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Background: Over the last few years, great progress has been made in the development of key technologies 
to detect peripheral blood-based, tumor-specific biomarkers, such as circulating tumor cells (CTCs) and 
circulating cell free tumor DNA (ctDNA). Despite the considerable advances and their multiple clinical 
values, liquid biopsies are challenged by the very low concentrations of CTCs and ctDNA in blood samples. 
Additionally, blood biomarkers which were found using data-driven methods may only be effective in few 
datasets.
Methods: We firstly collected the genes which have expression correlations between blood and the other 
tissues/organs using Genotype-Tissue Expression (GTEx). Survival hazard genes and differential expression 
genes of each cancer type in The Cancer Genome Atlas (TCGA) were then selected by Cox regression model 
and Wilcoxon rank sum test, respectively. By combining the P values of two steps, several blood biomarkers 
can be inferred for each cancer type. After applying these potential blood biomarker sets to 13 datasets of 
blood samples from solid tumor patients using single sample gene set enrichment analyses (ssGSEA), we got 
an enrichment score (ES) for each sample.
Results: The inferred blood biomarker (BB infer) genes showed reliable predictive value in various 
malignancies. In all the blood samples that were analyzed, the ESs of positive BB Infer genes in cancer 
patients are higher than healthy people. Conversely, the ESs of negative BB Infer genes in cancer patients are 
lower than healthy people. Furthermore, lower ES of negative BB infer genes signify the dismal outcome of 
patients.
Conclusions: We developed a novel solid tumor blood biomarker inference workflow for cancer screening 
and diagnosis. Moreover, we demonstrated the utility of this inference method in a series of blood sample 
datasets of solid tumor patients. These results suggested the potential value of this method in the screening, 
diagnosis and prognosis of cancers.
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Introduction

To achieve the best prognosis for cancer patients, one of 
the most important things is to ensure early detection of 
the tumor. For most malignancies, early detection of small 
localized malignant tissues can allow high curative rate by 
surgical resection or other treatments such as radiotherapy 
and chemotherapy (1-4). Thus, an array of cancer screening 
tests were developed for populations with different 
medical needs. For example, there were prostate specific 
antigen (PSA) testing in older men, electronic colonoscope 
examination for colorectal cancer and gastroscopy for 
gastric carcinoma (5-7). Among the currently available 
screening methods, LB has received a large amount of 
attention because of its broad application prospects (8-11). 
For example, LB has the potential to allow screening for a 
variety of tumor types in a large group of individuals at risk 
of developing cancer (12-15).

Over the past few years, LB has been developed as a 
new diagnostic and prognostic concept predicated on the 
analysis of circulating tumor cells (CTCs), circulating cell 
free tumor DNA (ctDNA) and other circulating tumor-
derived factors, such as exosomes (16). By using LB, it 
is becoming easier and easier for detecting actionable 
mutations, prognosticating outcomes, monitoring treatment 
response and detecting early recurrence. Though this 
application is challenged by key technologies in the face 
of the very low concentrations of CTCs and ctDNA in 
blood samples (17). Thus, sufficient plasma volumes and 
highly sensitive methods are needed to interrogate minute 
amounts of analytes.

For early detection of cancers where the location of the 
primary tumor is unknown, identification of the origin 
tissue of tumor to determine the anatomical location of 
the primary tumor is of significance to guide medical 
intervention such as diagnostic imaging and tissue biopsy. 
In view of the fact that tumor cells rooting in particular 
sites exhibit specific gene expression patterns induced 
by the crosstalk with the microenvironment. And the 
cross-communication between tumor cells and blood 
composition plays a role in tumor progression (18-23). We 
can reasonably infer that the feature of different primary 
tumor types can be partly reflected by the characteristics 
of their corresponding blood samples. For example, it was 
reported that in the process of tumor-platelets education, 
tumor cells can directly promote the protein synthesis of 
platelet and stimulate some relevant signaling pathways (24).  
In turn, platelets can influence tumor cells through 

releasing RNA signaling complexes in the form of platelet-
derived microparticles (25,26). Thus, the crosstalk between 
platelets and tumor cells plays an important role in tumor 
progression.

Despite such advances, few available blood biomarkers 
can be used in clinical practice until now. However, 
detecting several specific blood biomarkers can only cover 
a small range of tumor types while monitoring of CTCs 
and ctDNA for cancer patients was often done during post-
surgical follow-up period (27). Moreover, blood biomarkers 
which were found based on data-driven methods may only 
be effective in few datasets. Whether the gene expression 
characteristic of blood samples can be used as the reliable 
predictive index for early tumorigenesis of specific tumor 
was now largely unknown. Here, we described a novel 
cancer blood biomarker identification workflow, blood 
biomarker inference (BB infer), for cancer screening and 
diagnosis. Moreover, we demonstrated the utility of this 
method in 13 datasets of blood samples from solid tumor 
patients, including 8 types of cancers. Different from 
traditional data-driven methods, our method still achieves 
good results without using these datasets for training.

Methods

Data collection

GTEx RNAseq data in transcripts per million reads 
(TPM) were downloaded from GTEx portal (https://
www.gtexportal.org/). TCGA RNAseq gene expression 
data and relevant clinical information were obtained 
from the GDC data portal (https://portal.gdc.cancer.
gov/) and the values were transformed to TPM. In 
addition, 13 blood or peripheral blood mononuclear cells 
(PBMC) gene expression profiling datasets of solid tumor 
patients (GSE11545, GSE12771, GSE16443, GSE20189, 
GSE31682 ,  GSE34465 ,  GSE37199 ,  GSE37582 , 
GSE43519 ,  GSE45705 ,  GSE49641 ,  GSE74629 , 
GSE96597) were available at GEO datasets (https://www.
ncbi.nlm.nih.gov/gds/). Duplicate genes were dropped 
except their max values. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Blood biomarker screening

Spearman’s correlation tests were performed between blood 
and the other tissues/organs using GTEx gene expression 

https://www.gtexportal.org/
https://www.gtexportal.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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data. Survival hazard genes and differential expression 
genes of each cancer type in TCGA were selected by Cox 
regression model and Wilcoxon rank sum test, respectively. 
Only primary tumor tissues were used for Cox regression. 
And the differential expression genes were calculated 
between tumor and normal tissues. False discovery rate 
(FDR) were calculated by Benjamini and Hochberg 
method. P values of the two screening steps were combined 
by multiplication while both P values <0.05. The results of 
each step are provided in http://fp.amegroups.cn/cms/bd3c
769c4cbb9f111d848bea5c90f6ad/ATM-20-2047-1.pdf.

Pcombine = PSpearman × PCox/ranksum

Single sample gene set enrichment analysis

Single sample gene set enrichment analyses (28) (ssGSEA) 
were used to validate the potential blood biomarkers. After 
sorting the combined P values ascendingly, top 20/50 
positive/negative blood biomarker gene sets for each cancer 
were selected and applied to ssGSEA. The gene sets were 
described in http://fp.amegroups.cn/cms/0f9c3342b04a4e5
712de574363fcbe50/ATM-20-2047-2.pdf. The enrichment 
scores (ES) were processed by python (v3.6.8) package 
gseapy (v0.9.13).

Statistical analysis

Kaplan-Meier curves with log rank test were processed 
by R package survival (v 3.1-8) and survminer (v0.4.6). 
Significance of difference between two groups was 
calculated by two-side Wilcoxon rank sum test. Spearman’s 
correlation test, test Fisher’s exact test and log-linear model 
were used to evaluate the correlation between predictions 
and realistic outcomes. Receiver operating characteristic 
(ROC) curve and AUC were performed by R package 
pROC (29) (v1.15.3). Log-linear model were performed by 
SPSS 26. All other statistical analyses above were performed 
by R (v3.5.2). P values <0.05 were considered significant.

Results

Identification of potential positive and negative blood 
biomarkers

The Genotype-Tissue Expression (GTEx) project collected 
RNAseq data of ~17,000 non-disease samples, involving 
~50 tissues, including whole blood, lung, breast, etc. 

Firstly, using data from GTEx, we analyzed the Spearman 
correlation between whole blood samples and the other 
tissues respectively for each gene and each tissue. As a 
result, the blood-non blood tissue correlated genes for 
each tissue were calculated. Secondly, survival hazard 
genes and differential expression genes of each cancer 
type in The Cancer Genome Atlas (TCGA) were selected 
by Cox regression model and Wilcoxon rank sum test, 
respectively (Figure 1, http://fp.amegroups.cn/cms/bd3c76
9c4cbb9f111d848bea5c90f6ad/ATM-20-2047-1.pdf). Only 
primary tumor tissues were used for Cox regression. And 
the differential expression genes were calculated between 
tumor and normal tissues. For example, we selected ovary 
cancer to test our workflow. We defined our inferred blood 
biomarkers as genes which show their significance in both 
correlation analysis and Cox regression analysis (FDR<0.2), 
including positive hazard genes and negative hazard genes 
(Figure 2A). For instance, Kruppel like factor 13 (KLF13) 
gene expression shows a significant correlation between 
ovary and blood. Meanwhile, Cox regression reveals that 
KLF13 is a significant survival risk factor in ovarian cancer. 
Combining these two results, KLF13 is screened out to be 
a potential up-regulated prognostic blood biomarker for 
ovarian cancer. In other words, it is reasonable to think 
that high expression of KLF13 in ovarian tumors means a 
reduced survival time, and that higher KLF13 expression 
may also be detected in the blood. Therefore, by measuring 
the expression of KLF13 in the blood, the prognosis of 
ovarian cancer may be evaluated.

Next, to further explore the correlation between 
our inferred BB genes and results from real datasets, 
two ovarian cancer blood sample microarray datasets 
from the Gene Expression Omnibus (GEO) were 
collected (GSE31682, GSE37582). For GSE37582, the 
differences of blood gene expressions between ovarian 
cancer patients and healthy donors were calculated. 
Both Spearman’s correlation test and Fisher’s exact 
test show significant positive correlation between our 
BB Infer results and GSE37582 results (Figure 2C).  
While together with GSE31682, log-linear model again 
verified the correlation between our inference and the 
results of GSE37582 (Figure 2B, Table 1). However, the 
correlation between our inference and the results of 
GSE31682 was not significant. Furthermore, the Venn 
plot shows that, 167/251 of BB Infer genes were validated 
by at least one other dataset, which is more than the 
same rates of two datasets (2,066/3,967 and 2,079/5,694, 
respectively) (Figure 2D). This advantage was not lost when 
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using a stricter threshold (FDR <0.01). That is, 124/251 
to 1,053/2,553 and 1,073/4,317 (Figure 2E). These results 
demonstrated that our method is more robust than the 
differential expression genes method.

Differences of blood sample between solid tumor patients 
and healthy donors using BB Infer genes

Next, we investigated the clinical relevance of these BB 
Infer genes in an array of malignancies including lung 
cancer (including bronchial carcinoma), ovarian cancer, 
colorectal cancer, pancreatic ductal adenocarcinoma, 
prostate cancer, esophagus cancer, and renal cell carcinoma. 

We defined combined P values, by multiplying the P 
values of two steps, to assess the potential of a gene as a 
blood biomarker. Take the inference process of lung cancer 
prognostic blood biomarkers as an example, we firstly 
calculated the expression correlation between blood and 
lung for each gene using GTEx RNAseq data. For the 
second step, we collected the survival hazard genes of Lung 
squamous cell carcinoma (LUSC) by Cox regression using 
TCGA RNAseq data. The genes with P values ≥0.05 in 
any steps were excluded and the combined P values were 
calculated.

Besides the P values, the directions were also being 
considered. The genes with rho >0 in Spearman analyses 

Figure 1 Workflow of the current work. GTEx was used to collect the genes which have expression correlations between blood and the 
other tissues/organs. Survival hazard genes and differential expression genes of each cancer type in TCGA were then selected by Cox 
regression model and Wilcoxon rank sum test. By combining the P values of two steps, several blood biomarkers can be inferred for each 
cancer type. After applying these potential blood biomarker sets to 13 datasets of blood samples from solid tumor patients using ssGSEA, 
an ES for each sample was got. GTEx, Genotype-Tissue Expression; TCGA, The Cancer Genome Atlas; ssGSEA, single sample gene set 
enrichment analyses; ES, enrichment score.
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and hazard ratio (HR) >1 in Cox regression, or rho <0 
in Spearman analyses and HR <1 in Cox regression were 
considered as positive (or called: hazard, risk, up-regulated) 
blood biomarkers. Oppositely, the genes with rho>0 in 
Spearman analyses and HR <1 in Cox regression, or rho <0 
in Spearman analyses and HR >1 in Cox regression were 
considered as negative (or called: risk-free, down-regulated) 
blood biomarkers.

Then we defined several gene sets. For example, the 
‘Lung LUSC Cox Positive 20’ gene set means: The 
Spearman tests were used between blood and lung data of 
GTEx, and the Cox hazard genes were calculated using 
LUSC data of TCGA, and the positive blood biomarker 
genes with top 20 smallest combined P values were selected. 
For another example, the ‘Breast BRCA Diff. Negative 50’ 

gene set means: The Spearman tests were used between 
blood and breast data of GTEx, and the differential 
expression genes were calculated using breast invasive 
carcinoma (BRCA) data of TCGA, and the negative blood 
biomarker genes with top 50 smallest combined P values 
were selected. The gene sets used in this paper can be found 
in http://fp.amegroups.cn/cms/0f9c3342b04a4e5712de5743
63fcbe50/ATM-20-2047-2.pdf.

Next, single sample gene set enrichment analyses were 
performed using these gene sets, and the ES were calculated 
for each sample. As we can see, in all the blood samples that 
were analyzed, the ES of positive BB Infer genes in cancer 
patients are higher than healthy people. Conversely, the ES 
of negative BB Infer genes in cancer patients are lower than 
healthy people (Figure 3A,B,C,D,E,F,G,H, Figure 4A,B,C,D). 

Figure 2 Validation of BB Infer using ovarian cancer datasets. (A) Strategy of potential blood biomarkers selection. X-axis: FDR of 
Spearman correlation test. Right: positive correlated, left: negative correlated. Y-axis: FDR of Cox regression. Up: risk genes, down: risk-
free genes. (B) Correlation between BB Infer genes and real datasets using log-linear model, refer to Table 1. (C) X-axis right: potential 
up-regulated blood biomarker, left: down-regulated. Y-axis up: up-regulated genes in cancer patients’ blood in GSE37582, down: down-
regulated. (D,E) Venn plots of relationship between BB infer genes and differential expression genes of GSE31682 and GSE37582. FDR, 
false discovery rate; BB Infer, inferred blood biomarker. *, P values <0.05.
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These results indicated that the identified BB Infer genes 
have excellent clinical relevance in a variety of tumors, 
suggesting the extensive feasibility of our workflow for 
cancer blood biomarker identification.

In addition, using the available prostate cancer dataset 
GSE37199, we performed Kaplan-Meier curve analysis 
(Figure 4E). Of note, lower ES of negative BB infer genes 
signify the dismal outcome of patients while higher ES 
of negative BB Infer genes signify relatively favorable 
prognosis, which suggested our BB Infer genes has both 
diagnostic value and potential prognostic value for solid 
tumor patients. Next, we determined the sensitivity and 
specificity of these BB infer genes sets in 12 different 
datasets which represent 8 tumor types through ROC 
curve. Combined with the area under of the curve (AUC), 

Table 1 The number of genes in each condition, refer to Figure 2B

BB infer
GSE31682 up Down

Total
GSE37582 up Down Up Down

Positive 1,583 1,688 1,374 1,664 6,309

Negative 1,207 1,427 983 1,390 5,007

Total 2,790 3,115 2,357 3,054 11,316

BB infer positive: the genes which are positive correlated 
between blood and ovary and have coefficients >0 in the Cox 
regression, or the genes which are negative correlated between 
blood and ovary and have coefficients <0 in the Cox regression. 
BB infer negative: positive correlated and coefficients <0, or 
negative correlated and coefficients >0. GSE31682/ GSE37582 
up: the genes which have estimate statistics >0 in Wilcoxon 
rank sum test. GSE31682/ GSE37582 down: estimate statistics 
<0. BB infer, inferred blood biomarker.

Figure 3 Differences of blood sample between cancer patients and healthy donors using BB Infer Cox hazard genes. The enrichment scores 
of positive/negative BB infer cox hazard genes between blood sample of (A, B) lung cancer, (C, D) ovarian cancer, (E) colon cancer, (F, G) 
pancreatic ductal adenocarcinoma, (H) prostate cancer and the control groups respectively. *, P values <0.05; **, P values <0.01; ***, P values 
<0.001. BB infer, inferred blood biomarker.
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Figure 4 Validation of BB Infer differential expression genes and ROC curve of all datasets. (A-D) ES of positive/negative BB Infer 
differential expression genes between blood sample of (A) breast cancer, (B) colorectal cancer, (C) esophagus cancer, (D) kidney renal cell 
carcinoma and the control groups respectively. (E) Kaplan-Meier curve of prostate cancer patients with high ES of negative BB Infer genes 
and low. Groups were separated by median. (F) ROC curve of all datasets from Figure 3 and Figure 4A-D. *, P values <0.05; ***, P values 
<0.001. BB infer, inferred blood biomarker; ROC, receiver operating characteristic; ES, enrichment scores.

the expression level of BB Infer genes showed reliable 
predictive value in various malignancies (Figure 4F). In 
summary, these results suggest some potential usages of our 
BB Infer workflow and its identified genes in solid tumor 
screening, diagnosis and prognosis.

Discussion

Cancer is the second leading cause of death globally, and 
it is responsible for an estimated 9.6 million deaths in 
2018 (30). Globally, about 1 in 6 deaths is due to cancer (31).  
To optimize cancer treatment in clinical practice, it is 
essential to integrate tumor molecular profiling for early 
detection. Currently, diagnostic strategies basically make use 
of tissue samples to estimate the burden of cancers (32-34).  
However, this method has its inherent disadvantages. For 
example, invasive procedures are inevitable to genotype 
tumor tissues while about 25% of biopsies of lung cancer 

can’t obtain enough tissue for further assessment (35). 
As the progression of cancer is a dynamic progress, the 
genomic profiles of cancer can also change in the course 
of cancer treatment. Moreover, owing to the influence of 
different tumor microenvironment and intrinsic molecular 
heterogeneity, the genomic landscape of primary tumors 
and metastases are not always concordant (36,37). Thus, 
tissue biopsies are not enough to profile the real-time 
evolving feature of patients with solid tumors. Under this 
tricky circumstance, a procedure known as LB has been 
introduced as a new diagnostic concept predicated on the 
analysis of blood biomarkers such as CTCs and ctDNA or 
exosomes (38-40). As the development of this technology in 
the past 10 years, various body fluids were involved in this 
strategy (primarily blood but also cerebrospinal fluid, urine 
and saliva) (41). Compared with tissue biopsy, LB allow for 
repeat sampling for their minimally-invasive characteristic. 
Besides, without sampling bias, LB allow longitudinal 
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monitoring of  cancers during the process of treatment (42).  
Even though, LB can fail to cancer detection in some 
instances which can be otherwise recognized in tissue biopsies 
partly for the reason that there are very low concentrations 
of CTCs and ctDNA in body liquid samples (38).  
In face of these limitations, more reliable and advanced 
methods are need to be empoldered urgently. Based on the 
fact that there is close communication between tumor and 
blood composition, we hypothesized that the sequencing 
results of peripheral blood has also the potential to predict 
cancer. So, we designed a novel workflow, BB infer, to infer 
potential blood biomarkers of solid tumors.

However, cancer is essentially a genetic disease while 
different cancer types have different genetic landscapes, so it is 
necessary that each cancer type has its own molecular markers 
in the context of personalized, precision medicine (43).  
With the progress of high throughput and precise analytical 
methods, efforts have already been made to characterize 
the whole genomes of individual samples including blood 
samples, cancerous tissue samples and normal tissue 
samples for getting the optimum clinical guidance (44). 
For example, for accurately depicting brain tumors, 
cerebrospinal fluid has been exploited as a source of 
ctDNA (45). Previous studies had shown that the somatic 
alterations of brain tumors including gene mutations 
and copy number alterations can be comprehensively 
characterized in the DNA present in the cerebrospinal fluid 
of brain tumor patients (46). While for bladder cancer, with 
the use of liquid biopsy, ultra-deep sequencing of blood-
derived samples provide the high degree of similarity of 
tissue specimen in mutational landscapes (47). Furthermore, 
this method can even overcome the limitation of mutational 
burden and tumor heterogeneity due to the detection 
of driver genetic mutations (48). For the tremendous 
potential of LB, it is critical to set up a standard system 
to ensure high reproducibility of the results. Among 
this process, standardization of laboratory procedures 
is key but difficult (49). Blood biomarkers which were 
found in one study may be not effective in other datasets. 
However, through clinical relevance analysis, we validated 
the genes identified by our workflow in a variety of tumors. 
The method generally performs well in the diagnosis or 
screening of cancers.

LB, as we know, was first putted forward as a diagnostic 
concept in oncology introduced approximately 10 years 
ago (50). Nowadays, it has various clinical applications, 
including early detection of cancer, risk stratification 
of cancer patients, early detection of cancer relapse, 

identification of the tissue of origin of CTCs and ctDNA 
and even identification of therapeutic targets and resistance 
mechanisms of cancer (51). Under risk stratification, the 
prognostic significance speculated from LB at the time of 
initial diagnosis was well verified in breast carcinoma and 
various other malignancies have exhibited similar results 
including lung, bladder, testicular, colorectal, and head and 
neck cancer (16,52-54). Here, based on the feasibility of LB 
and sequencing results of blood sample, we validated the 
prognostic value of our method in prostate cancer.

In summary, unlike the previous data-driven methods, 
our study developed a novel workflow for solid tumor 
blood biomarker inference without using blood samples’ 
sequencing data. After applying the genes identified by 
our workflow in 13 datasets of blood samples from 8 types 
of solid tumor patients, our method generally performs 
well. Revealing some potential usages of our method in 
blood biopsy-based solid tumor screening, diagnosis and 
prognosis. The feasibility of this workflow also provides 
a new point of view to search blood markers for other 
diseases.

Conclusions

Collectively, we developed a novel solid tumor BB Infer 
workflow for cancer screening and diagnosis. Moreover, we 
demonstrated the utility of this inference method in a series 
of blood sample datasets of solid tumor patients. These 
results suggested the potential value of this method in the 
screening, diagnosis and prognosis of cancers.
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