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Abstract: Roscovitine [CY-202, (R)-Roscovitine, Seliciclib] is a small molecule that inhibits cyclin-dependent 

kinases (CDKs) through direct competition at the ATP-binding site. It is a broad-range purine inhibitor, which 

inhibits CDK1, CDK2, CDK5 and CDK7, but is a poor inhibitor for CDK4 and CDK6. Roscovitine is widely used 

as a biological tool in cell cycle, cancer, apoptosis and neurobiology studies. Moreover, it is currently evaluated as a 

potential drug to treat cancers, neurodegenerative diseases, inflammation, viral infections, polycystic kidney disease 

and glomerulonephritis. This review focuses on the use of roscovitine in the disease model as well as clinical model 

research.
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Introduction

Protein phosphorylation by protein kinases plays a central 
role in the regulation of various cell processes, such as 
proliferation, cell cycle, differentiation and apoptosis. 
Because of that, deregulation of kinase activity can result 
in remarkable changes of these processes. Deregulated 
kinases are often found to be oncogenic and can be central 
for the survival and spread of cancer cells (1). Likewise, 
the phosphorylation of some proteins, such as AKT (2-4), 
EGFR (5,6), ERBB2 (5,7-9), SCH1 (10) and RB1 (11) is 
associated with prognosis in cancers.

Cyclin-dependent kinases (CDK) are protein kinases 
of CMGC group of kinases, which play an essential role 
in the control of the cell cycle and/or proliferation and 
transcription. There are 21 CDK genes in human genome, 
11 of which are so called “classical” CDKs. These CDKs 
are responsible for the activation of the cell cycle of 
quiescent cells as well as for the from G1/M and G2/S 

transitions of the cell cycle. Different CDKs are involved 
in different checkpoints of the cells cycle. CDK4 and 6 
initiate the transition from quiescence to proliferation; 
CDK2 coordinates cell progression from G1 through 
S-phase, while CDK1 is a universal M-phase promoting 
factor. These CDKs also associate with different cyclins: 
CDK4/6 with cyclin D, CDK2 first with cyclin E and then 
with cyclin A and CDK1 with cyclin B (12). Increased 
levels of CDK4, CDK6 and CDK2 activities have been 
observed in many different cancers. Overexpression of 
CDK activators such as cyclin D1, cyclin E and cyclin A and 
the activating phosphatases CDC25A and CDC25B or loss 
of function of the CDK inhibitors CDKN2A, CDKN1A 
and CDKN1B are major causes for the overactivation 
of CDKs (13). The fundamental role of CDKs in the 
cell cycle and proliferation, and their well-recognized 
role in the pathology of cancer make them attractive 
drug targets. Therefore, the search for the inhibitors of 
CDKs has been one of the interests of both academic and 
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industrial scientific communities. To date, more than 30 
different CDK small molecule inhibitors are developed: 
broad-range inhibitors (such as flavopiridol, olomoucine, 
roscovitine, kenpaullone, SNS-032, AT7519, AG-024322, 
R547), specific inhibitors (such as fascaplysin, ryuvidine, 
purvalanol A, NU2058, BML-259, SU 9516, PD 0332991, 
P-276–00) and third generation inhibitors (such as CR8#13, 
dinaciclib). Many of these inhibitors had entered different 
stages of clinical trials (14-18).

Roscovitine (named after Roscoff—a French town, 
where the lab which discovered the compound was located) 
(Figure 1) is also known as (R)-Roscovitine, CY-202, and 
Seliciclib. The systematic name of roscovitine is (2R)-2-
{[6-(Benzylamino)-9-isopropyl-9H-purin-2-yl] amino}-
1-butanol, chemical formula C19H26N6O, molecular 
weight—354.45. It is a white powder that is soluble in 
DMSO (up to 50 mM) and in 50 mM HCl with the pH 
adjusted to 2.5. Roscovitine belongs to the family of 
purines, which all share the basic ring structure and include 
biologically important molecules such as ATP, cyclic AMP, 
NAD, FAD, adenine and guanine, etc. It acts by competing 
with ATP for binding at the ATP-binding site of CDKs 
by interacting with the amino acids that line up the ATP-
binding pocket of the CDK catalytic domain. In case of 
CDK2, the interaction mostly consists of two hydrogen 
bonds (involving N7 and N6 of the purine) with backbone 
atoms of Leu83. A weak hydrogen bond is also formed 
between O1 and a water molecule and the benzyl ring of 
roscovitine is facing the outside of the ATP-binding pocket. 
This interaction prevents ATP from binding the kinase, and 
thus catalytic reaction cannot be performed (19). Roscovitine 
is a broad-range purine analog inhibitor, which inhibits 
CDK1, CDK2, CDK5, CDK7and CDK9 (IC50 ~0.2-
0.7 μM) but is a poor inhibitor for CDK4, CDK6 and 
CDK8 (IC50 >100 μM) (Table 1). Only several kinases are 
sensitive to roscovitine in the 1-40 μM range (CaMK2, 
CK1α, CK1δ, DYRK1A, EPHB2, ERK1, ERK2, FAK, and 
IRAK4), but other kinases are insensitive to roscovitine 
(20,22,23). It has been shown that roscovitine acts by 
competing with ATP for binding at the ATP-binding site 
of CDKs. This binding at the catalytic site was confirmed 
by direct cocrystallization of roscovitine with CDK2 (19)  
(Figure 2) and CDK5/p25 (24) (Figure 3). Affinity 
chromatography with sepharose-immobilized roscovitine 
shown that roscovitine interacts with PDXK from all 
species that have been investigated (22). Roscovitine has 
been cocrystallized with sheep pyridoxal kinase (PDXK) (25)  
(Figure 4) and the interaction investigated in depth. 

Figure 1 Roscovitine.

Figure 2 Crystal structure of CDK2 in complex with roscovitine. 
Image from the RCSB PDB (www.rcsb.org). DOI: 10.2210/
pdb2a4l/pdb (19).

Table 1 CDKs inhibited by roscovitine

CDK IC50 (μM) Reference

CDK1/cyclin B 0.65 (20)

CDK2/cyclin A 0.70 (20)

CDK2/cyclin E 0.70 (20)

CDK4/cyclin D1 >100 (20)

CDK5/p25 0.16 (20)

CDK6/cyclin D3 >100 (20)

CDK7/cyclin H 0.46 (19)

CDK8/cyclin C >100 (21)

CDK9/cyclin T1 0.60 (21)
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Unexpectedly, roscovitine was located in the pyridoxal-
binding site, instead of the ATP-binding site and the atoms 
of roscovitine involved in the binding to PDXK were 
different from those involved in the binding to CDKs. The 
roscovitine/CDK cocrystal structures bred a lot of interest 
and significantly stimulated the search for new CDK 
inhibitors or the rational optimization of the existing ones. 
To date, more than 20 inhibitors have been cocrystallized 
with CDKs. Roscovitine is a widely used inhibitor in both 
basic research and disease research. It has been tested in 
several phase I and II clinical trials both as monotherapy 
and combination therapy in several human cancers.

Cellular effects and preclinical tests

The effects of roscovitine had been evaluated on a wide 
variety of cancer cell lines. 

Roughly, two main processes have been observed: cell 
cycle arrest and an initiation of apoptosis. Roscovitine 
arrests the cell cycle in all tested cancer cell lines with the 
average IC50 value of about 15 μM (19,26). Roscovitine 
blocks cell cycle in G0, G1, S or G2/M, depending on 
the dose, time or cell line, by directly inhibiting CDKs. 
Moreover, there are many molecular processes that depend 
on the activity of CDKs activity, and thus, are inhibited by 
roscovitine. Those include pathways such as Ras-MAPK (27), 
NF-κB (28), p53 (28,29), estrogen receptor (30), JAK-
STAT (31), etc.

Roscovitine induces apoptosis in many cancer cell lines 

at all phases of the cell cycle (32). It has been shown to 
downregulate Bcl-2 (33), Mcl-1 (34), survivin (35) and 
XIAP (35) and upregulate p53 (36), p53AIP1 (37) and  
Bcl-x (38) and others (39). 

In addition, roscovitine has been shown to have a 
synergistic effect with other anti-cancer agents, such 
as doxorubicin (40,41), taxol (41), 5-fluorouracil (41), 
vinblastine (41), alemtuzumab (42), paclitaxel (43), 
trastuzumab (44), cisplatin (45), radiation (46), irinotecan (47), 
etoposide (48) and tamoxifen (49).

The anti-cancer action of roscovitine has also been 
investigated in various cancer xenografts. Xenograft 
experiment using LoVo human colorectal cancer cells 
grafted into CD1 nude mice showed a significant 
antitumor effect of roscovitine (100 mg/kg administered 
intraperitonealy, 3 times daily for 5 days) with a 45% 
reduction in tumor growth compared to control animals (32). 
Same publication shows xenograft experiment using 
MESSA-DX5 human uterine carcinoma cells grafted 
into CD1 nude mice. Roscovitine (orally administered, 
500 mg/kg 3 times daily for 4 days) displayed a significant 
reduction in tumor growth (62%). MDA-MB 231 tumor 
xenografts in nude mice increased growth inhibition of 73% 
combined treatment group (100 mg/kg roscovitine + 7.5 Gy  
irradiation) as compared with 54% for the irradiation only 
group (P=0.02) (46). Roscovitine (administered orally 
500 mg/kg) caused a 79% reduction in the tumor growth 
compared to controls at day 5 (P<0.05) in the HCT116 
human colon cancer xenograft model in nude mice (50). 

Figure 3 Crystal structure of CDK5-p25 in complex with 
roscovitine. Image from the RCSB PDB (www.rcsb.org). DOI: 
10.2210/pdb1unl/pdb (23).

Figure 4 Crystal structure of pyridoxal kinase in complex with 
roscovitine. Image from the RCSB PDB (www.rcsb.org). DOI: 
10.2210/pdb1ygk/pdb (24).
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Mice xenografts of A4573 Ewing’s sarcoma cells treated 
with roscovitine (administered intraperitonealy 50 mg/kg, 
for 5 days) had grown only ~1.25-fold relative to their size 
at the time of treatment start, while tumors in untreated 
mice had already reached ~14.5-fold their original 
size (51). Roscovitine also showed 35% tumor growth 
inhibition in a PC-3 prostate cancer xenograft model (52). 
Osteosarcoma tumor xenograft in B6D2F1 mice weight 
was reduced by 55% in the animals receiving roscovitine 
(administered orally 300 mg/kg a day) during resting time 
and by 35% in those treated at active time compared with 
untreated controls (P<0.001) (53). HT29 human colon 
cancer xenografts in nude mice had a 68% and 80% tumor 
reduction using 10 and 40 mg/kg roscovitine respectively, 
administered intraperitoneally (P<0.001) (47). MCF7 
breast cancer xenografts in nude mice showed statistically 
significant inhibition of tumor growth of 48% and 70%, 
when treated single agent (orally administered 1.5 mg/kg  
doxorubicin or 400 mg/kg roscovitine, twice a day) 
compared with seliciclib + doxorubicin, respectively relative 
to the vehicle control group (P<0.05) (54). Immunodeficient 
mice, subcutaneously injected with RAMOS or HBL-2 cell 
lines, treated with roscovitine (12.5 mg/mouse) and TRAIL 
(250 μg/mouse), as single agents or in combination, showed 
that significantly suppressed the growth of both RAMOS 
(P=0.0221) and HBL-2 (P=0.0014) tumors compared 
to single-agent approaches (55). Xenograft study, using 
hormone therapy-resistant breast cancer cell lines (MCF-7-
TamR, MCF-7-LTLTca and MCF-7-HER2), treated with 
roscovitine (administered orally at a dose of 100 mg/kg), 
showed significantly smaller tumor volumes and smaller 
tumor sizes (P<0.05) (56). DNA synthesis was inhibited 
75% by 50 μM roscovitine treatment in tissue mini-units 
were prepared from tumor specimens obtained from the rat 
G2 glioma model (57). The preclinical studies, described in 
this section, are summarized in Table 2.

Preclinical studies of roscovitine in other 
pathologies

Cancers, however, are not the only diseases, that have 
been investigated in animal models. Apparently, CDKs are 
involved in quite a few disorders, and thus CDK inhibition 
by roscovitine can help to overcome them. One of the 
most investigated groups of diseases in animal models is 
kidney diseases. Polycystic kidney disease is one of those, 
and roscovitine produces effective arrest of it in jck and 
cpk mouse models of polycystic kidney disease (75). 

In a Pkd1 conditional knockout mouse model, which 
results in a rapid onset polycystic kidney disease at day 5, 
roscovitine-treated group (administered 100 mg/kg, once 
a day) showed a significant inhibition of polycystic kidney 
disease, revealed by a decrease in kidney to body weight 
ratio, cystic volume and blood urea nitrogen (P<0.05) (76).  
Glomerulonephritis is another highly investigated 
disease, or rather an outcome of a number of diseases. 
In mice with systemic lupus, roscovitine treatment (100 or  
200 mg/kg), combined with methylprednisolone extended 
the survival (71% and 77% of those treated with 100 and 
200 mg/kg, respectively, as compared with 31% of control), 
limited proteinuria (43% in the group receiving 100 mg/kg  
of roscovitine and 23% in the group receiving 200 mg/kg 
of roscovitine, compared with 85% in control) and renal 
damage and reduced immunologic signs of disease more 
than treatment with any of the compound separately (79). 
There was a 30% decrease in the urine protein/creatinine 
ratio at day 10 in rats with Thy1 glomerulonephritis given 
roscovitine compared to control (P<0.05) (62). Mesangial 
cell proliferation was reduced by >50% at days 5 and 10 
in the Roscovitine prevention group, and at day 5 in the 
treatment group (P<0.0001). Similar study showed, that 
roscovitine treatment in rats with Thy1 glomerulonephritis 
preserved renal function, such as increased creatinine 
clearance (P<0.007), reduced proteinuria (P<0.02), 
increased urinary excretion (P<0.02), reduced haematuria 
(P<0.02) (63). In the study of rats with passive Heymann 
nephritis, compared to control group, treatment with low-
dose roscovitine (25 mg/kg/day) decreased the number of 
glomerular mitotic figures at day 30 by 22% and by 61% in 
the high-dose group (50 mg/kg/day) (66). Cell proliferation 
was significantly lower in the high-dose roscovitine-treated 
group as compared to the vehicle-only–treated group 
(P<0.05). Rat model of ischemia–reperfusion injury showed 
protective effect of roscovitine: there was noticeable acute 
tubular necrosis in control animals, but roscovitine-treated 
group showed negligible histologic signs of ischemic 
injury (68). The roscovitine-treated group showed lower 
values of both blood urea nitrogen and creatinine than 
control group (P<0.05).

Roscovitine was also investigated in pain treatment 
in animal models. Bone cancer mice models were used 
to investigate whether roscovitine could attenuate bone 
cancer pain. At day 14 after  inoculation, osteosarcoma 
significantly enhanced mechanical allodynia and thermal 
hyperalgesia, which was reduced by roscovitine (intrathecal 
administration 5, 10 or 20 μg) by downregulation of the 
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Table 2 Preclinical and clinical studies of roscovitine in different diseases

Disease Preclinical/Clinical tests Effects Reference

Adenocarcinoma of 

unknown primary

Phase I clinical trial Tumor stabilization (58)

Advanced malignancies Phase I clinical trial Disease stabilization observed in 38% patients 

(8/21)

(59)

B-cell malignancies Phase II clinical trial NA (60)

B-cell lymphoma HBL-2 xenograft model in nude mice 

(combination TRAIL)

Significant suppression of  tumor growth 

compared to single-agent approaches (P=0.0014)

(55)

Breast cancer MDA-MB 231 xenograft model 

in nude mice (combination with 

irradiation)

Increased growth inhibition of 73% combined 

treatment group as compared with 54% for the 

irradiation only group

(46)

MCF7 xenograft model in nude mice 70% reduction in the tumor growth (54)

MCF-7-TamR, MCF-7-LTLTca and 

MCF-7-HER2 xenograft models in 

nude mice

Significantly smaller tumor volumes and smaller 

tumor sizes (P<0.05)

(56)

Breast cancer (metastatic) Phase II clinical trial (combination with 

capecitabine)

NA (60)

Burkitt’s lymphoma RAMOS xenograft model in nude 

mice (combination TRAIL)

Significant suppression of  tumor growth 

compared to single-agent approaches (P=0.0221)

(55)

Colorectal cancer LoVo xenograft model in CD1 nude 

mouse

45% reduction in tumor growth (32)

HT29 xenograft model in nude 68% and 80% tumor reduction using 10 and 40 

mg/kg roscovitine respectively

(47)

HCT116 xenograft model in nude 

mouse

79% reduction in the tumor growth (50)

Corticosurrenaloma Phase I clinical trial Partial response (58)

Ewing’s sarcoma A4573 xenograft model in nude mouse 91% reduction in the tumor growth (51)

Glaucoma Rabbit glaucoma model Lowering of the intraocular pressure and increase 

of oxygen-glucose deprivation-induced cell death

(61)

Glioma Rat G2 glioma model 75% reduction in DNA synthesis (57)

Glomerulonephritis Rat Thy1 glomerulonephritis model 30% decrease in the urine protein/creatinine ratio; 

mesangial cell proliferation reduced by >50%

(62)

Rat Thy1 glomerulonephritis model Increased creatinine clearance and urinary 

excretion, reduced proteinuria and haematuria

(63)

Graft versus host disease Graft versus host disease B6D2F1 

mouse model

Protection against acute graft versus host disease (64)

Hepatocellular carcinoma Phase I clinical trial Partial response (58)

Herpes simplex virus 

infection 

Vero cells, infected with wild-type 

HSV-, model

Inhibition of virus replication by targeting cellular, 

not viral, proteins

(21)

Herpetic keratitis New Zealand white rabbits, infected 

with HSV-1, keratitis model

Partial decrease of herpetic keratitis (65)

Heymann nephritis Rat passive Heymann nephritis model 22% and 61% decrease in glomerular mitosis in 

high- and low-dose groups, respectively

(66)

Table 2 (continued)
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Table 2 (continued)

Disease Preclinical/clinical tests Effects Reference

HIV1 virus infection CEMx174 cells, infected with wild-

type HSV-, model

Inhibition of virus replication by targeting cellular, 

not viral, proteins

(21)

Inflammation Lung inflammation mouse model Lung inflammation reduction (67)

Ischemia-reperfusion 

injury

Rat ischemia–reperfusion injury model Roscovitine-treated group showed negligible 

histologic signs of ischemic injury

(68)

Nasopharyngeal 

carcinoma

Phase I/II clinical trial NA (69)

Neurotoxicity HIV protein gp120 transgenic mouse 

model

Protection against HIV protein gp120 neurotoxicity (70)

Non-small cell lung  

cancer

Phase I clinical trial Partial response (58)

Phase II clinical trial NA (71)

Phase II clinical trial (combination with 

gemcitabine/cisplatin)

NA (60)

Phase II clinical trial  

(combination with docetaxel)

NA (60)

Osteosarcoma Osteosarcoma tumor xenograft model 

in B6D2F1 mouse

Tumor weight reduced by 55% in the animals 

treated during resting time and by 35% in those 

treated at active time

(53)

Pain Mouse bone cancer model Reduction of mechanical allodynia and thermal 

hyperalgesia, caused by osteosarcoma; by 

downregulation of the expression of NR2A

(72)

Rat model of chronic compression  

of dorsal root ganglion

Pain alleviation by downregulation of the 

expression of NR2A

(73)

Remifentanil-induced postoperative 

hyperalgesia of spinal cord model 

Reduction thermal hyperalgesia and mechanical 

allodynia by downregulation of the phosphorylation 

of NR2A and glutamate receptor 5

(74)

Parotid cylindroma Phase I clinical trial Partial response (58)

Polycystic kidney  

disease

Jck and cpk mouse models Effective arrest of disease (75)

Pkd1 conditional knockout mouse 

model

Decrease in kidney to body weight ratio, cystic 

volume and blood urea nitrogen

(76)

Prostate cancer PC-3 xenograft model in nude mouse 35% reduction in tumor growth (52)

Retinal degeneration Rd1 retinal degeneration mouse model Decreased apoptosis of retinal photoreceptor cells (77)

Salivary gland dysfunction Radiation-induced salivary gland 

dysfunction mouse model

Radiation-induced salivary gland dysfunction 

prevention

(78)

Systemic lupus Mouse systemic lupus 

model (combination with 

methylprednisolone)

Survival extension (71% and 77% in high- and 

low-dose groups, respectively, compared with 

31% of control), limited proteinuria (43% and 23% 

compared with 85% in control) and renal damage 

and reduction of immunologic signs of disease

(79)

Thymic carcinoma Phase I clinical trial Partial response (58)

Uterine carcinoma MESSA-DX5 xenograft model in CD1 

nude mice

62% reduction in tumor growth (32)
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expression of NR2A (72). Downregulation of the expression 
of NR2A is also involved in pain alleviation by roscovitine 
in a rat model of chronic compression of dorsal root 
ganglion (73). Roscovitine (intrathecal administration 25, 
50 or 100 μg) reduced thermal hyperalgesia (P<0.05) and 
mechanical allodynia (P<0.05) induced by intraoperative 
remifentanil administration (74).

Neurodegeneration and retinal degeneration is another 
well studied field with regard to roscovitine. In rabbit 
glaucoma model, instillation roscovitine significantly 
lowered the increased intraocular pressure, amplified 
the effects of tunicamycin and increased oxygen-glucose 
deprivation-induced cell death (61). Roscovitine decreased 
apoptosis of retinal photoreceptor cells in Rd1 retinal 
degeneration mouse model (P<0.01) (77). Pretreatment 
with roscovitine at 20 μmol/L for 24 h was protective 
against HIV protein gp120 toxicity in an animal model of 
HIV-protein mediated neurotoxicity (P<0.05) (70).

Roscovitine was also shown to reduce lung inflammation (67), 
protect against acute graft versus host disease (64), prevent 
radiation-induced salivary gland dysfunction (78) and had 
somewhat decreased Herpetic keratitis (65). Roscovitine 
was also shown to inhibit the replication of herpes simplex 
virus and HIV1 by targeting cellular proteins (21). The 
preclinical studies, described in this section, are summarized 
in Table 2.

Clinical trials

A phase I clinical trial with roscovitine showed no objective 
tumor responses, but disease stabilization was observed 
in 38% patients (8/21) (59). Patients were treated with 
doses of 100, 200 and 800 mg twice daily. Dose-limiting 
toxicities were seen at 800 mg and included fatigue, skin 
rash, hyponatremia and hypokalemia. Emesis and reversible 
abnormal liver function were also observed. Another 
phase I clinical trial enrolled 56 patients, which were 
treated according to three schedules: schedule A consisted 
of 5 consecutive days every 3 weeks, schedule B of 10 
consecutive days followed by 2 weeks off and schedule C of 
3 consecutive days every 2 weeks. In schedule A, the dose 
of 1,600 mg two times daily was considered intolerable, 
causing asthenia, nausea, vomiting and hypokalaemia. 
In schedule B, 800 mg two times daily was considered 
intolerable, causing hypokalaemia. In schedule C, 1,800 mg  
two times daily are considered intolerable, causing 
hypokalaemia. One patient with hepatocellular carcinoma 
showed partial response (800 mg bid, schedule B) and six 

patients achieved tumor stabilization: two patients with non-
small cell lung cancer (1,600 mg, schedule A, and 1,800 mg, 
schedule C), one with parotid cylindroma (100 mg, schedule 
A), one with corticosurrenaloma (1,000 mg, schedule A), 
one with thymic carcinoma (1,000 mg, schedule A) and 
one with adenocarcinoma of unknown primary (400 mg, 
schedule A) (58).

Twenty-three nasopharyngeal carcinoma patients were 
enrolled in phase II roscovitine clinical trial. Dose limiting 
toxicities were observed in 4 patients, common adverse 
events included fatigue, nausea, vomiting, constipation, 
cough, fever, hypokalemia, hyponatremia, and elevation 
in aspartate transaminase/ alanine transaminase, most of 
which were mild or moderate (69). Another phase II study 
of roscovitine as a single agent in patients with previously-
treated non-small cell lung cancer has been closed 
with no data reported (71). Four phase II studies were 
announced, however no data is published up to date. One 
of them was a monotherapy trial in haematological B-cell 
malignancies, while the other three are combination trials 
with gemcitabine/cisplatin in first-line non-small cell lung 
cancer, with docetaxel in second line non-small cell lung 
cancer and with capecitabine in metastatic breast cancer (60).  
The clinical studies, described in this section, are 
summarized in Table 2.

The future of roscovitine and its derivatives in 
cancer and other diseases

Despite many successful preclinical studies with roscovitine, 
clinical trials are not very encouraging. It would seem that 
combination therapies with roscovitine could be more 
promising than monotherapy, thus more chemotherapeutic 
agents as well as other targeted drugs should be evaluated in 
combination.

Another hope lies with next generation derivatives of 
roscovitine. Roscovitine derivative CR8 (Figure 5) was also 
shown to inhibit renal cystogenesis in Pkd1-conditional 
knockout in above mentioned study (76). It was shown to 
provide neuroprotection in experimental traumatic brain 
injury (80). CDK/CK1 dual-specificity inhibitors (Figure 5),  
derived from roscovitine, were shown to inhibit cell 
proliferation and prevent the production of amyloid-
beta and may have applications in Alzheimer's disease and 
cancers (81). N-&-N (Figure 5), another class of roscovitine 
derivatives, showed improved anticancer properties and 
caused apoptosis in a panel of different cell lines (82). In 
addition, these compounds have reduced affinity for Erk2 
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and pyridoxal kinase. The roscovitine derivative LGR1406 
(Figure 5) showed much more potent (IC50 =3.0 μM) 
antiproliferative activity than roscovitine (IC50 =16.9 μM), 
halting vascular smooth muscle cells (83). Recently, several 

CDK inhibitors, related to roscovitine (Figure 6), were 
reported as anti-malarial agents (84). The roscovitine 
derivatives, described in this section, are summarized in 
Table 3.

Figure 5 Compounds CR8, DRF053, N-&-N1 and LGR1406.

Figure 6 Compounds 11, 12, 19, 21 and 21.
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