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Abstract: The main challenge of stroke research is to translate promising experimental findings from the bench 

to the bedside. Many suggestions have been made how to achieve this goal, identifying the need for appropriate 

experimental animal models as one key issue. We here discuss the macrosphere model of focal cerebral ischemia 

in the rat, which closely resembles the pathophysiology of human stroke both in its acute and chronic phase. Key 

pathophysiological processes such as brain edema, cortical spreading depolarizations (CSD), neuroinflammation, 

and stem cell-mediated regeneration are observed in this stroke model, following characteristic temporo-spatial 

patterns. Non-invasive in vivo imaging allows studying the macrosphere model from the very onset of ischemia 

up to late remodeling processes in an intraindividual and longitudinal fashion. Such a design of pre-clinical stroke 

studies provides the basis for a successful translation into the clinic.
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Introduction

In the past years, stroke research has encountered one major 
problem: numerous therapeutic agents that proved quite 
effective in experimental animal models failed to show any 
efficacy in human clinical trials. Thus, the recanalization 
of the occluded vessel within a limited time frame remains 
the only effective treatment, since—due to negative 
clinical trials—not one substance out of the plethora of 
neuroprotective drugs identified in pre-clinical studies has 
later achieved regulatory approval for this indication. To 
overcome this problem known as the ‘translational road 
block in stroke research’, leading researchers in the field 
have provided several suggestions (1-4).

One key issue identified to hinder the translation of pre-
clinical research into the clinic is the use of experimental 
stroke models that do not sufficiently resemble the clinical 
reality of cerebral ischemia (2). Pathophysiological events 

occurring in the days and weeks after stroke, such as 
neuroinflammation, cortical spreading depolarizations 
(CSD), and stem cell-mediated regeneration, need to be 
taken into account when evaluating the usefulness of an 
experimental animal model, and should ideally model the 
human situation (2,5).

Moreover, in a translational approach, preclinical studies 
should be designed in the same manner as clinical trials, and 
ideally use the same assays to monitor therapeutic efficacy. 
Non-invasive in vivo imaging using Magnetic-Resonance-
Imaging (MRI) and Positron-Emission-Tomography 
(PET) plays an important role in this regard. Those 
imaging tools allow monitoring key pathophysiological 
processes longitudinally and intraindividually over 
time, such as cerebral blood flow (6), brain edema (7,8), 
neuroinflammation (9,10), and stem cell-mediated 
regeneration (11,12).
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Along these lines, we here elaborate on the macrosphere 
model of focal cerebral ischemia, and compare it to other 
established experimental stroke models.

Overview over frequently used animal stroke 
models

For the induction of focal cerebral ischemia in the rats, 
many different surgical techniques can be used. Basically, 
endovascular and non-endovascular procedures can be 
distinguished. In the following, the most frequently used 
animal stroke models are summarized. Table 1 gives an 
overview over the typical characteristics of each model 
compared to the macrosphere model and to human stroke.

Endovascular models

Suture model
The suture model described first in 1986 by Koizumi 
et al. (13) is the most widely used experimental stroke 
model to study the pathophysiology of focal cerebral 
ischemia and to evaluate novel therapies. This model can 
be used to induce both a permanent as well as a transient 
occlusion of the middle cerebral artery (MCA). Since its 
first publication, the suture model has been modified by 
many working groups to optimize its success rates (14-21). 
To achieve MCA occlusion (MCAo), a nylon filament is 
inserted through an arteriotomy of the common carotid 
artery (CCA), anterograde behind the origin of the MCA. 
Blocking the blood flow to the MCA results in reproducible 
infarcts within the MCA territory (13-21). If reperfusion is 
to be achieved, the thread is withdrawn at latest 90 minutes 
after MCAo (17,18,20). This animal model is easy to use, 
relatively little invasive, and produces reproducible infarcts.

Thromboembolic model
Kudo et al. were the first to describe a thromboembolic 
model for the induction of focal cerebral ischemia (22). In 
the meanwhile, many variations of this model for optimizing 
the technique as well as its success rates are reported (23-28). 
The thromboembolic model closely resembles a common 
etiology of human stroke, since thrombi are generated 
and then used for the occlusion of the cerebral artery. 
Consequently, this model is most suitable for the preclinical 
evaluation of thrombolytic agents, such as rt-PA (23).

The preparation and structure of thrombi vary widely 
in the literature. In most cases, autologous (less frequently 
heterologous) blood is used, which is clotted by the 

addition of thrombin or other methods. Many authors use 
clots derived from blood, while others make use of blood 
components. The prepared thrombi (one single larger or 
several small ones) are injected in the internal carotid artery 
(ICA) via an arteriotomy of the CCA, or via a stump created 
of the external carotid artery (ECA) (22,24).

Non-endovascular models

Photothrombosis model
This model was first described by Watson et al. in 1985 (29) 
and makes use of a photosensitive dye to occlude small cortical 
vessels. First, Rose Bengal solution is injected into the femoral 
vein, followed by illumination of the cortical surface through 
the intact skull bone for about 20 minutes, using a fiber optic 
cold light source with an intensity of 560 nm. This irradiation 
causes a photochemical reaction of the intravascular Rose 
Bengal, leading to local thrombosis and vascular occlusion, 
generating reproducible infarcts that are limited to the  
cortex (29). Many modifications of this model are reported, e.g., 
use of laser beams instead of a cold light source (30-34).

Direct distal MCAo models
In all these models, a subtemporal craniotomy has to be 
first performed in order to expose the MCA. Depending on 
the specific method, the MCA will be occluded directly by 
a clip (35), a ligation (36-38) or cauterization (37,39) under 
visual control. In the clip model, a reperfusion of the MCA 
can be induced by removing the clip (35).

The macrosphere model of focal cerebral ischemia

Surgical method

The macrosphere model is an endovascular embolic stroke 
model resembling cardiogenic and arterio-arterial embolism 
as the main etiology of human stroke. In this model 
described first by Gerriets et al. (40), permanent occlusion 
of the MCA in rats is induced by TiO2-spheres (Figure 1A). 
Therefore, the macrosphere model mimics arterio-arterial 
embolism of “hard” atherosclerotic plaque material as the 
most frequent cause of human stroke (41,42).

In more detail, first a PE-50 tubing is filled with saline, 
and a defined number of TiO2 “macrospheres” of 0.315 to  
0.355 mm in diameter (BRACE® GmbH) are prepared. 
Depending on the experiment, between one and six 
macrospheres may be used. After the dissection of extracranial 
arteries and transection of the ECA, the PE-50 catheter 
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is inserted into the stump of the ECA via an arteriotomy, 
forwarded to the carotid bifurcation, and fixed in place. The 
macrospheres are injected one-by-one with only a small 
amount of saline (~0.05 mL), so the spheres move passively 
into the ICA and are transported by the blood flow through 
the circle of Willis, blocking the main stem of the MCA. 
Afterwards, the tubing is removed, and the stump of the 
ECA is ligated (40).

The failure rates indicating an insufficient occlusion of 
the MCA by the macrospheres varied dependent on the 
used numbers of spheres (60-80%) (8,40,43,44).

Characteristics of the macrosphere model

The macrosphere model can be operated as a remote 

occlusion model, i.e., occlusion of the MCA can be 
postponed to a defined time point after the actual surgery, 
and then be achieved from a spatial distance. This 
specifically allows for the timed occlusion of the vessel 
while the rat is lying in the MRI-scanner (8,45), the PET-
scanner (6), or the Laser-speckle setup (44), and thus for 
multimodal imaging of the hyperacute phase of stroke (5). 
In studies utilizing the macrosphere model with remote 
occlusion, a slight modification of the surgical setup is 
suggested in order to minimize the risk of a dislocation of 
the tubing when manipulating the animal (e.g., placement 
in the restrainer or animal holder) (8). In this modified 
model, the ECA and the pterygopalatine branch of the 
ICA are ligated. The filled catheter is inserted through an 
arteriotomy of the CCA into the ICA until the tip of the 

Figure 1 Exemplary findings 3 weeks after induction of focal cerebral ischemia by the macrosphere model. (A) Basal view of the rat 
brain displaying the intracerebral arteries following MCAo by macrosphere-injection. One macrosphere (white arrow) is located in the 
origin of the MCA. (White bar: 5,000 µm). (B) Representative images of T2-weighted MRI from rostral (left column, upper image) to 
caudal direction delineating the typical ischemic territory 3 weeks after induction of ischemia. (White bar: 5,000 µm). Insets: respective 
corresponding histological slides stained with hematoxylin and eosin verified the ischemic damage after 3 weeks. (Red bar: 5,000 µm). (C) In 
vivo imaging of neuroinflammation using [11C]PK11195-PET fused on T2-weighted MRI at 3 weeks after macrosphere embolization. (Scale: 
PK-binding potential; white bar: 5,000 µm). Accumulation of [11C]PK11195 can be clearly identified within the peri-infarct zone. Inset: in 
the corresponding immunhistological slide, microglia activation is visualized by staining for MHC class II (right column, lower image). (Red 
bar: 5,000 µm). MCA, middle cerebral artery; MCAo, MCA occlusion.

A B

C
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tubing is located distal to the origin of the pterygopalatine 
artery. The macrospheres are then inserted in the ICA by a 
slow injection of 0.2 mL of saline blocking the blood flow 
to the MCA (32). Using other experimental stroke models, 
only few studies performing remote MCAo and monitoring 
the hyperacute phase of stroke in rodents have been published 
to date (46-54). In all those studies, remote occlusion of the 
MCA was performed using the permanent or temporal suture 
model, making the macrosphere model the first embolic stroke 
model to allow for remote occlusion. Several modifications for 
optimizing this technique regarding an improvement of the 
success rate have been reported (46-54). However, compared 
to the macrosphere model, remote occlusion in the suture 
model is technically more difficult, thus requiring more 
training for the surgeon.

In contrast to various models of permanent MCAo 
achieved by clipping (36), ligation (36-48) or cauterization 
(37,39) of the vessel, no craniotomy is required for the 
macrosphere model. This constitutes a major benefit in pre-
clinical studies, since craniotomy itself has neuroprotective 
effects (7,55-59), and is performed in large (“malignant”) 
human stroke if the increased intracranial pressure by 
brain edema cannot be sufficiently reduced by conservative 
therapeutic strategies (60). Moreover, craniotomy interferes with 
distinct processes of interest following cerebral ischemia, since 
it mechanically induces CSD, and elicits neuroinflammation. 
Furthermore, craniotomy may cause several effects such 
as subarachnoid hemorrhage, cerebral infection, and 
cerebrospinal fluid leakage (61), as well as potential injury 
risk of brain tissue (62). Thus, distal MCAo models with 
craniotomy represent a non-physiological insult (63), and 
should be avoided to serve the translational aspect.

The macrosphere model evokes infarcts that are 
homogenous in extent and localization, and closely 
resemble human stroke by affecting cortical as well as 
subcortical areas (Figure 1B) (9,40,43). In contrast, the 
photothrombosis model of stroke affects exclusively the 
cortex (64). The homogeneity of infarcts produced in the 
macrosphere model is comparable to the permanent suture 
model if 4-6 spheres are used, as the origin of the MCA is then 
completely occluded (9,40,43). If only fewer spheres (1,2) are 
used, the induced damage is quite heterogeneous, depending 
on the branches of the vessel that are occluded (10,44). 
This interindividual variability of infarcts might actually 
be desired in some context, with the resulting infarct 
pattern resembling human stroke caused by a partially 
disintegrated thrombus, such as after a partially successful 
thrombolysis. This situation could also be mimicked with 

other (thrombo-)embolic stroke models, but with the risk 
of an unwanted premature reperfusion at an unknown time-
point by spontaneous lysis of the thrombi (65). A similar 
complication can occur in the suture model due to an 
insufficient fixation of the thread within the vessel, or due to 
its physical characteristics (66,67). Other complications of 
the suture model that can be avoided using the macrosphere 
model include (I) vessel perforation and subarachnoid/
intracerebral hemorrhage caused by too deep insertion of 
the suture; or (II) failure to induce stroke if the suture is 
not inserted deep enough (50). In order to reduce the risk 
of any inappropriate suture insertion to a minimum, Laser-
Doppler flowmetry is used frequently, but requires a small 
craniotomy with the disadvantages discussed above (66). 
In contrast, the macrospheres will lodge in the same place 
every time (68).

In the macrosphere model using 6 spheres or less, 
blood flow to the hypothalamic artery is not blocked, so 
hypothalamic injury with subsequent hyperthermia is 
avoided. This represents a stark contrast to the suture model 
of permanent ischemia (40,43,69-72). Since hyperthermia 
increases infarct volume, results in clinical deterioration, 
and influences post-ischemic neuroinflammation, the 
avoidance of hypothalamic injury is preferred when testing 
the effects of potential therapeutic agents in preclinical 
studies (73-77). In a former study, we investigated the 
neuroprotective effects of the NMDA-antagonist MK-
801 in focal cerebral ischemia, when ischemia was induced 
either by the macrosphere model, or by the permanent 
suture model. The data showed that neuroprotection 
occurred only under normothermic conditions using 
the macrosphere model, while it was not observed in the 
permanent suture model due to hyperthermia (43).

Due to the nature of the macrospheres, this stroke model 
cannot be used in a reperfusion paradigm, constituting the 
main limitation of this model.

Cerebral blood flow and metabolism

In the macrosphere model, the spheres lead to a complete 
tight and reliable occlusion of the MCA, blocking the 
entire blood flow within this vessel as revealed by nano-
computed tomography (nano-CT) (68). However, due 
to a certain amount of remaining perfusion via various 
collateral pathways, parts of the tissue within the MCA 
territory may still be perfused for a certain time. Within the 
first 30 minutes after MCAo, the regional cerebral blood 
flow (rCBF) decreases to 38-65% of baseline rCBF (6). 
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Juenemann et al. have shown that the cerebral blood flow of 
the total ischemic hemisphere is reduced by 82% (78). For 
the suture model of permanent ischemia, those numbers 
have been found to be comparable, with a reduction of 
rCBF by 70-90% in the ischemic hemisphere (66,78). Of 
note is that this remaining perfusion observed in the suture 
model is caused not only by collateral pathways but by an 
inadvertent bypass-perfusion along the filament (68).

We evaluated the early spatio-temporal development 
of rCBF and metabolism in the macrosphere model using 
PET and the radiotracers [15O]H2O, directly measuring 
blood flow, and [18F]-2-fluoro-2-deoxy-D-glucose (FDG),  
as surrogate marker for glucose metabolism (6). We 
observed functionally relevant alterations in rCBF only 
within the first 30 minutes after macrosphere injection, 
supporting the development of an ischemic core within the 
same short time-frame as in other rat models of permanent 
cerebral ischemia (79-84). Interestingly, [18F]FDG-PET 
with kinetic modelling (net FDG-influx rate constant 
Ki, FDG-transport rate constant K1) predicted the exact 
later fate of each voxel of tissue as early as 60 minutes 
after induction of ischemia (6). This multimodal imaging 
method allows to distinguish immediately damaged tissue, 
representing the early infarct core, from the ischemic 
penumbra, defined by primarily affected but still viable 
tissue (6). This is of immense interest in the development 
of novel treatments for stroke, since the ischemic penumbra 
as the “tissue-at-risk” is still accessible to appropriate 
therapeutic interventions.

Brain edema

The remote occlusion technique allows studying the evolving 
ischemia in the macrosphere model within the MRI-scanner. 
Using this in vivo imaging method, the development of 
cytotoxic and vasogenic brain edema in the hyperacute phase 
of stroke were accurately defined (32). The cytotoxic edema 
measured as apparent diffusion coefficient (ADC) by MRI 
appears as early as 5 minutes after MCAo, and reaches its 
final extent after 45 minutes (8), being in accordance with 
other models of focal and global cerebral ischemia in different 
animal species (54,85-87). This immediate occurrence of 
the cytotoxic edema after injection of macrospheres again 
indicates that this technique provides a prompt and reliable 
occlusion of the MCA without procedural delay. The 
formation of the vasogenic edema indicating the breakdown 
of the blood brain barrier (BBB) is detected as early as  
20-35 minutes after MCAo by an increase of T2-relaxation 

time determined by T2-weighted MRI (8). Imaging data 
on the disintegration of the BBB in the macrosphere model 
were confirmed by the measurements of the midline shift 
on T2-weighted MRI and histologically using Evans Blue 
extravasation (45). This early BBB breakdown distinguishes 
the macrosphere model from other stroke models that 
observe the vasogenic edema only after 90 minutes (88,89).

Cortical spreading depolarizations (CSD)

Lesions to the cortical surface such as an ischemic focus 
elicit CSD that occur in well-characterized temporo-spatial 
patterns, and are associated with local changes in blood  
flow (90-92). In human hemispheric stroke, CSD contribute 
to lesion progression (93), and therefore constitute a 
relevant therapeutic target. In the macrosphere model, 
we investigated the changes in blood flow (rCBF) evoked 
by the CSD during and after MCAo by Laser Speckle 
Contrast Imaging (44). Immediately after injection of the 
macrospheres, there is a fast and gradual drop of rCBF, 
followed by the propagation of the first CSD concentrically 
from the border of the ischemic territory outwards into 
unaffected tissue, crossing almost the whole hemisphere. 
Multiple, subsequent secondary waves later travel 
circumferentially around the lesion for several hours (44).

These results are similar to those from CSD induction 
by direct application of potassium to the cortex of rats and 
cats (94-96). In a model of direct occlusion of the distal 
branch of the MCA requiring craniotomy, the CSD waves 
show a similar circumferential propagation around the 
ischemic core (97). To our knowledge, in the suture model 
of stroke, immediate monitoring of CSD propagation 
has not yet been performed, most likely due to technical 
difficulties. Later imaging, however, showed similar 
findings (98,99).

Post-ischemic inflammation

Focal cerebral ischemia elicits characteristic neuroinflammatory 
responses involving both resident and blood-derived 
immune cells as well as a cascade of humoral factors. The 
temporo-spatial characteristics of neuroinflammation have 
been meticulously described for various animal models of 
stroke (100-106). Likewise, neuroinflammation occurs after 
human stroke, and has been characterized using MRI- and 
PET-imaging (107-112). Neuroinflammation plays an 
important role in the post-ischemic cascade following 
cerebral ischemia, having an impact on infarct volume 
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and demarcation as well as on tissue repair und functional 
outcome (113,114).

Interestingly, in commonly used experimental stroke models, 
the temporo-spatial patterns of neuroinflammation differ 
relevantly from those in humans. In human stroke, microglia 
activation as a surrogate marker of neuroinflammation starts 
not earlier than 3 days after onset of the infarct, reaching 
its maximum within one week (108-110). In experimental 
ischemia involving reperfusion, both microglia activation 
as well as invasion of blood-borne cells is typically 
accelerated, starting as early as 22 hours after ischemia 
(100,115-118). Moreover, the up-regulation of cytokines 
released by glia cells occurs quite early in commonly used 
stroke models (119-124). Thus, in order to develop novel 
treatment strategies for stroke, an experimental stroke model 
should be chosen to closely resemble the dynamics of post-
ischemic inflammation according to the human situation (5). 
We investigated post-ischemic neuroinflammation after 
focal cerebral ischemia induced by the macrosphere model 
based on the key features microglia activation, macrophages 
infiltration throughout the infarct and phagocytic 
accumulation (124). Furthermore, we analyzed pro- and 
anti-inflammatory cytokines (125) as potential biomarkers 
in human stroke from cerebrospinal fluid or blood (126). 
Interestingly, macrosphere-induced focal cerebral ischemia 
very closely resembled the characteristic dynamics of 
human neuroinflammation, particularly the slow time 
course in the post-ischemic cascade (125). It is of note 
that some other models of permanent MCAo including 
photothrombosis show a similar delayed timeline of post-
ischemic neuroinflammation, starting as late as 48-72 hours 
after induction of infarct (100-106).

In order to initiate clinical studies on the modulation 
of post-ischemic neuroinflammation, reliable imaging 
protocols need to be established that allow for both 
stratifying patients according to inflammation patterns, 
as well for monitoring the therapeutic efficacy of any 
treatment strategy. Thus, animal stroke models should 
allow for in vivo imaging (I) with the same imaging modality 
used in humans to facilitate translation; (II) in a non-
invasive fashion to allow longitudinal monitoring in an 
intraindividual fashion; and (III) in long-term investigations 
over several months to better mimic the clinical situation.

We investigated neuroinflammation in the macrosphere 
model using a multimodal imaging protocol including  
T2-weighted MRI as well as PET with the radiotracers 
[11C]PK11195 and [18F]FDG (9). Similar study protocols 
are performed in human clinical studies (112), allowing the 

translational evaluation of the macrosphere model. Seven 
days after stroke onset, kinetic modelling of [18F]FDG 
PET-data defines 3 infarct zones: infarct core (low rCBF 
and a decreased [18F]FDG metabolic rate), infarct margin 
(reduced rCBF with a regular [18F]FDG metabolic rate) and 
peri-infarct zone (normoperfused tissue with an increased 
[18F]FDG metabolic rate) (9). Restricted to the peri-
infarct zone, [11C]PK11195 uptake as surrogate parameter 
for cellular neuroinflammation was observed in all animals 
independent of the location and size of the ischemic infarct (9). 
Interestingly, neuroinflammatory processes detected by 
PET were accompanied by a massively increased energy 
demand, posing the peri-infarct zone at risk of secondary 
tissue damage, and suggesting that it should be considered 
for therapeutic interventions.

In order to fully characterize the whole extent of 
neuroinflammation in the macrosphere model, we 
performed long-term investigations of neuroinflammation, 
repeatedly imaging animals from the acute until the chronic 
phase of stroke for up to 7-month after embolization of 
macrospheres (10,115). We observed the maximum of post-
ischemic neuroinflammation at day 7—in the border zone 
of the ischemic core—that disappears around six weeks after 
MCAo (Figure 1C) (10). However, inflammation persists 
in remote locations such as the thalamus of the affected 
hemisphere, representing secondary inflammation, for at 
least 7 months after stroke onset (10). This phenomenon 
observed in the thalamus using in vivo imaging was 
confirmed histologically, and characterized by activated 
microglia co-localizing with iron deposits around plaque-
like amyloid deposits, as well as with neuronal loss. Similar 
observations on inflammation-associated neurodegeneration 
have been made in the late phase of human stroke (126,127). 
Thus, the macrosphere model mimics even the very late 
chronic phase of human stroke, while—to our knowledge—
similar studies do not yet exist in other stroke models in rats.

T h e  t e m p o r o - s p a t i a l  c h a r a c t e r i s t i c s  o f  c e l l -
mediated neuroinflammation in the macrosphere 
model were characterized in even further detail in an 
immunohistopathological study. Up to 56 days after MCAo, 
four infarct zones were characterized by their specific 
patterns of neuroinflammation (infarct core, infarct margin, 
demarcation zone, peri-infarct zone) (128). Interestingly, 
infarct demarcation was characterized by the expression 
and secretion of the proteoglycan NG2 as an active 
process separating between necrotic and unaffected tissue, 
suggesting that this process has crucial impact on secondary 
neurodegeneration after focal cerebral ischemia and should 
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thus be of interest regarding functional outcome (128).

Regeneration

Cerebral ischemia elicits an endogenous regenerative 
response marked by the proliferation of neural stem cells 
(NSC) in the brain and their mobilization and migration 
from their niches towards the ischemic lesion (64,129,130). 
Enhancing the mobilization of endogenous NSC after 
stroke by e.g., pharmacological means results in an 
enhanced functional recovery of experimental animals 
(131-133). Thus, mobilizing the endogenous NSC niche 
constitutes a promising future target in stroke therapy. 
In order to establish such experimental paradigms, non-
invasive imaging needs to span the bridge between bench 
and bedside. Using the macrosphere model of stroke, we 
established an imaging assay using PET with the radiotracer 
3’-deoxy-3’-[18F]fluoro-l-thymidine ([18F]FLT) to monitor 
the mobilization of endogenous NSC in the live rat brain (11). 
This assay has since facilitated the identification of several 
promising therapeutic agents that increase NSC survival 
and/or proliferation (12,134-136).

Conclusions

The macrosphere model of embolic stroke mimics 
the pathophysiological aspects of human stroke most 
accurately, both in the acute as well in the chronic phase of 
stroke. Since this model easily allows for the remote vessel 
occlusion within the MRI- or PET-scanner, it allows 
for the non-invasive in vivo monitoring of various post-
ischemic processes longitudinally over time in individual 
animals. Thus, the macrosphere model is extremely 
cwell  characterized with regards to the temporo-
spatial dynamics of cerebral blood flow, metabolism, 
neuroinflammation, cortical spreading depressions, and 
stem cell-mediated regeneration, constituting it an adept 
model to conduct pre-clinical research in. We propose to 
consider this stroke model for experimental stroke studies 
in an intraindividual and longitudinal approach in order 
to facilitate a successful translation of pre-clinical findings 
into the clinical situation.
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