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Background: To develop a deep learning (DL) model for prediction of idiopathic macular hole (MH) 
status after vitrectomy and internal limiting membrane peeling (VILMP) based on optical coherence 
tomography (OCT) images from four ophthalmic centers.
Methods: Eyes followed up at 1 month after VILMP for full-thickness MH were included. In the internal 
training set, 920 preoperative macular OCT images (as the input) and post-operative status of MH (closed 
or open, as the output) of 256 eyes from two ophthalmic centers were used to train the DL model using 
VGG16 algorithm. In the external validation set, 72 preoperative macular OCT images of 36 MH eyes 
treated by VILMP from another two ophthalmic centers were used to validate the prediction accuracy of the 
DL model.
Results: In internal training, the mean of overall accuracy for prediction of MH status after VILMP was 
84.6% with a mean area under the receiver operating characteristic (ROC) curve (AUC) of 91.04% (sensitivity 
85.37% and specificity 81.99%). In external validation, the overall accuracy of predicting MH status after 
VILMP was 84.7% with an AUC of 89.32% (sensitivity 83.33% and specificity 87.50%). The heatmaps 
showed that the area critical for prediction was at the central macula, mainly at the MH and its adjacent 
retina.
Conclusions: The DL model trained by preoperative macular OCT images can be used to predict 
postoperative MH status after VILMP. The prediction accuracy of our DL model has been validated by 
multiple ophthalmic centers.
Keywords: Deep learning (DL); macular hole; optical coherence tomography; clinical prediction model
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Introduction

Idiopathic macular hole (MH) is a discontinuation of the 
neurosensory retina at the center of the macula (1,2). The 
mechanism of MH development is believed to be caused 
by pathological vitreoretinal traction at the macula (3,4). 
Patients with MH typically experience progressive visual 
impairment and metamorphopsia (5). The prevalence of 
MH ranges from 0.1% to 0.8% in adults over 44 years 
old (6-9), while the age- and sex-adjusted incidence has 
been reported to be 7.8 persons or 8.69 eyes per 100,000 
population (10). According to the Beijing Eye Study, the 
prevalence of MH is 0.09%±3.04% in China (7). Older 
age and female gender are possible risk factors for MH 
development (5,10,11). Patients with full-thickness MH in 
one eye are also at risk of MH development in the other eye 
(5,12). Vitrectomy and internal limiting membrane peeling 
(VILMP) has been commonly used to treat MH, achieving 
a success rate of within 80–95% (13-17). A standard 
VILMP surgery includes a three-port vitrectomy (23-gauge 
or 25-gauge), internal limiting membrane (ILM) peeling 
with or without staining, and air tamponade.

Despite high success rate of MH surgery, in some 
cases the MH remains open after routine VILMP (18). In 
patients with an open MH after initial surgery, a second 
surgery is often required. However, the second surgery is 
mainly associated with high medical costs and less favorable 
visual outcomes compared with primary closure (19). 
Therefore, it is of clinical importance to identify MH in the 
risk of surgical failure after standard VILMP. Risk factors 
of unclosed MH include older age, larger base diameter, 
longer minimum linear dimension, longer hole duration, 
etc. (14,20-22). Among these factors, parameters related to 
MH dimensions are of significant importance (14,23). 

With the development of optical coherence tomography 
(OCT) technology, it has been widely used for diagnosis 
and follow-up of MH. To better predict MH status after 
surgery, several OCT parameters of MH have been 
proposed (14,23-25). For instance, some researchers have 
demonstrated that preoperative MH diameter determined 
by OCT is related to post-operative closure of the  

MH (25). In another study, it has been shown that the hole 
form factor (HFF) of MH is associated with anatomical 
success rate following the initial surgical procedure (23). 
However, the measurements of these parameters vary 
between technicians and the prediction accuracy of them is 
not satisfactory (14).

Deep learning (DL) is state-of-the-art technology 
in artificial intelligence, which has sparked tremendous 
global interest over the last few years (26). DL systems 
have expert-level performance in detecting various ocular 
diseases including diabetic retinopathy (DR) and age-
related macular degeneration (AMD) using clinical ocular 
images (27,28). On the other hand, DL systems also have 
been used for predicting treatment outcomes of ocular 
diseases based on pretreatment clinical images. Recently, a 
DL-based model developed by Gupta et al. has been applied 
to predict and monitor retinopathy of prematurity (ROP) 
regression after treatment (29). However, to the best of our 
knowledge, no DL model has been developed to predict 
MH status based on the preoperative macular OCT images. 
If available, such a DL model could help vitreoretinal 
surgeons to accurately select patients, who are the most 
likely to have unclosed MH after routine VILMP, and a 
new surgical technique such as inverted ILM flap can be 
suggested to those patients (30).

Th i s  s tudy  a imed  to  deve lop  a  DL mode l  to 
automatically predict MH status after routine VILMP based 
on preoperative macular OCT images from a multi-center 
population.

Methods

Patients and preparation of datasets

Eyes followed up at 1 month after VILMP for MH 
were retrospectively included in this study. Eyes with a 
macular hole caused by known etiologies such as trauma, 
macular edema, epiretinal membrane, high myopia, retinal 
detachment or retinoschisis were excluded. All the eyes 
received comprehensive ophthalmologic examinations 
including best-corrected visual acuity (BCVA), slit-lamp 
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biomicroscope anterior segment and fundus examination, 
intraocular pressure (IOP) measurement, and SD-OCT 
scanning (Spectralis; Heidelberg Engineering, Heidelberg, 
Germany) before and after VILMP. The study was 
conducted according to the Declaration of Helsinki (as 
revised in 2013) and was approved by the Institutional 
Review Board of GPPH (No. GDREC2020067H). 
Informed consent was taken from all the patients. A total 
of 920 preoperative macular OCT images of 256 eyes from 
the Department of Ophthalmology, Guangdong Provincial 
People’s Hospital (GDPH, 213 images of 54 eyes) and 
the Zhongshan Ophthalmic Center (707 images of  
202 eyes) were collected for training and internal validation 
of the proposed DL model. A total of 72 preoperative 
macular OCT images of 36 eyes from the Department of 
Ophthalmology, Zhujiang Hospital of Southern Medical 
University (ZHSMU, 44 images of 27 eyes) and the 
Department of Ophthalmology, the First Affiliated Hospital 
of Kunming Medical University (FAHKMU, 28 images of  
9 eyes) were included in the external validation dataset. 

OCT examination and IMH status labeling

OCT examinations were performed by experienced 
technicians. A custom of 20°×20° volume acquisition 
protocol was used to obtain a set of high-speed scans from 
each eye. With this protocol, 25 horizontal and central 
vertical cross-sectional B-scan images were obtained, which 
consisted of 512 A-scans each. The image through the fovea 
was determined by simultaneous evaluation of the red-
free image on the computer monitor of the OCT scanner. 
To establish a standardized image format of the dataset for 
subsequent training and validation, all scans were saved 
in the TIFF format. Before training, all OCT images had 
undergone a layered labeling system consisting of multiple 
layers of trained graders with increasing expertise for 
verification and correction of image labels. The first layer of 
graders conducted quality control and excluded images with 
low quality. The images taken from improper positioning, 
with low signals, or with strong motion artifacts causing 
misalignment and blurring of sections were excluded. The 
second layer of graders consisted of two Chinese board-
certified ophthalmologists (YH, YX) who independently 
labeled the MH status (closed or open) according to the 
OCT images that had passed the first layer. MH closure was 
defined as restoration of continuity of neurosensory retina 
at the central fovea in all the post-operative OCT scans. 
Finally, the third layer grader who was a senior retinal 

specialist (YH) verified the true labels of MH status and 
generated the final decision if there was any discordance 
between the 2 ophthalmologists. The MH status verified 
by the third layer grader was used as the true label of each 
OCT image.

Training and validation of DL-based model

The raw OCT images were first preprocessed to normalize 
the input data. The saturated pixels with an intensity value 
of 255 were removed from the raw OCT images and the 
retinal layers based on smooth pixel intensity were cropped. 
The OCT images were then resized into 224*224 pixels 
based on the requirements of Visual Geometry Group 
(VGG) 16 (Department of Engineering Science, the 
University of Oxford, Oxford, UK) (31). The VGG16 with 
16 convolutional layers was used as the benchmark DL-
based model in the whole experiments, wherein the OCT 
images (B-scans containing the macular center) were the 
input, and the status of MH after VILMP were the output 
(Figure 1). 

The training started with multiple iterations with a batch 
size of 16 images, with the initial learning rate of 0.001 
and stopped at 15 epochs. For each training iteration, a 
cross-entropy loss function was used as the objective loss 
function to update the optimization parameters, and a 
stochastic gradient descent (SGD) algorithm with Nesterov 
momentum term was used to optimize a pre-defined loss of 
function to train neuron weights via back propagation. At 
every epoch, the performance of the convolutional neural 
network (CNN) was assessed using the validation dataset. 
The VGG16 model was a binary classification model output 
by the Softmax classifier, and 2 nodes were used in the last 
layer to generate predictions.

In the training dataset, there were 96.88% of patients 
who had more than one OCT image per eye, with an 
average of 3.6 OCT images per eye. To determine the 
most appropriate hyperparameters for our final model, 
the popular ten-fold cross-validation scheme was used on 
the training dataset, which was divided into ten portions 
randomly. To obtain fully independent folds, python code 
was used to read the labels and the corresponding index 
positions of all images. The code was then used to remove 
the repeated names of different index position images of 
the same patient (in other words, only one patient name 
was kept in several images of the same patient). Therefore, 
the partition was carried out at the patient-level, and the 
original index position images belonging to the same 



Hu et al. A DL model to predict macular hole status after surgery

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):51 | http://dx.doi.org/10.21037/atm-20-1789

Page 4 of 10

patient were divided into the same partition to ensure the 
completely independent folds. In each run, nine portions of 
the dataset were employed to train the DL model, and the 
other one was used for model testing to facilitate parameter 
selection and tuning. The experiments were conducted 
until each portion was tested. Using the above-chosen 
hyperparameters, the DL system was re-trained using the 
entire training dataset, and its predictive performance was 
evaluated based on our independent external validation 
dataset, in which the data were not involved in the 
development of DL-based method.

Statistical analysis 

After training, validating and testing our DL model, we 
could obtain the predictive output of each OCT image. 
The exact breakdown of performance regarding the 
correlation of predicted labels obtained from our DL-based 
model with true labels was depicted as confusion matrices. 
The confusion matrices were used to calculate the overall 
accuracy of prediction of MH status after VILMP. 

The area under the receiver operating characteristic 
(ROC) curve (AUC) was used to evaluate the accuracy of 
DL model in predicting the MH status after surgery. A 
series of true positive rates (TPRs) and false positive rates 
(FPRs) were obtained to form ROC curves. The TPR was 
also known as sensitivity, and the FPR results were obtained 
by subtracting the specificity value from 1. The optimal cut-

off point was obtained by using the highest Youden’s index 
(sensitivity+specificity−1), and the corresponding optimal 
sensitivity and specificity values were recorded. The overall 
accuracy and the AUC in internal validation were presented 
as mean and 95% confidence interval (CI).

Visualization method for the proposed DL-based model

To visualize the critical area in OCT images that was highly 
correlated with MH status after VILMP, Gradient-weighted 
Class Activation Mapping (Grad-CAM), an approach 
proposed by Ramprasaath R. Selvaraju et al., was used to 
aid interpretation of the results and increase the model 
transparency (32). The gradient indicated the contribution 
of each spot of the feature map to the output probability 
value. The region with the largest gradient had the greatest 
impact on the output probability value. The highlighted 
region in the heatmap represented the part of the OCT 
image most critical for accurately predicting the MH status 
after VILMP.

Results

Demographics of the eyes included were shown in Table 1. 
There were 208 eyes with closed MH and 84 eyes with open 
MH at 1-month visit (to balance the number of closed and 
open MH, more eyes with an open MH were deliberately 
included). In internal validation, the mean overall accuracy 

Figure 1 Demonstration of construction of the deep learning model. A deep learning model was trained to predict MH status (closed or 
open) after surgery using VGG16 network. MH, macular hole; OCT, optical coherence tomography; VGG16, Visual Geometry Group 16 
Layers. 
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for predicting the MH status after VILMP was 84.6% (95% 
CI: 82.89–86.31%), with a mean area under the receiver 
operating characteristic (ROC) curve (AUC) of 91.04% 
(95% CI: 90.09–91.99%, sensitivity 85.37% and specificity 
81.99%). In external validation, the overall accuracy for 
predicting the MH status after VILMP was 84.7%, with 
an AUC of 89.32% (sensitivity 83.33% and specificity 
87.50%). The prediction accuracy of MH closure and 
opening was 85.4% and 83.3%, respectively (Figures 2,3). 
Heatmaps showed that the area critical for prediction was 
at the central macula, mainly at the MH and its adjacent 
retina, suggesting that the DL-based model could assist 

in successfully identifying the pathologic region that was 
the most critical for accurate prediction of MH status after 
VILMP (Figure 4).

Discussion

To the best of our knowledge, the present study is the 
first to predict the anatomical outcome of standard MH 
surgery based on preoperative macular OCT images from 
a multicenter dataset. The results show that the accuracy 
of our DL model in predicting MH status (i.e., closed or 
open) is promising. The performance of DL model is as 
follows: a mean overall accuracy of 84.6% and a mean AUC 
of 91.04% in internal validation, and an overall accuracy 
of 84.7% and an AUC of 89.32% in external validation. 
Moreover, heatmaps of the DL model show that the area 
highlighted is the most predominant pathologic region 
of the MH. These findings indicate that our DL model 
is capable of successfully predicting the MH status by 
accurately recognizing the critical pathologic region in 
preoperative OCT images.

The mechanisms of MH development mainly involve 
anterior and tangential vitreoretinal traction to the  
fovea (3). Accordingly, release of vitreoretinal traction by 
VILMP has become a standard treatment for FTHM with 
success rates of VILMP vary from 80% to 95% (13-17). 
Despite high success rates of VILMP, the MH remains 
to be open after uneventful surgery in a small number of 
cases (18,30). Preoperative OCT parameters of MH are 
important predictive factors associated with MH status 
after VILMP surgery (14,20). Therefore, some researchers 
have suggested that adjusting surgical planning according 
to OCT parameters of the MH to increase success  
rates (33). These previous findings constitute the basis of 

Table 1 Patient demographics

Characteristics All eyes Internal validation External validation

Number of eyes 292 256 36

Age, mean (SD), years 60.36 (10.83) 60.35 (10.31) 60.44 (14.58)

Sex, females, n (%) 185 (63.37) 165 (64.45) 20 (55.56)

Duration of symptoms, mean (SD), months 7.20 (12.35) 7.11 (11.98) 7.89 (15.25)

Preoperative BCVA, mean (SD), logMAR 1.04 (0.43) 1.04 (0.44) 1.01 (0.32)

Number of images 992 920 72

Images with a closed MH, n (%) 681 (68.65) 633 (68.80) 48 (66.67)

MH, macular hole; SD, standard deviation; BCVA, best-corrected visual acuity; logMAR, the logarithm of minimal angle resolution.

Internal vaildation: 91.04% 
External vaildation: 89.32%
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Figure 2 The receiver operating characteristic (ROC) curves of 
the deep learning model. The ROC curves for the prediction task 
in the internal validation set (red line) and external validation set 
(blue line). The area under ROC curves (AUC) for the internal 
validation set and the external validation set was 91.04% and 
89.32%, respectively.
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the possibility and necessity for the prediction of MH status 
after VILMP surgery. However, current measurements 
of the MH OCT parameters used for predicting are 
manual, expertise-requiring and time-consuming. The 
measurements also vary between different technicians. 
It is particularly beneficial and meaningful to develop an 
automated system to select MH at a high risk of surgery 
failure after standard VILMP. 

Using the  DL technology,  informat ion in  the 
preoperative OCT images associated with postoperative 
MH status can be automatically extracted and processed. 
The information is unique for each OCT image, and 
contains parameters that have been reported before and 
parameters that are unknown so far. For each OCT image, 
the information is unique and is integrated by DL model. 
By corresponding the preoperative OCT information to 
the postoperative MH status after repeated training, the 
ML model can predict the MH status based on the OCT 
images. The DL method we have adopted in this study 
(VGGNet) consists of 16 layers, mainly composing of small 
3×3 convolution operations and 2×2 pooling operations (31). 
Therefore, stacking multiple small convolution kernels can 
increase the depth of the network to acquire richer image 
characteristics, while limiting the number of parameters. 
For example, by stacking three 3×3 convolutional layers 
instead of using a single 7×7 convolutional layer (i.e., 
AlexNet), some limitations can be overcome. Firstly, 

it combines three nonlinear functions rather than one, 
making the decision function more discriminative and 
representative. Secondly, the number of parameters is 
reduced, while the receptive field remains unchanged. In 
addition, the use of small convolution kernels also plays 
a role in regulating and improving the effectiveness of 
different convolution kernels.

DL studies based on OCT images mostly concentrate 
on image segmentation, involving complex feature selection 
and extraction. In addition, introducing a minor error in the 
segmentation can lead to classification error (34). However, 
this problem can be avoided in the present study by training 
the DL model to learn the prediction features directly 
from the OCT images. Therefore, compared to CNN 
with shallower architectures, our DL-based model can 
automatically learn richer and more discriminative OCT 
image features to present an accurate prediction.

Our deep neural network also contains the batch 
normalization (BN) layer and the dropout layer. The BN 
layer can pull the distribution of neuron input value of 
each neural network layer back to the standard normal 
distribution with a mean of 0 and a variance of 1. Therefore, 
the BN layer not only improves the training speed, but 
also prevents gradient exploding and gradient vanishing. 
Moreover, the BN layer can avoid overfitting to a certain 
extent. In addition, the dropout layer, placed after the fully 
connected layer, is used as a trick for training deep neural 

Figure 3 Confusion matrix for binary classifications using the deep learning model. Ground true labels are on the vertical axis and predicted 
labels are on the horizontal axis. (A) Confusion matrix for the internal validation set. The overall accuracy was 84.6%, while the accuracy 
for predicting macular hole closure or opening was 89.1% and 74.6%, respectively. (B) Confusion matrix for the external validation set. The 
overall accuracy was 84.7%, while the accuracy for predicting macular hole closure or opening was 85.4% and 83.3%, respectively.
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networks. In each training batch, randomly dropping out 
half of the feature detectors (assigning half of the hidden 
layer nodes to 0) can reduce the interaction between the 
feature detectors (hidden layer nodes), and reduces the 
complex co-adaptation relationship between the neurons. 
This approach forces the network more robustly and 
significantly avoided overfitting.

A major strength of our study is the heterogeneity of 
the datasets. The DL-based model is trained by OCT 
images from two different ophthalmic centers, and it has 
been validated by an independent dataset from another two 
ophthalmic centers. The heterogeneity of the datasets is 
very important for the development and validation of DL 
model (35). Data from patients with different backgrounds 
and demographics can help train the DL-based model to 
learn the “true features” critical for making an accurate 

prediction. Successful validation of the DL models by 
different external datasets would be more convincing 
for predicting the ability and popularity of the models. 
While we increase the heterogeneity of our datasets, 
we have only included patients with idiopathic MH but 
not MH secondary to known etiologies such as trauma. 
This is because MH caused by known etiologies might 
have different pathogenesis and prognostic factors from 
idiopathic MH. The inclusion of these cases may reduce the 
efficacy of training, leading to poor performance of the DL-
based model. Thus, to ensure the prediction accuracy of 
the DL-based model, MH secondary to known etiologies is 
excluded for the current study.

Another artificial intelligence technology called machine 
learning (ML) also has been proposed to predict treatment 
outcomes of some ocular diseases, such as AMD and 

Figure 4 Heatmaps highlighting the pathological area highly correlated with macular hole status after surgery. The heatmaps were 
generated by Gradient-weighted Class Activation Mapping (Grad-CAM). The heatmaps demonstrate the critical area in optical coherence 
tomography images that were highly correlated with an accurate prediction of macular hole status after surgery.
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macular edema. Unlike DL models, ML models use text 
information instead of images as input. In a recent study, 
information extracted from OCT images taken during the 
upload phase of 3 anti-VEGF injections was incorporated 
into an ML-based model to predict recurrence of macular 
edema associated with retinal vein occlusion. The results 
were encouraging with an AUC of 0.76–0.83 (36). However, 
unlike the severity of macular edema, the parameters of MH 
morphology are often manually measured, restricting the 
use of ML model in predicting the MH status after surgery. 
In the present study, macular OCT image is used as a whole 
to train the DL-based model. The DL-based model can 
automatically process and analyze anatomical parameters 
of the MH. Hence, the problems associated with manual 
measurement are avoided. 

However, there are several limitations in this study. One 
limitation is the small sample size. One may argue that an 
external validation with 36 eyes is not convincing enough. 
Although the sample is not large considering this is a DL-
based study, we have shown excellent accuracy of our 
DL-based model in MH status prediction after VILMP. 
Moreover, the eyes in the external validation set are 
obtained from two ophthalmic centers different from the 
internal validation set, suggesting satisfactory adaptability 
of the DL model. On the other hand, this is a preliminary 
study conducted to evaluate the possibility of predicting 
postoperative MH status using DL model. Further 
studies with a larger sample size from multiple centers are 
warranted to validate the results of the present study. 

In conclusion, the proposed DL-based model has 
demonstrated high accuracy and transparency in automated 
prediction of MH status after VILMP based on preoperative 
macular OCT images. Our results indicate the feasibility 
of automatic prediction of MH status after routine 
vitreoretinal surgery. In case of further improving and fine-
tuning, the proposed DL-based model can be used to select 
patients with a MH that is very unlikely to be closed using 
routine vitreoretinal surgery and more progressive surgical 
methods can be suggested to these patients. 

Acknowledgments 

The authors thank the School of Computer Science and 
Engineering, South China University of Technology for 
their technical assistance with the deep learning system; 
the Zhongshan Ophthalmic Center, the Department of 
Ophthalmology in Zhujiang Hospital of Southern Medical 
University and the Department of Ophthalmology in the 

First Affiliated Hospital of Kunming Medical University 
for contributing OCT images for internal and external 
validation. 
Funding: This study was supported by the National 
Natural Science Foundation of China (No. 81870663 and 
No. 61771007), the Science and Technology Program 
of Guangzhou (No. 202002030074), the Outstanding 
Young Talent Trainee Program of Guangdong Provincial 
People’s Hospital (No. KJ012019087), the GDPH 
Scientific Research Funds for Leading Medical Talents 
and Distinguished Young Scholars in Guangdong 
Province (No. KJ012019457), the talent introduction 
fund of Guangdong Provincial People’s Hospital (No. 
Y012018145), the Technology Innovation Guidance 
Program of Hunan Province (No. 2018SK50106), the 
Science and Technology Planning Project of Guangdong 
Province (No. 2017B020226004), the Health and Medical 
Collaborative Innovation Project of Guangzhou City (No. 
201803010021), and the Fundamental Research Fund for 
the Central Universities (No. 2017ZD051), the Science 
Research Foundation of Aier Eye Hospital Group (No.  
AM1909D2).

Footnote

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/atm-20-1789

Peer Review File: Available at http://dx.doi.org/10.21037/
atm-20-1789

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/atm-20-1789). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted according to the Declaration of Helsinki (as 
revised in 2013) and was approved by the Institutional 
Review Board of GPPH (No. GDREC2020067H). 
Informed consent was taken from all the patients. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 

http://dx.doi.org/10.21037/atm-20-1789
http://dx.doi.org/10.21037/atm-20-1789
http://dx.doi.org/10.21037/atm-20-1789
http://dx.doi.org/10.21037/atm-20-1789
http://dx.doi.org/10.21037/atm-20-1789
http://dx.doi.org/10.21037/atm-20-1789


Annals of Translational Medicine, Vol 9, No 1 January 2021 Page 9 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):51 | http://dx.doi.org/10.21037/atm-20-1789

License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Barak Y, Ihnen MA, Schaal S. Spectral domain optical 
coherence tomography in the diagnosis and management 
of vitreoretinal interface pathologies. J Ophthalmol 
2012;2012:876472.

2. Takahashi A, Yoshida A, Nagaoka T, et al. Idiopathic full-
thickness macular holes and the vitreomacular interface: 
a high-resolution spectral-domain optical coherence 
tomography study. Am J Ophthalmol 2012;154:881-92.e2.

3. Gass JD. Idiopathic senile macular hole. Its early stages 
and pathogenesis. Arch Ophthalmol 1988;106:629-39.

4. Gass JD. Reappraisal of biomicroscopic classification of 
stages of development of a macular hole. Am J Ophthalmol 
1995;119:752-9.

5. Chew EY, Sperduto RD, Hiller R, et al. Clinical course of 
macular holes: the Eye Disease Case-Control Study. Arch 
Ophthalmol 1999;117:242-6.

6. la Cour M, Friis J. Macular holes: classification, 
epidemiology, natural history and treatment. Acta 
Ophthalmol Scand 2002;80:579-87.

7. Wang S, Xu L, Jonas JB. Prevalence of full-thickness 
macular holes in urban and rural adult Chinese: the Beijing 
Eye Study. Am J Ophthalmol 2006;141:589-91.

8. Sen P, Bhargava A, Vijaya L, et al. Prevalence of idiopathic 
macular hole in adult rural and urban south Indian 
population. Clin Exp Ophthalmol 2008;36:257-60.

9. Thapa SS, Thapa R, Paudyal I, et al. Prevalence and 
pattern of vitreo-retinal diseases in Nepal: the Bhaktapur 
glaucoma study. BMC Ophthalmol 2013;13:9.

10. McCannel CA, Ensminger JL, Diehl NN, et al. 
Population-based incidence of macular holes. 
Ophthalmology 2009;116:1366-9.

11. Johnson MW, Van Newkirk MR, Meyer KA. Perifoveal 
vitreous detachment is the primary pathogenic event in 
idiopathic macular hole formation. Arch Ophthalmol 
2001;119:215-22.

12. Kumagai K, Ogino N, Hangai M, et al. Percentage of 
fellow eyes that develop full-thickness macular hole in 
patients with unilateral macular hole. Arch Ophthalmol 
2012;130:393-4.

13. Passemard M, Yakoubi Y, Muselier A, et al. Long-
term outcome of idiopathic macular hole surgery. Am J 
Ophthalmol 2010;149:120-6.

14. Wakely L, Rahman R, Stephenson J. A comparison 
of several methods of macular hole measurement 
using optical coherence tomography, and their value 
in predicting anatomical and visual outcomes. Br J 
Ophthalmol 2012;96:1003-7.

15. Krishnan R, Tossounis C, Fung Yang Y. 20-gauge and 
23-gauge phacovitrectomy for idiopathic macular holes: 
comparison of complications and long-term outcomes. 
Eye (Lond) 2013;27:72-7.

16. Elhusseiny AM, Schwartz SG, Flynn HW Jr, Smiddy 
WE. Long-Term Outcomes after Macular Hole Surgery. 
Ophthalmol Retina 2020;4:369-76. 

17. Christmas NJ, Smiddy WE, Flynn Jr HW. Reopening 
of macular holes after initially successful repair. 
Ophthalmology 1998;105:1835-8.

18. Abbey AM, Van Laere L, Shah AR, Hassan TS. Recurrent 
macular holes in the era of small-gauge vitrectomy: A 
Review of Incidence, Risk Factors, and Outcomes. Retina 
2017;37:921-4. 

19. Valldeperas X, Wong D. Is it worth reoperating on 
macular holes? Ophthalmology 2008;115:158-63.

20. Salter AB, Folgar FA, Weissbrot J, et al. Macular hole 
surgery prognostic success rates based on macular hole 
size. Ophthalmic Surg Lasers Imaging 2012;43:184-9.

21. Kim Y, Kim ES, Yu SY, Kwak HW. Age-related clinical 
outcome after macular hole surgery. Retina 2017;37:80-7. 

22. Essex RW, Kingston ZS, Moreno-Betancur M, et al. The 
Effect of Postoperative Face-Down Positioning and of 
Long- versus Short-Acting Gas in Macular Hole Surgery: 
Results of a Registry-Based Study. Ophthalmology 
2016;123:1129-36. 

23. Ullrich S, Haritoglou C, Gass C, et al. A. Macular hole 
size as a prognostic factor in macular hole surgery. Br J 
Ophthalmol 2002;86:390-3.

24. Ruiz-Moreno JM, Staicu C, Pinero DP, et al. Optical 
coherence tomography predictive factors for macular hole 
surgery outcome. Br J Ophthalmol 2008;92:640-4.

25. Ip MS, Baker BJ, Duker JS, et al. Anatomical outcomes 
of surgery for idiopathic macular hole as determined 
by optical coherence tomography. Arch Ophthalmol 
2002;120:29-35.

26. Kermany DS, Goldbaum M, Cai W, et al. Identifying 
Medical Diagnoses and Treatable Diseases by Image-Based 
Deep Learning. Cell 2018;172:1122-31.e9.

27. Lu W, Tong Y, Yu Y, et al. Deep Learning-Based 

https://creativecommons.org/licenses/by-nc-nd/4.0/


Hu et al. A DL model to predict macular hole status after surgery

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):51 | http://dx.doi.org/10.21037/atm-20-1789

Page 10 of 10

Automated Classification of Multi-Categorical 
Abnormalities From Optical Coherence Tomography 
Images. Transl Vis Sci Technol 2018;7:41.

28. Li F, Chen H, Liu Z, et al. Deep learning-based 
automated detection of retinal diseases using optical 
coherence tomography images. Biomed Opt Express 
2019;10:6204-26. 

29. Gupta K, Campbell JP, Taylor S, et al. A Quantitative 
Severity Scale for Retinopathy of Prematurity Using Deep 
Learning to Monitor Disease Regression After Treatment. 
JAMA Ophthalmol 2019;137:1029-36. 

30. Michalewska Z, Michalewski J, Adelman RA, et al. 
Inverted internal limiting membrane flap technique for 
large macular holes. Ophthalmology 2010;117:2018-25.

31. Simonyan K, Zisserman A. Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv:14091556 2014.

32. Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: 

Visual explanations from deep networks via gradient-
based localization. Proceedings of the IEEE international 
conference on computer vision, 2017.

33. Yao Y, Qu J, Dong C, et al. The impact of extent of internal 
limiting membrane peeling on anatomical outcomes of 
macular hole surgery: results of a 54-week randomized 
clinical trial. Acta Ophthalmol 2019;97:303-12. 

34. Xu X, Lee K, Zhang L, et al. Stratified Sampling Voxel 
Classification for Segmentation of Intraretinal and 
Subretinal Fluid in Longitudinal Clinical OCT Data. 
IEEE Trans Med Imaging 2015;34:1616-23.

35. Ting DSW, Lee AY, Wong TY. An Ophthalmologist's 
Guide to Deciphering Studies in Artificial Intelligence. 
Ophthalmology 2019;126:1475-9. 

36. Vogl WD, Waldstein SM, Gerendas BS, et al. Predicting 
Macular Edema Recurrence from Spatio-Temporal 
Signatures in Optical Coherence Tomography Images. 
IEEE Trans Med Imaging 2017;36:1773-83. 

Cite this article as: Hu Y, Xiao Y, Quan W, Zhang B, Wu Y, 
Wu Q, Liu B, Zeng X, Fang Y, Hu Y, Feng S, Yuan L, Li T,  
Cai H, Yu H. A multi-center study of prediction of macular hole 
status after vitrectomy and internal limiting membrane peeling 
by a deep learning model. Ann Transl Med 2021;9(1):51. doi: 
10.21037/atm-20-1789


