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Abstract: Pharmacotherapies targeting vascular endothelial growth factor (VEGF) have revolutionized the 
management for neovascular retinal disorders including diabetic retinopathy and neovascular age-related 
macular degeneration. However, the burden of frequent injections, high cost, and treatment resistance in 
some patients remain unresolved. To overcome these challenges, newer generations of anti-angiogenic 
biological therapies, engineered proteins, implantable delivery systems, and biopolymers are currently being 
developed to enable more sustained, longer-lasting treatments. The use of gene therapies for pathologic 
angiogenesis has garnered renewed interests since the first FDA-approval of a gene therapy to treat inherited 
retinal diseases associated with biallelic RPE65 mutations. Newer generations of viral vectors and novel 
methods of intraocular injections helped overcome ocular barriers, improving the efficiency of transduction 
as well as safety profile. In addition, unlike current anti-VEGF gene therapy strategies which employ a 
biofactory approach to mimic existing pharmacotherapies, novel genome editing strategies that target pro-
angiogenic factors at the DNA level offer a unique and distinct mechanistic approach that can potentially 
be more precise and lead to a permanent cure. Here, we review current anti-VEGF therapies and newer 
pharmacologic agents under development, examine technologies and progress in adapting anti-VEGF gene 
therapies, and explore the future application of CRISPR-Cas9 technology to suppress ocular angiogenesis.
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Vascular endothelial growth factor (VEGF) is a proangiogenic 
cytokine that has been implicated in a variety of retinal 
disorders including diabetic retinopathy, retinal vein 
occlusion (RVO), and neovascular age-related macular 
degeneration (nAMD). It is encoded in 8 exons located 
on chromosome 6, and its functions include stimulating 
endothelial cell migration, proliferation and tube formation, 
all of which lead to neovascularization in the eye (1). The 
VEGF family consists of 7 members (VEGFa–VEGFe 
and placental growth factor or PGF), among which the 
secreted isoforms of VEGFa (VEGF121 and VEGF165) 
are the most potent factors associated with pathologic 

angiogenesis (1,2). VEGF is primarily an endothelial cell 
mitogen, but may also be secreted by retinal pigmented 
epithelium (RPE), Muller glia, and astrocytes (3-6). Early 
success in pre-clinical studies using intravitreal injections of 
anti-VEGF antibody in the 1990s led to clinical trials and 
subsequent approval for human use, enabling anti-VEGF 
therapies to become the standard of care for various ocular 
angiogenic disorders (7-10). The challenges with current 
anti-VEGF pharmacotherapies, however, include short 
durability requiring frequent injections, limited efficacy 
in some patients, as well as infection risk and high costs of 
multiple treatments. In this review, we review current anti-
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VEGF treatments and existing strategies to improve drug 
efficacy and durability, then discuss the use of gene therapy 
and potential applications of genome editing technology for 
treatment of neovascular retinal conditions. 

Current anti-angiogenic therapies for retinal 
diseases

Prior to the advent of pharmacologic interventions, the 
primary mode of inhibiting retinal angiogenesis was with 
thermal laser. Eyes with proliferative diabetic retinopathy 
could be treated with pan retinal photocoagulation, while 
choroidal neovascularization (CNV) in nAMD could be 
treated with laser ablation if the fovea were spared, then 
later with photodynamic therapy (PDT) using a porphyrin-
based photosensitizer (verteporfin) if the fovea were 
involved. These destructive laser treatments were designed 
to halt the disease progression but can cause permanent 
damage of target retina and subsequent vision loss. In 
the early 2000s, intravitreal injections of agents targeting 
VEGF, known previously as “factor X”, led to a fundamental 
paradigm shift in the management of neovascular retinal 
conditions, enabling regression of aberrant neovessels. 
Above, we summarize the current generation of anti-VEGF 
pharmacotherapies (Table 1).

Bevacizumab 

Bevacizumab is a humanized full-length VEGF monoclonal 
antibody (149 kDa) that  binds to al l  i soforms of  
VEGFa (11). Initially approved for metastatic colon cancer, 
bevacizumab given systemically demonstrated benefit in 
patients with nAMD, enabling not only a reduction in CNV 
and macular thickness, but also significant improvement 
in visual acuity (12). When given intravitreally off-label, 
the treatment continued to show significant anatomic and 
functional benefits while avoiding systemic side effects (13).  
Although it never received approval by the Food and 
Drug Administration (FDA), bevacizumab remains one 
of the most commonly used treatments due to its clinical 
benefits and lower cost compared to approved therapies. 
A randomized controlled trial directly comparing 1.25 mg 
bevacizumab with the FDA-approved ranibizumab, which is 
many times more expensive, demonstrated similar benefits, 
supporting the use of bevacizumab as first-line therapy in 
most clinical scenarios (14). 

Ranibizumab

Ranibizumab is a humanized monoclonal antibody fragment 
similar to the binding (Fab) region of bevacizumab that was 
developed specifically for intraocular use (15). The smaller 

Table 1 Summary of Anti-VEGF drugs 

Generic name Bevacizumab Ranibizumab Aflibercept Brolucizumab

Trade name Avastin Lucentis Eylea Beovu

Structure

Full length humanized 
monoclonal antibody

Fragmented humanized 
monoclonal antibody

Fusion protein containing 
domains from VEGFR-1 

and VEGFR-2

Humanized single-
chain antibody 

fragment

Molecular mass (kDa) 149 48 115 26 

Mechanism of action Binds all isoforms of 
VEGF-A

Binds all isoforms VEGF-A Binds all isoforms of 
VEGF-A, VEGF-B, and 

PIGF

Binds all isoforms of 
VEGF-A

Clinical development 
status

Off-label use; not FDA 
approved for ophthalmic 

use 

FDA approval for nAMD 
[2006], DME [2012], mCNV 

[2017], DR [2017] 

FDA approval for nAMD 
[2011], DME [2014], DR 

[2019]

FDA approval for 
nAMD [2019]

Ocular half-life in 
humans (days)

4.9 7.19 11 4.3

VEGF, vascular endothelial growth factor; PIGF, placental growth factor; nAMD, neovascular age related macular degeneration; DME, 
diabetic macular edema; mCNV, myopic choroidal neovascularization; DR, diabetic retinopathy.
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size of ranibizumab (48 kDa) compared to bevacizumab 
(149 kDa) was designed to enable better penetration 
through the neurosensory retina and reduce systemic 
exposure or potential adverse effects, making it safer for 
ophthalmic use (16). Its efficacy was demonstrated in two 
phase III clinical trials (MARINA, NCT02147067 and 
ANCHOR, NCT00061594) which demonstrated efficacy 
for treating different types of CNV in nAMD as compared 
with observation or PDT (17,18), resulting in its approval 
for nAMD in 2006. The drug was subsequently found 
to benefit eyes with RVO-related macular edema in the 
BRAVO (NCT00486018) and CRUISE (NCT00485836) 
studies (19,20), and eyes with diabetic macular edema in 
the RIDE (NCT00473382) and RISE (NCT00473330) 
trials (21), resulting in its approval for these two conditions 
in 2010 and 2012, respectively. Due to small potential 
safety concern in cardiovascular endpoints, ranibizumab 
was approved at 0.3 mg for diabetic patients, compared 
to the 0.5 mg dose for nAMD and RVO patients. More 
recently, ranibizumab has also been approved for the 
treatment of myopic CNV as well as diabetic retinopathy 
in 2017.

Aflibercept 

Aflibercept is a recombinant chimeric fusion protein that 
consists of key domains of human VEGF receptors 1 and 
2 with the constant region (Fc) of human IgG (14,22). It 
functions as a decoy receptor that can bind to VEGFa and 
PGF and hinder their functions (23). Its higher binding 
affinity and longer half-life in the vitreous was believed 
to improve the efficacy and durability of the drug (24). 
The phase III VIEW 1 and 2 trials (NCT00509795 and 
NCT00637377) demonstrated non-inferiority of aflibercept 
given every 8 weeks as compared to ranibizumab given 
monthly for nAMD, although an equivalent head-to-
head comparison was not conducted (22,25). Based on 
this data, 2-mg aflibercept was FDA-approved for nAMD 
in 2011. Subsequent completion of the COPERNICUS 
(NCT00943072), GALILEO (NCT01012973), and 
VIBRANT (NCT01521559) trials, as well as the VIVID 
(NCT01331681) and VISTA (NCT02299336) studies  
(26-29), led to the drug’s approval for RVO-related and 
diabetic macular edema in 2014. Following ranibizumab, 
aflibercept was also later approved for diabetic retinopathy 
in 2019. Despite the presumed greater efficacy and 
durability of aflibercept, long-term studies have not shown 
a difference in visual benefits (30).

Brolucizumab 

Brolucizumab is a single-chain antibody fragment targeting 
VEGFa, which due to its much smaller size (23 kDa), allows 
a much higher dose to be delivered intravitreally (31,32). 
A comparison between brolucizumab and other anti-
VEGF drugs suggests that it has similar or superior binding 
affinity to human VEGF (33), and showed early promise in 
phase II studies (34,35). The HAWK (NCT02307682) and 
HARRIER (NCT02434328) phase III trials found that over 
50% of the patients that received intravitreal injections of 
6-mg brolucizumab were able to maintain 3-month intervals 
for additional treatment through week 48 suggesting 
improved durability, resulting in the drug’s approval by 
the FDA in 2019. Some reports of an obstructive vasculitis 
distinct from the mild intraocular inflammation typically 
seen in early deployment of other anti-VEGF therapies 
have been reported after brolucizumab treatment, raising 
some concerns (36). Further studies are required to confirm 
the long-term safety of this treatment.

Emerging anti-angiogenic therapies

Despite the successes of current anti-VEGF therapies, their 
limited durability and treatment resistance in subsets of 
patients remain areas of unmet needs. Frequent injections 
increase the risk of endophthalmitis, retinal detachment, 
elevated ocular pressure, and vitreous hemorrhage (37). 
In particular, endophthalmitis is associated with poor 
visual prognosis (38,39). Thus, new technologies aimed at 
greater efficacy and durability are under development, as 
summarized below (Table 2). 

Port delivery system (PDS)

The PDS is a refillable, non-biodegradable implant that 
enables continuous delivery of drug to the vitreous (40).  
It can be permanently inserted via a small incision through 
the sclera with a self-sealing valve, and releases drugs 
into the vitreous through passive diffusion. A phase II 
clinical trial delivering ranibizumab through the PDS 
demonstrated safety and a median refill time of 15 months 
(NCT02510794), suggesting that sustained VEGF 
suppression may be therapeutic at lower doses than the 
pulsatile dosing from multiple intravitreal injections (40). 
Although a high rate of vitreous hemorrhage at the incision 
site was noted in earlier stages of the trial, the surgical 
procedure has been optimized and hemorrhage occurrence 
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has decreased (40). A phase III trial assessing its efficacy and 
pharmacokinetics is currently underway in patients with 
nAMD (NCT03677934).

Designed ankyrin repeat proteins (DARPins)

DARPins are genetically engineered proteins that 
mimic antibodies with equal or superior binding affinity 
and specificity (52). They are smaller in size, enabling 
better penetration with a longer half-life (>13 days) than 
ranibizumab (7.2 days) (53-55). For ophthalmic applications, 
abicipar pegol, an anti-VEGF DARPin, demonstrated 
effective suppression of vascular leak and neovascularization 
in animal models of corneal neovascularization and retinal 
vasculopathy (41). Phase III clinical trials (SEQUOIA 
(NCT02462486) and CEDAR (NCT02462928)] evaluating 
abicipar pegol given every 2–3 months in nAMD patients 
demonstrated non-inferior in improving visual acuity 
compared with monthly treatment of ranibizumab (41-43). 

Thermosensitive hydrogel

Hydrogels are three-dimensional networks of hydrophilic 
polymers that can hold large quantity of water content 
similar to natural tissue (56,57). Thermosensitive hydrogels 
are liquid at room temperature, but becomes solid at 
body temperature, allowing the drug-carrying polymer 
to be injected intravitreally, but serve as a reservoir for 
slow, sustained drug delivery inside the eye (58,59). For 
ophthalmic use, Wang et al. evaluated a biocompatible 
material composed of an amphiphilic triblock of copolymer 
of poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone)-
b-poly(2-ethyl-2-oxazoline) (PEOz-PCL-PEOz) and 
demonstrated extended release of bevacizumab with 
no significant toxicity in the rabbit retina (44). More 
recently, hydrogels also demonstrated controlled release 
of ranibizumab and aflibercept in vitro (45,46), and when 
injected intravitreally showed sustained release of aflibercept 
over 6 months in nonhuman primates without significant 
adverse effects (47). 

Micro- and nanoparticles

Biodegradable microparticles and nanoparticles also hold 
great potential for sustained delivery of drugs. The use 
of engineered polymeric microparticles of poly lactic-
co-glycolic acid (PLGA) was previously approved by the 

FDA for inflammatory diseases. For ocular delivery, the 
microparticles are designed to aggregate upon exposure 
to vitreous fluid to form a depot at the bottom of the eye 
to gradually release the loaded compound. The PLGA-
based intravitreal implant for dexamethasone has been used 
successfully in patients with diabetic macular edema with 
good efficacy (Ozurdex, AbbVie-Allergan) (48-50). The 
ongoing ALTISSIMO phase IIb trial (NCT03953079) is 
designed to evaluate PLGA microparticles carrying the 
anti-VEGF sunitinib malate (GB-102) in eyes with diabetic 
macular edema. Similar to microparticles, nanoparticles are 
also synthetic polymeric drug carriers but are nanometer in 
size. Nanoparticles have mainly been tested in preclinical 
studies in rats and mice, and showed promise suppressing 
ocular angiogenesis by topical application (51,60).  

Gene therapy considerations for neovascular 
retinal diseases

Gene therapy has several advantages over pharmacological 
treatments including long-term therapeutic effects without 
repeated treatments, and the capacity for cell-targeted 
delivery using cell-specific promotors. There has been 
tremendous excitement surrounding the first FDA-approval 
of a retinal gene therapy for retinal degenerations associated 
with biallelic loss of the RPE65 gene (61,62). However, 
unlike most inherited retinal diseases which are caused 
by single gene mutations, retinal angiogenesis involves a 
complex network of many different pro-angiogenic and 
anti-angiogenic factors. Also, while no current therapies 
are available for most inherited retinal degenerations, many 
treatments already exist for neovascular retinal diseases. 
While gene therapies for inherited conditions target 
younger patients before the onset of blindness, degenerative 
conditions such as AMD primarily impact older adults, 
where the quality-adjusted life-year gain may not necessarily 
justify the cost and risks of a new therapy. Nevertheless, 
given the tremendous burden of pharmacologic anti-VEGF 
treatments, gene therapy holds the promise for long-term 
suppression of VEGF in neovascular retinal diseases. 

Gene therapy involves the delivery of a therapeutic gene 
into retinal cells using a gene-carrying vector. However, the 
specific vector and mode of delivery depends on the choice 
of the therapeutic gene, target cell type, and target region 
of transduction. Here we discuss gene delivery vectors and 
modes of intraocular delivery in designing a gene therapy 
strategy for neovascular retinal diseases. 
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Gene delivery vectors

The most common carriers for delivering genetic material 
are viral vectors. Although synthetic polymers such as 
PLGA nanoparticles have been extensively evaluated as 
gene-carrying vectors, and are generally safe with low 
immunogenicity (63), these non-viral carriers are generally 
less efficient at transducing retinal cells compared with viral 
vectors. Common viral delivery platforms include lentivirus, 
adenovirus, and adeno-associated virus (AAV), each of 
which has distinct advantages and disadvantages (Table 3). 

Lentiviral vectors
Lentiviral vectors are single-stranded RNA viruses that 
can deliver ~8-kb long transgene to both dividing and non-
dividing cells. They integrate into the host genome to 
enable sustained and long-lasting transgene expression, but 
carries a risk of mutagenesis if it integrates into a tumor 
suppressor gene. To overcome this issue, inactivation at the 
3' long terminal repeat (LTR) has been developed for self-
inactivation vectors (64). 

Adenoviruses
Adenoviruses are double-stranded DNA viruses that can 
package larger genes (9 kb), but its infectivity is limited 
to postmitotic cells. While adenoviruses can efficiently 
infect a variety of retinal cell types, they have largely been 
abandoned due to significant host immune responses which 
results in a loss of therapeutic effect. 

Adeno-associated virus
AAV vectors are the leading platform for in vivo gene 
delivery as they have been engineered to exclude intrinsic 
viral sequences resulting in low immunogenicity and 
cytotoxicity (65). Despite its limited genome packaging size 
(~4.7 kb), AAV has been widely-used both in preclinical and 
clinical studies as recombinant vectors with pseudo-typed 

capsids that can achieve cell-specific therapy. For example, 
retinal ganglion neurons can be infected with AAV2 and 
AAV8 given intravitreally, while photoreceptors and RPE 
cells can be efficiently transduced with AAV2, AAV5, AAV7, 
AAV8, and AAV9 after subretinal delivery (66-68). Typically, 
AAV vectors in the vitreous cavity cannot transduce 
photoreceptors or RPE due to the internal limiting 
membrane (ILM) barrier that is formed by the foot plates 
of Muller glia. Using a method of “directed evolution” 
where libraries of AAV variants are rapidly screened in vivo 
for cell-type tropism and transduction efficiency, newer 
generations of AAV such as the AAV2-7m8 vector have 
been developed to overcome the ILM barrier to transduce 
outer retinal neurons after intravitreal injection (69). 

Modes of vector delivery 

Intraocular delivery of viral vectors enables localized 
transduction of different retinal cell types with minimal 
systemic exposure. Intraocular injections require a smaller 
amount of virus to be delivered than intravenous delivery, 
and due to the immune privileged status of the eye, can 
limit host immune responses that could otherwise cause 
cellular damage or reduce transduction efficiency. However, 
different modes of intraocular delivery vary with regard to 
ease of application, biodistribution, and immunogenicity. 
Here, we discuss 3 major modes of vector delivery (Figure 1).

Subretinal injections are the most common route of 
viral delivery in the eye because it readily bypasses the ILM 
barrier and produces reliable, robust transgene expression 
in outer retinal cells that are the target of most gene therapy 
strategies. Because the viral particles are confined to the 
immune-privileged subretinal space, host immune responses 
are minimal, and the degree of intraocular inflammation 
is very mild. However, subretinal injections are performed 
using a transretinal cannula that must be inserted through 

Table 3 Types of transgene delivery vehicles for ocular gene therapy

Vehicle property Lentivirus Adenovirus AAV Synthetic

Expression level High High High Low

Expression duration Long-term Transient Long-term Variable

Packaging capacity ~8 kb ~9 kb ~5 kb Variable

Immunogenicity High High Low Low

Risk of mutation High Low Low Low

AAV, adeno-associated virus.
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the neurosensory retina to create a retinotomy—a technique 
that generally requires complex vitrectomy surgery and has 
a risk of retinal detachment. Moreover, the transduction 
area is limited to the small area created by the injected fluid 
bleb, so widespread expression is difficult to achieve. The 
first FDA-approved ocular gene therapy for RPE65 employs 
subretinal AAV2 delivery, and has demonstrated both safety 
and efficacy in clinical trials. 

Intravitreal injections are commonly performed by retinal 
specialist for delivering pharmacotherapies such as steroids 
and anti-VEGF agents. These injections are easy to perform 
in an office setting, have low risks of endophthalmitis or 
retinal detachment, and can be repeatedly given. Unlike 
subretinal injections, the injected viral particles can 
distribute broadly to transduce the entire retina, rather than 
just a small region. Although efficient transduction of outer 
retinal layers is limited by the ILM barrier, surgical removal 
of ILM may improve transduction efficiency, although it 
still requires intraocular surgery (70). Newer generations of 
AAV such as AAV2-7m8 and some tyrosine mutants have 
been shown to exhibit better penetration and transduction 
efficiency when given intravitreally (69). However, 
intravitreal viral injections generally cause more intraocular 
inflammation than subretinal delivery, possibly due to 
the greater degree of trabecular outflow to the systemic 
circulation as compared to uveoscleral outflow.  

Suprachoroidal injections are a novel mode of intraocular 
delivery that uses microneedles or microcatheters to 
access a potential space between the choroid and the 
scleral wall of the eye (71-73). Suprachoroidal delivery 
of triamcinolone are effective in treating macular edema 
resulting from RVO and uveitis (74,75). Recent studies of 
suprachoroidal AAV delivery demonstrated widespread 
transgene expression and greater vector coverage in outer 
retinal cells, although mostly confined to the peripheral 
retina (76,77). Compared to methods using microcatheters 
(78,79), custom microneedles can be used in office settings 
similar to intravitreal injections (77). However, because the 
suprachoroidal space is outside the blood-retinal barrier 
delimiting the zone of immune privilege, there is a higher 
potential risk of inflammation or host immune responses. 

The choice of viral vector and delivery mode depends 
significantly on the choice of the therapeutic transgene, 
the target cell type, and target region of transduction. For 
example, for gene replacement strategies, the cell types 
that natively produce the mutated gene product should at 
least be transduced. However, if the transgene is a secreted 
protein such as an anti-VEGF antibody or decoy VEGF 
receptor, the identity of the transduced cells may not be 
important, as they essentially serve as a “biofactory”. For 
diseases such as nAMD, the treatment effect only needs to 
be localized to the area of the CNV, while global ischemic 
conditions such as proliferative diabetic retinopathy may 
require broader areas of therapeutic effect. However, if 
the therapeutic transgene can exert its effect at a distance, 
it may be more beneficial to transduce cells farther away 
from the pathologic region or macula area to minimize any 
potential damage from the injection procedure itself. Since 
anti-angiogenesis gene therapy strategies vary widely, we 
review several approaches most actively under investigation. 

Anti-VEGF gene therapy strategies 

rAAV-sFlt1

One of the first anti-VEGF gene therapy strategies 
employed subretinal injections of recombinant AAV2 
vector expressing soluble VEGF receptor 1, sFlt-1. Several 
pre-clinical studies using a transgenic mouse model and 
non-human primates have shown that a single subretinal 
injection of rAAV-sFlt1 was well tolerated, and suppressed 
angiogenesis effectively without significant adverse effects or 
host immune responses (80-82). However, although phase 
I studies (NCT01494805) in nAMD patients demonstrated 

Figure 1 A schematic diagram illustrating 3 different intraocular 
injection methods; subretinal, intravitreal and suprachoroidal 
injections. 
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safety (83), the phase IIa randomized clinical trial with 32 
patients showed no clear benefit in visual acuity or anatomy 
compared with baseline and control eyes (84). Another 
phase I clinical trial with AAV2-sFlt01 (Sanofi Genzyme) 
was conducted (NCT01024998) with 19 nAMD patients, 
which proved its safety, but showed high variability in sFlt 
expression and anti-permeability between patients (85). 
Interestingly, 5 of 10 patients did not express sFlt01 after 
receiving AAV2-sFlt01 (2×1010 vg), and 4 of these 5 non-
expressors had serum neutralizing antibody titer greater 
than 1:400 (85), suggesting that humoral immune responses 
impacted efficacy. These small early studies enrolled 
patients with chronic nAMD who received previous anti-
VEGF injections or showed minimal response to anti-
VEGF agents at baseline. Thus, the potential effectiveness 
of gene therapy strategies for neovascular retinal conditions 
was not fully evaluated.

ADVM-022

To overcome the difficulties of subretinal injections, 
ADVM-022 employs the AAV2-7m8 vector to encode 
aflibercept to be given as an intravitreal injection. A 
preclinical study with laser-induced CNV in non-human 
primates found ADVM-022 effective at maintaining high 
aflibercept levels in the vitreous for 3–9 months with no 
serious adverse effects (86), and prevented laser-induced 
CNV at levels comparable to a single intravitreal aflibercept 
at the time of CNV induction (86). The multicenter, open-
label, dose-ranging phase I clinical trial (OPTIC trial, 
NCT03748784) is currently ongoing, and early reports 
found 10 out of 12 patients did not require a rescue 
injection for 24 weeks while maintaining visual acuity and 
reduction in central retinal thickness (87). A more recent 
report showed that the 6 patients who received the higher 
6×1011 vg dose of ADVM-022 maintained vision and 
anatomy on optical coherence tomography (OCT) without 
rescue injections through a median of 34 weeks (range, 
24–44 weeks) (88). 

RGX-314 

RGX-314 is an AAV8 vector that expresses an anti-
VEGF antibody fragment (Fab) that selectively binds 
to human VEGF. Preclinical studies with a transgenic 
mouse model of retinal neovascularization showed that 
the subretinal injection of RGX-314 resulted in significant 
reduction of neovascularization (89). More recently, 

Ding et al. compared the effects of a suprachoroidal and 
subretinal injection of RGX-314 in rat, and suggested that 
suprachoroidal delivery of RGX-314 produced comparable 
anti-VEGF Fab expression and suppression of VEGF-
induced hemorrhage (76). A phase I/IIa clinical trial 
delivering RGX-314 by subretinal injections into nAMD 
patients is currently ongoing (NCT03066258), and the 
interim assessment found that RGX-314 was well tolerated 
and continued to produce anti-VEGF Fab for 2 years 
(90,91). Interestingly, more than 50% of patients did not 
require anti-VEGF injection for as long as 2 years with 
improved visual acuity and central retinal thickness (90). 

RNA interference (RNAi)

RNAi is a gene silencing mechanism found in eukaryotic 
cells, in which small interfering RNA (siRNA) guides the 
cleavage of multiple mRNAs resulting in gene silencing (92). 
For anti-VEGF therapy, a synthetic siRNA, bevasiranib, 
suppressed VEGF and laser-induced CNV in human cells 
lines and mice (93,94). However, the phase III clinical trial 
(COBALT, NCT00499590) comparing the safety and efficacy 
of combining bevasiranib with ranibizumab in nAMD patients 
was terminated due to adverse events including decreased 
visual acuity, endophthalmitis, uveitis, and cataract formation. 

Clustered regularly interspaced short 
palindromic repeats (CRISPR)-based genome 
editing 

Despite the early successes of viral-mediated gene 
therapies, the long-term durability of these treatments 
remains unclear. Follow-up of Leber congenital amaurosis 
type 2 patients who received the RPE65  gene via 
subretinal AAV2 showed possible loss of efficacy after 2 
to 3 years (95,96), although these findings have not been 
substantiated in later follow-up studies. Nevertheless, 
new strategies using genome editing have the potential to 
permanently interrupt pro-angiogenic pathways. CRISPR 
and CRISPR-associated protein (CRISPR-Cas) systems 
were discovered as part of bacterial adaptive immunity 
against viral infection, and are also effective in eukaryotic 
cells as tools for genome engineering. CRISPR-associated 
endonucleases such as Cas9 can be programmed using a 
single guide RNA (gRNA) to target specific sequences in 
the host genome and create double-strand DNA breaks 
to create insertions/deletions (indels) of nucleotides 
that cause frameshift mutations, or enable homology 
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directed repair when paired with an additional donor 
DNA template (97,98). The fast-moving technology has 
resulted in the rapid discovery of different Cas9 orthologs 
as well as various editing methods and targets ranging 
from single base editing to RNA editing that can be 
utilized in mammalian cells (99,100). While the Cas9 from 
Streptococcus pyogenes (SpCas9, 4.1 kb) has been the best 
characterized, smaller orthologs from Staphylococcus aureus 
(SaCas9, 3.1 kb) and Campylobacter jejuni (CjCas9, 3 kb) 
have been employed with some success (101). Due to their 
smaller size, these newer Cas9 variants may have better 
translational potential when packaged into AAV with 
gRNAs as “all-in-one” vector systems. The first human 
clinical trial using subretinal AAV delivery of the CEP290 
gene for treatment of Leber congenital amaurosis 10 
(LCA10) commenced in late 2019 to determine the safety 
of this approach (NCT03872479).

Early applications of CRISPR-based genome editing for 
ocular angiogenesis involved the direct subretinal delivery 
of CRISPR ribonucleoproteins (RNP) combining both 
Cas9 endonuclease and gRNA into mouse eyes to ablate the 
VEGF gene. This approach successfully suppressed laser-
induced CNV without significant off-target effects, although 
the specific cell type targeted was unclear (102). Subsequent 
studies packaged smaller CRISPR endonucleases such as 
CjCas9 and Prevoltella and Francisella I (Cpf1, Cas12a) along 
with respective gRNAs into AAV9 (101,103), and found 
that targeting either HIF-1α (the upstream transcriptional 
regulator of VEGF), or VEGFa resulted in similar levels 
of CNV suppression when compared with aflibercept, 
suggesting the potential of CRISPR-based strategies for 
permanent VEGF suppression and a possible true cure 
for nAMD (103). In addition, rAAV1 expressing SpCas9 
has been used to deplete VEGFR2 in vascular endothelial 
cells, and successfully suppressed mouse models of oxygen-
induced retinopathy (OIR) and laser-induced CNV (104). 
Efficient suppression of angiogenesis was found despite 
employing intravitreal delivery of a dual AAV vector system, 
where Cas9 and the sgRNA were packaged separately. 

To evaluate the translational potential of CRISPR-
based genome editing for neovascular retinal diseases, our 
group was the first to demonstrate effective suppression of 
VEGF secretion from human cells in vitro using a lentiviral 
vector to express SpCas9 and gRNAs (105). Due to the 

large size of SpCas9, we subsequently compared subretinal 
delivery of a dual-AAV vector system to deliver SpCas9 and 
gRNAs separately, versus a single-AAV vector system to 
express both SaCas9 and gRNA in mouse eyes in vivo (106).  
Interestingly, despite similar cutting efficiency in vitro 
and viral transduction efficiency in vivo between the two 
platforms, we found that the dual-vector SpCas9 system 
was more effective in suppressing VEGF than the single-
vector SaCas9, suggesting that in vivo performance may be 
dictated more by the Cas9 ortholog type than the efficiency 
of viral transduction (106). 

Despite early successes in using genome editing to treat 
ocular angiogenesis, these approaches must be carefully 
optimized prior to clinical translation. Because genome 
editing is permanent, and VEGF play physiologic roles 
in maintaining the health of the retinal and choroidal 
vasculature, over-suppression may result in harmful adverse 
effects. Also, the potential for off-target effects as well 
as the potential for host immune responses due to the 
exogenous nature of bacterial Cas9 proteins may further 
pose additional barriers to success. Yet, CRISPR-based 
strategies may also be particularly suited to address complex, 
multifactorial processes such as angiogenesis, as it enables 
multiplexing, where a collection of different gRNAs can 
be designed to target multiple loci within VEGF or several 
pro-angiogenic pathways simultaneously (Figure 2). Cell-
specific promoters may also be directed to suppress VEGF 
from more disease-relevant cellular sources, while sparing 
more physiologic VEGF sources. Thus, future studies to 
enhance the specificity of CRISPR-based strategies may 
provide a pathway to enable translation of genome editing 
to the management of retinal neovascular conditions.

Conclusions

VEGF plays a significant role in ocular angiogenesis, 
and anti-VEGF pharmacotherapies have revolutionized 
the management of neovascular diseases of the retina 
and enabled the restoration of vision for many patients. 
However, the frequent need for intraocular injections 
remain a clinical and financial burden. Recent advances in 
gene therapy have the potential to improve both the efficacy 
and durability of anti-VEGF therapies, resolve current 
unmet needs, and improve patients’ quality of life. 
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