRNAs 
involved in drug resistance on the composite network. This 
algorithm was used for ten common clinical anti-cancer 
drugs to identify chemoresistance ncRNA biomarkers. 
The resulting list of the top 50 candidate chemoresistance 
ncRNAs for each drug is shown in Table S2, and some of 
the identified candidate ncRNAs were manually confirmed 
as being related to chemoresistance or drug indications by 
newly published literature (Table 1). For example, cisplatin 
is a platinum-based chemotherapy drug and has been widely 
used in clinics to treat various types of cancers. Some top 
ranked ncRNAs in the resulting list have been confirmed to 
be related to the resistance of cisplatin, such as the lncRNA 
NEAT1. NEAT1 ranked second in the resulting list, and 

http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index
http://bio-bigdata.hrbmu.edu.cn/ncDRMarker/index
https://cdn.amegroups.cn/static/public/ATM-20-603-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-603-supplementary.pdf
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Figure 3 Performance comparison of ncDRMarker. (A) Performance comparison of ncDRMarker with different seed nodes. The ordinate 
represents area under curve (AUC) values, abscissa represents different groups divided by seed nodes types. Group 1 represents ncRNA, 
group 2 represents ncRNA+mRNA, and group 3 represents mRNA. (B) Performance comparison of ncDRMarker with an incomplete 
network. The ordinate represents area under curve (AUC) values, abscissa represents the incomplete network that randomly deleted 10%, 
20% and 30% of the regulatory relationships.
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drugName
5-fluorouracil 
cisplatin 
docetaxel 
doxorubicin 
erlotinib 
gemcitabine 
imatinib 
paclitaxel 
sorafenib 
tamoxifen

drugName
5-fluorouracil 
cisplatin 
docetaxel 
doxorubicin 
erlotinib 
gemcitabine 
imatinib 
paclitaxel 
sorafenib 
tamoxifen

BA

Table 1 Literature verification of identified drug resistance-ncRNA relationships

Drug name ncRNA Literature (PMID)

5-fluorouracil hsa-miR-124-3p 24658854

NEAT1 28720546

hsa-miR-519d-3p 29771440

hsa-miR-4728-5p; hsa-miR-6785-5p; hsa-miR-6883-5p; hsa-miR-149-3p 29061672

Cisplatin hsa-miR-124-3p 31298375

NEAT1 31485599

hsa-miR-1-3p 29572052

hsa-miR-149-3p 29731888

hsa-miR-186-3p 30365062

Gemcitabine hsa-miR-335 31492499

hsa-miR-124-3p 27785603

MALAT1 29221115

hsa-miR-320a 30304549

hsa-miR-24-3p; hsa-miR-30c-5p 24040438

Imatinib NEAT1 31166382

hsa-miR-106b-5p 28781815

hsa-miR-218-5p 24706111

hsa-miR-424-5p 25697481

MALAT1 30366670

Table 1 (continued)



Yang et al. Identify ncRNA signatures of drug resistance

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1395 | http://dx.doi.org/10.21037/atm-20-603

Page 8 of 14

Table 1 (continued)

Drug name ncRNA Literature (PMID)

Docetaxel NEAT1 31672604

hsa-miR-106b-5p 30680612

hsa-miR-218-5p; hsa-miR-29b-3p 31545228

MALAT1 29633510

Doxorubicin hsa-miR-24-3p 27681638

MALAT1 28770558

XIST 30439718

hsa-miR-148b-3p 29966970

hsa-miR-455-3p 30627229

Erlotinib hsa-miR-124-3p 30604411

hsa-miR-218-5p 30781783

hsa-miR-30c-5p 31447008

hsa-miR-30a-5p 27895663

Tamoxifen hsa-miR-335-5p 28008602

hsa-miR-92a-3p 30086458

NEAT1 29464864

Paclitaxel hsa-miR-26b-5p 30899303

hsa-miR-92a-3p 28209618

hsa-miR-93-5p 28341962

MALAT1 30841025

hsa-miR-92b-3p 31320936

hsa-miR-766-3p 31496800

Sorafenib hsa-miR-335-5p; NEAT1 30937906

hsa-miR-16-5p 31341646

hsa-miR-124-3p 31087496

Yan et al. demonstrated this NEAT1-cisplatin resistance 
relationship in anaplastic thyroid carcinoma (ATC)  
cells (32). They found miR-9-5p (seed node of cisplatin) 
overexpression sensitized ATC cells to cisplatin. NEAT1 
suppressed miR-9-5p expression by binding to miR-9-
5p, and SPAG9 was a direct target of miR-9-5p. NEAT1 
silencing exerted its inhibitory effect on cisplatin-resistance 
of ATC via the miR-9-5p/SPAG9 axis in vitro and in vivo. 
Their results demonstrated that lncRNA NEAT1 enhances 
the resistance of ATC cells to cisplatin by sponging miR-9-
5p and regulating SPAG9 expression. The overexpression of 

another top ranked ncRNA, miR-186, can reverse cisplatin 
resistance and the formation of the glioblastoma-initiating 
cell phenotype in glioblastoma cells (33). Gemcitabine 
is prevalently used to treat a variety of cancers, such as 
advanced ovarian, metastatic non-small cell lung cancer 
(NSCLC), and metastatic adenocarcinoma of the pancreas. 
Yan et al. found that hsa_circ_0035483 sponges hsa-
miR-335, one of the top ranked ncRNAs, can promote 
gemcitabine resistance in renal clear cells (34). Linc-ROR 
modulated the miR-124-3p, a candidate ncRNA, conferred 
gemcitabine resistance to pancreatic cancer cells (35). Our 
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results suggested that ncDRMarker was an effective method 
for identifying ncRNA signatures of drug resistance, and the 
identified ncRNAs may be used as biomarkers for targeted 
cancer therapies. 

Validating identified chemoresistance ncRNA in cancer cell 
lines

Cancer cell lines and drug activity scores have been widely 
used to identify chemoresistance biomarkers. In this 
research, NCI-60 cancer cell lines were used to check the 
chemoresistance of the ncRNA signature, to elucidate 
whether the identified ncRNA could further classify 
the cancer cell lines into either sensitive or resistant to 
drug treatment. Due to the lack of pharmacogenomics-
related lncRNA expression profiles, only the identified 
chemoresistance miRNA markers were validated using 
cancer cell lines. For each identified miRNA involved in 
drug resistance, we divided the cancer cell lines into group 
1 and group 2 according to the expression values of this 
miRNA. Then, we performed Wilcoxon rank-sum test 
on these two groups by using the drug concentrations 
(normalized GI50 scores) across cancer cell lines in two 
groups (see Validation of Identified ncRNAs of Drug 
Resistance in Methods). From the results, we found that 
miR-92a-3p, a candidate ncRNA of tamoxifen and paclitaxel 
resistance, can significantly classify cancer cell lines into 
sensitive or resistant by using tamoxifen (or paclitaxel) 
activity z scores. Tamoxifen is a common clinical anti-
cancer drug that has been used to treat estrogen receptor-
positive metastatic breast cancer in adults, and miR-92a-
3p was ranked as a top candidate in the tamoxifen ncRNA 
list. In this study, the tamoxifen concentration distribution 
was significantly different between two groups, which was 
divided by miR-92a-3p (Wilcoxon rank-sum test, P=0.0014; 
Figure 4A left). Cun et al. reported this tamoxifen-miR-
92a-3p relation in their study. They found that miR-92a-3p 
expression was higher in breast cancer serum or tissue, and 
high expression of miR-92a-3p could predict poor prognosis 
of breast cancer patients. They validated the point by their 
qRT-PCR experiment, that miR-92a-3p was upregulated 
in tamoxifen-resistant cells. Their results demonstrated 
that the relationship between miR-92a-3p and some key 
genes were related to tamoxifen resistance (36). We further 
dissected the PPI network, and found that targets of 
tamoxifen were closely connected to target genes of miR-
92a-3p (Figure 4A right), which indirectly explained why 
miR-92a-3p was involved in tamoxifen resistance. Paclitaxel 

is a chemotherapeutic agent that has been widely used in 
the treatment of lung, ovarian, and breast cancer, and miR-
92a-3p was top ranked in its candidate ncRNA list. Cancer 
cell lines were also significantly classified into sensitive or 
resistant by miR-92a-3p according to paclitaxel activity 
z scores (Wilcoxon rank-sum test, P=0.0032; Figure 4B 
left). Chen et al. identified that a STAT3-miR-92a-DKK1 
pathway was involved in the generation of cancer stem-like 
cells in ovarian tumors. They observed that this pathway 
might be related to paclitaxel resistance by blocking its 
progression (37). Further, targets of paclitaxel were also 
closely connected to target genes of miR-92a-3p in the 
PPI network (Figure 4B right). In addition, to characterize 
the biological function of miR-92a-3p, we applied KEGG 
pathway enrichment on target protein-coding genes of 
miR-92a-3p. Significantly enriched pathways (P value 
<0.01) are displayed in Figure 4C, among which, cell cycle 
(hsa04110), ribosome (hsa03010), and thyroid hormone 
signaling pathway (hsa04919) were significantly related to 
cancers, which indicated that miR-92a-3p might be involved 
in multiple drugs resistance. The above results further 
illustrated the effectiveness of ncDRMarker and showed 
that the identified ncRNAs can be used as chemoresistance 
ncRNA signatures.

Functional characterization of identified chemoresistance 
ncRNAs

We found that some ncRNA signatures, such as miR-335-
5p, miR-124-3p, miR-92a-3p, LINC00657, etc., were top 
ranked in the candidate ncRNA lists of many drugs. For 
example, miR-124-3p was identified to be involved in the 
resistance to erlotinib, 5-fluorouracil, gemcitabine, cisplatin 
and sorafenib (ranked top 50 in candidate ncRNA list). We 
investigated the composite network and found that miR-
124-3p was the hub node in the network. It was closely 
connected to some significant genes, which were immediate 
neighbors of some drug resistance seed nodes (see Figure 5).  
EPHA2, for instance, was an immediate neighbor of miR-
200a-3p, miR-34a-5p and miR-141-3p (seed nodes of 
erlotinib), and studies showed that miR-124-3p mediates 
erlotinib resistance in K-RAS mutated pancreatic cancer 
by targeting EPHA2 (38). EZH2, another key gene, 
was closely connected to miR-193b-3p and miR-126-3p 
(seed nodes of sorafenib), and Wang et al. proved that the 
sorafenib-resistant cells regained sensitivity for sorafenib 
by EZH2 intervention with miR-124/506 overexpression 
or EZH2 inhibitor treatment in vitro and in vivo. In their 
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Figure 4 Validation of the identified chemoresistance ncRNAs in cancer cell lines. (A, left) miR-92a-3p classified cancer cell lines into 
sensitive or resistant to tamoxifen (Wilcoxon rank-sum test, P=0.0014). (A, right) Target genes of miR-92a-3p were closely connected to 
targets of tamoxifen in PPI network. (B, left) miR-92a-3p classified cancer cell lines into sensitive or resistant to paclitaxel (Wilcoxon rank-
sum test, P=0.0032). (B, right) Target genes of miR-92a-3p were closely connected to targets of paclitaxel in PPI network. (C) Significantly 
enriched KEGG pathways of miR-92a-3p. PPI, protein-protein interaction.
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Figure 5 Sub-network of miR-124-3p extracted from the composite network.

research, miR-124-3p and miR-506-3p (miR-124/506) 
were remarkably reduced in the serum from sorafenib 
resistant patients. EZH2, the target gene of miR-124 and 
miR-506, was modulated by them in sorafenib-resistant 
cells. Targeting EZH2 by overexpression of miR-124/506 
or EPZ-6438 treatment inhibited the proliferation ability 
of sorafenib-resistant thyroid tumor cells via epigenetic 
regulation, and the combination of sorafenib with miR-
124/506 overexpression or EZH2 inhibitor improved the 
survival in a mouse model (39). The results indicated that 
ncRNAs as hub nodes in the heterogeneous network, which 
receives high probability in the transfer process, might be 
involved in multiple drug resistance. 

To further investigate the regulatory effects of these 
ncRNAs on drug resistance, we studied the biological 
functions of the identified ncRNAs. Since the biological 
functions of most ncRNAs remained unclear, we applied 
KEGG pathway enrichment to protein-coding genes 
related to ncRNAs (see 2.5. Validation of identified 
ncRNAs involved in drug resistance). Pathways with 
a strict threshold of P value <0.01 were defined as 
significantly enriched pathways. In this study, most of the 
chemoresistance ncRNAs were enriched in the PI3K-
Akt signaling pathway (hsa04151), p53 signaling pathway 
(hsa04115) and DNA replication (hsa03030), which are 

important pathways closely related to cancer. Thus, the 
candidate chemoresistance ncRNAs in our study were 
involved in a wide range of biological regulation process, 
which indicated that they were related to multiple drug 
resistance indirectly (Table S3). 

Web interface of ncDRMarker

ncDRMarker provides a convenient, user-friendly interface 
that enables users to identify candidate ncRNA signatures 
involved in drug resistance. First, users can study the 
drug indicated in this study, their corresponding known 
chemoresistance ncRNAs can be browsed by clicking on 
the drug name, then the prediction process can be quickly 
achieved by clicking “Analysis using ncRNAs below”, and 
the results will be displayed as a ranked list of ncRNAs 
involved in drug resistance. Second, users can prioritize 
the drug chemoresistance ncRNAs by inputting their 
own data, then the known ncRNAs/genes related to drug 
resistance are suggested. Further, the results also provide a 
ranked list of ncRNAs involved in the drug resistance. All 
the results can be downloaded by clicking “Export Result”. 
Finally, a “SUBMIT” page is also included in the website, 
on which users can provide the new drug resistance-
ncRNA relationships confirmed by new literature, and the 

https://cdn.amegroups.cn/static/public/ATM-20-603-supplementary.pdf
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relationships will be integrated to the seed vector once 
verified. 

Discussion

Chemoresistance is the major cause of chemotherapy 
failure, and the identification of chemoresistance 
biomarkers can help to overcome this problem and realize 
individualized treatment (40,41). Protein-coding genes have 
been widely studied as signatures of drug response, while 
ncRNA signatures have been scarce. In this study, due to 
the fact drug efficacy depends on the influence of complex 
biological interactions, but not just the regulation of its 
targets, we provided a computational method, ncDRMarker, 
for the identification of chemoresistance ncRNA signatures 
based on a heterogeneous network.

Initially, we constructed a composite network by 
integrating PPI, miRNA-mRNA and miRNA-lncRNA 
relationships. Then, we applied RWR on this composite 
network and prioritized candidate ncRNAs related to 
chemoresistance by fully exploiting the global biological 
interactions. We have shown that ncDRMarker is an 
efficient computational technique for identifying ncRNAs 
that play a role in drug resistance. Using ncDRMarker, 
we studied ten common clinical anti-cancer drugs, and 
acquired a decent ROC by performing LOOCV. The AUC 
values were between 0.881 and 0.951, indicating the high 
predictive power. Protein-coding genes related to drug 
resistance may be used as complementary seed nodes to 
perform ncDRMarker when there are few known ncRNAs 
involved in drug resistance (less than five). Moreover, the 
identified candidate ncRNAs were confirmed to be related 
to chemoresistance or drug indications by the literature. 
The results that the identified ncRNAs can classify the 
cancer cell lines into sensitive or resistant according to 
drug concentrations were further verified using cancer 
cell lines. In addition, some meaningful ncRNAs, were 
found to be involved in multiple drug resistance. To study 
these ncRNAs, we dissected the mRNA-miRNA-lncRNA 
composite network and found that they are hub ncRNAs 
that can receive high probability in the transfer process. 
We further applied functional analysis on these ncRNAs, 
and the results showed that they involved in a wide range 
of biological regulation process. Finally, we provided the 
ncDRMarker website for users to identify chemoresistance 
ncRNA signatures. 

There were also some limitations to our current study. 
First, compared to the tens of thousands of ncRNAs that 

have been found, the number of known ncRNAs (especially 
lncRNAs) involved in drug resistance in our study is quite 
small. This is because known chemoresistance ncRNAs 
in our analysis were mainly manually collected from the 
literature, and although accurate, may be insufficient at the 
same time. An authoritative and highly credible database of 
chemoresistance-related ncRNAs will extend and improve 
the modeling techniques we employed in this study. Another 
aspect that should be further explored in future studies is 
integrating genomics data and clinical profiles, which would 
be an abundant resource in pharmacogenomics.

Conclusions

Here, we have provided a computational method, 
ncDRMarker,  to  iden t i f y  ncRNA s igna ture s  o f 
chemoresistance based on a heterogeneous network. Our 
analysis and results suggest that ncDRMarker is an efficient 
computational technique for identifying candidate ncRNAs 
involved in drug resistance, and the identified ncRNAs may 
be targeted to overcome drug resistance and help realize 
individualized treatments.
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