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Abstract: Tight junctions (TJ) are multi-protein complexes located at the apicalmost tip of the lateral membrane 

in polarised epithelial and endothelial cells. Their principal function is in mediating intercellular adhesion and 

polarity. Accordingly, it has long been a paradigm that loss of TJ proteins and consequent deficits in cell-cell 

adhesion are required for tumour cell dissemination in the early stages of the invasive/metastatic cascade. However 

it is becoming increasingly apparent that TJ proteins play important roles in not just adhesion but also intracellular 

signalling events, activation of which can contribute to, or even drive, tumour progression and metastasis. In 

this review, we shall therefore highlight cases wherein the gain of TJ proteins has been associated with signals 

promoting tumour progression. We will also discuss the potential of overexpressed TJ proteins to act as therapeutic 

targets in cancer treatment. The overall purpose of this review is not to disprove the fact that loss of TJ-based 

adhesion contributes to the progression of several cancers, but rather to introduce the growing body of evidence 

that gain of TJ proteins may have adhesion-independent consequences for promoting progression in other cancers.
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Introduction

Epithelial cells such as those lining the gastrointestinal and 
respiratory tracts are repeatedly exposed to environmental 
carcinogens and are therefore frequently damaged. This 
drives higher proliferative rates for cell renewal, and a 
higher probability of acquiring genomic mutations. The 
resulting vulnerability explains why approximately 90% of 
human cancers are carcinomas, originating from epithelial 
tissues. This review will first outline the importance of 
intercellular adhesion complexes for cellular polarity and 
epithelial homeostasis. We will then focus on proteins of the 
tight junction (TJ) complex and describe the implications of 
aberrant TJ protein expression in tumour progression and 
metastasis. As numerous excellent reviews have addressed 
the contribution of TJ protein loss to tumorigenesis (1-7), 

this review will dissect how TJ protein gain might drive 
tumorigenesis. Lastly, we will outline the potential of over-
expressed TJ proteins to act as future therapeutic targets in 
human cancer.

Intercellular adhesion

Epithelial intercellular adhesion is essential for maintaining 
a functional barrier and the integrity of epithelial tissues. 
Adjacent cells are held together by multi-protein junctional 
complexes which maintain architectural structure and 
polarity. Cell-cell contacts are constantly remodelled in 
order to shed old or damaged cells and to incorporate newly-
differentiated cells without loss of barrier integrity (8).  
However, dysregulation of adhesion proteins can impair 
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barrier function, adhesion and polarity, as well as affecting 
intracellular signalling (9). Since disrupted polarity is an 
early histopathological indicator of carcinomas, many 
studies have outlined key roles for cellular adhesion proteins 
in cancer initiation or progression (10-19).

There are four major types of intercellular junctions, 
namely desmosomes, gap junctions, adherens junctions 
(AJs), and TJs. AJs and TJs are asymmetrically distributed at 
the apical end of the lateral membrane, forming the apical 
junctional complex. This review shall focus on TJs, and how 
upregulation of TJ proteins may contribute to certain types 
of cancer.

TJ structure and function

TJs are occluding junctions, acting as barriers that control 
paracellular permeability and regulate trans-epithelial 
water and solute movement (20). They also function in 
maintaining cellular polarity. These dynamically-adhesive 
structures are composed of integral transmembrane 
proteins that link adjacent cells through homophilic and 
heterophilic interactions. TJ transmembrane proteins also 
recruit cytoplasmic TJ adaptor proteins via binding sites in 
their intracellular C-terminal tails. Such adaptor proteins 
anchor TJs to the actin cytoskeleton (21) and can recruit 
cytosolic partners into signalling complexes that regulate, 
amongst other things, the expression of genes involved in 
proliferation and differentiation (9). In this manner, TJs 
form a connection between the extracellular milieu and the 
nucleus. 

Tight junction (TJ) proteins

In 1963, Farquhar and Palade f irst  described the 
ultrastructure of epithelial TJs (22). Since then >40 TJ 
proteins have been identified; including transmembrane 
proteins like occludin, claudins, the coxsackievirus and 
adenovirus receptor (CAR), and members of the junctional 
adhesion molecule (JAM) family. TJ adaptor proteins 
include members of the zonula occludens family (ZO-
1, ZO-2 and ZO-3), AF6, Par3, CASK, MUPP1, MAGI-
1 afadin, and PDZ-GEF2 (9,23). These proteins are 
dynamically regulated during processes such as wound 
repair, tissue remodelling and inflammation. Therefore TJ 
protein expression and localisation is strenuously regulated 
to maintain barrier function, and consequently TJ proteins 
are particularly vulnerable to aberrant modulation that may 
lead to cellular transformation. 

Tight junction (TJ) proteins and cancer

TJs are well-recognized as major players in epithelial cell 
barrier function, by virtue of their adhesive functions. 
However, TJs also exert proliferative and differentiative 
functions which have only emerged in recent years. The 
current paradigm holds that loss of TJ protein expression 
and consequent deficits in cell-cell adhesion drive tumour 
cell detachment from a primary tumour, setting the stage 
for local invasion and later distant metastasis. Furthermore, 
loss of TJ adhesion compromises cellular polarity and 
stimulates dedifferentiation, another hallmark of cancer 
cells (13). Thus many studies have established that loss of 
TJ proteins (including occludin and Claudin-7) can enhance 
tumour progression (1,2). However this paradigm has 
recently been challenged by reports that the overexpression 
of many TJ proteins is associated with tumour growth and 
metastasis. This apparent contradiction highlights an under-
appreciated complexity and plasticity in the functions of TJ 
proteins. Specifically it is likely that TJ proteins function 
not only in intercellular adhesion and polarity, but also in 
regulating intracellular signalling that controls proliferation 
and migration. Evidently, optimal expression of TJ proteins 
is important in maintaining normal physiological function 
and any imbalance could have pathological consequences. 
Therefore, we propose that aberrant TJ protein expression, 
rather than exclusively TJ protein loss, may promote 
tumorigenesis. This review will focus on reported 
overexpressions of TJ proteins in cancer, with a particular 
focus on members of the immunoglobulin-like superfamily 
(IgSF) and the claudin family. Table 1 summarises several 
studies which have reported roles for overexpression of 
members of these families in tumorigenesis.

Junctional adhesion molecules (JAMs)

The IgSF is a large group of proteins which share a 
structural feature with antibodies, in that they possess one 
or more immunoglobulin domains. Two members of the 
IgSF are expressed in TJs: the JAM family and CAR (94). 
JAMs are type I transmembrane glycoproteins expressed in 
a variety of cells and tissues, from endothelial and epithelial 
cells to leukocytes and platelets. The founder member 
of the family, JAM-A, was discovered in 1998 (94), and 
subsequently four additional members have joined (JAM-B, 
JAM-C, JAM-4, and JAM-L) (95-99). They share a similar 
structural organisation composed of two extracellular Ig-like 
domains in their N-terminal tail, a single transmembrane 
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region, and a C-terminal cytosolic tail. The carboxyl 
terminus incorporates a PSD-95/Discs-large/ZO-1 (PDZ) 
binding domain responsible for intracellular interactions 
with scaffolding proteins like ZO-1, AF6, Par3, CASK, 
MUPP1, MAGI-1 afadin and PDZ-GEF2 (100). JAMs 
have important regulatory functions in numerous cellular 
processes including intercellular TJ assembly, cellular 
polarity, leukocyte transmigration, platelet activation, 
angiogenesis and cell morphology (101-106).

Given these dynamic functions, it is unsurprising that 
many studies have highlighted aberrant expression of 
JAM family members in carcinomas. While the role of 
JAM-A in breast tumorigenesis is best studied, evidence 
that JAM-A dysregulation contributes to glioblastoma 

Table 1 Table of TJ proteins whose overexpression has been 
reported to promote tumorigenesis in specific cancers

Proteins Cancer Reference

JAM-A Brain (24)

Breast (25-30)

Cancer stem cells (31)

Gastric (32)

Lung (33)

Nasopharyngeal (34)

JAM-C Fibrosarcoma (35)

Lung (36)

Melanoma (37-39)

Ovarian (40)

CAR Breast (41,42)

Endometrial (43)

Lung (44)

Oral (45)

Ovarian (46)

Thyroid (47)

Claudin-1 Breast (48-50)

Cervical (51)

Colorectal (52-59)

Gastric (60)

Liver (61)

Oral (15) 

Ovarian (62)

Claudin-2 Breast (63-66)

Colorectal (52,67)

Lung (68,69)

Skin (70)

Claudin-3 Breast (71,72)

Colorectal (73)

Endometrial (74,75)

Gastric (76)

Kidney (71)

Lung (71)

Ovarian (16,71,77-81)

Prostate (71)

Uterine (75)

Table 1 (continued)

Table 1 (continued)

Proteins Cancer Reference

Claudin-4 Breast (71)

Endometrial (74,82)

Gastric (71,76,83)

Lung (71)

Kidney (71)

Nasopharyngeal (84)

Ovarian (16,71,77,79)

Pancreatic (71,85) 

Uterine (75)

Claudin-7 Cervical (51)

Colon (86)

Gastric (71)

Liver (71)

Lung (71)

Nasopharyngeal (84)

Ovarian (71,87)

Pancreatic (71,88)

Thyroid (71)

Claudin-11 Gastric (89)

Claudin-16 Breast (90)

Ovarian (91)

Renal (92)

Claudin-20 Breast (93)
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(GBM), nasopharyngeal, gastric and lung cancer is also 
emerging (24,32-34). Initially JAM-A down-regulation was 
implicated in breast tumour progression, with a report that 
its expression decreased in breast tumour metastases (107). 
However, using larger clinical datasets, two independent 
groups subsequently demonstrated a strong correlation 
between JAM-A protein upregulation and poor prognosis 
in breast cancer patients (25,26,108). In addition, patients 
whose tumours expressed high levels of JAM-A were also 
more likely to develop recurrences within 5 years (25). 

Regarding the mechanism by which JAM-A upregulation 
could influence cancer progression, an intriguing study in 
colonic epithelia had revealed that JAM-A dimerization 
initiates a signalling complex incorporating AF-6 and 
the Rap1 activator PDZ-GEF2 (guanine exchange 
factor), in turn promoting Rap1-GTPase activation, β1-
integrin upregulation and enhanced cell migration (109).  
Confirmation of this mechanism in breast cancer cells, 
including primary breast tumour cultures (27), suggested 
that the l ink between JAM-A overexpression and 
increased risk of metastasis (25) may lie in the ability 
of JAM-A to promote cell migration, an early event in 
the metastatic cascade. This was further supported by a 
study demonstrating downregulation of microRNA miR-
145 in breast tumour tissue relative to healthy tissue, in 
conjunction with the observation that miR-145 over-
expression in breast cancer cells reduced JAM-A expression 
and decreased cell migration (28).

However the potential role of JAM-A in cancer 
progression may not be restricted to its regulatory influence 
on cell migration, but might also involve dynamic control of 
proliferation and apoptosis (29,108). One mechanism for this 
could involve its relationship with the breast cancer biomarker 
human epidermal growth factor receptor-2 (HER2). In a 
study examining the relationship between JAM-A expression 
and clinico-pathological variables, JAM-A was associated 
with increased HER2 gene and protein expression (25,26). 
Subsequent investigations revealed that JAM-A regulates 
HER2 expression in vitro, by putatively inhibiting the 
proteasomal degradation of HER2 protein (26). Taken 
together, this may explain reports that JAM-A expression 
promotes proliferation and inhibits apoptosis (29,108), two 
well-defined features executed by HER2 signalling via the 
PI3K and MAPK pathways. A role for JAM-A in apoptosis 
has been highlighted by in vivo studies in which JAM-A null 
mice developed smaller tumours than JAM-A positive mice, 
due to increased apoptosis in the former (108). Another  
in vivo murine study has also confirmed that JAM-A is 

involved in breast tumour proliferation, and, promisingly, that 
an anti-JAM-A monoclonal antibody can decrease murine 
breast tumour xenograft growth (29). However, contrary to 
the evidence that JAM-A levels positively regulate proliferation 
and negatively regulate apoptosis, one study has proposed the 
opposite. Specifically, loss of JAM-A expression reportedly 
enhanced intestinal epithelial cell proliferation through Akt-
mediated activation of β-catenin transcription, while Akt 
inhibition reversed intestinal hyperproliferation in JAM-
deficient mice (110). These results suggest JAM-A may exert 
tissue-specific control over proliferation. On the other hand, 
the dependence of these events on JAM-A dimerization (110) 
might suggest alternate regulation of JAM-A signalling 
between physiological versus pathophysiological settings. It 
is intriguing to speculate that, in the physiological setting 
of an intact epithelial barrier, JAM-A homodimerisation 
between adjacent epithelial cells would inhibit proliferation 
in order to maintain barrier homeostasis. By contrast, in 
pathophysiological settings [e.g., JAM-A upregulation in 
cancer (25) or wound repair (111,112)], over-expressed 
JAM-A distributed across the surface of less-polarised cells 
might engage in adhesion-independent signalling to promote 
cellular proliferation. Taken together, this suggests a complex 
spatial and temporal regulation of cellular phenotype by 
JAM-A, and offers hope that it could be selectively targeted 
in the pharmacological setting.

Accordingly, unbiased identification of JAM-A as a 
promising cancer drug target by a reverse-pharmacology 
approach (29) in conjunction with observations that JAM-A 
acts as a cell surface marker for triple-negative breast cancer 
(TNBC) cancer stem cells (CSCs) (30) support the idea 
that JAM-A inhibitors could be clinically useful. Similarly, 
the identification of JAM-A as an indispensable CSC 
adhesion protein and self-renewal promoter in patient-
derived GBM cells (31) further suggests a pro-tumourigenic 
role for JAM-A in driving self-renewal and cellular 
dedifferentiation. Accordingly, overexpression of JAM-A 
in both GBM (31) and nasopharyngeal tumour tissue (34) 
has been correlated with poor patient prognosis, the latter 
potentially involving PI3K-mediated induction of epithelial 
to mesenchymal transition (EMT) (34). Recent studies 
have also implicated JAM-A in promoting proliferation and 
inhibiting apoptosis in both gastric and lung cancer (32,33); 
further suggesting that JAM-A upregulation may be a key 
molecular marker and novel therapeutic target in several 
cancers. A summary of mechanisms by which JAM-A may 
promote tumorigenesis is illustrated in Figure 1.

Another member of the JAM family which has also been 
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implicated in tumorigenesis is JAM-C. However, to date 
the primary role of JAM-C in aiding cancer progression 
has been reported to involve the promotion of cancer 
cell migration and angiogenesis rather than by directly 
influencing tumour cell proliferation or survival (36-38). 
JAM-C expression has been positively correlated with 
metastatic potential in melanoma cells (35), and JAM-C 
deficient mice with melanomas display decreased levels 
of lung metastasis (39). Homophilic JAM-C interactions 
in trans (between adjacent cells) appear to be responsible 
for JAM-C-dependent metastasis. However, interactions 
between JAM-C on melanoma cells and JAM-B on 
lung microvascular endothelial cells could also account 
for preferential metastasis to the lung (37). Recently, 
upregulated expression of JAM-C has also been shown to 
correlate with poor prognosis and reduced recurrence-free 
survival in non-small cell lung cancer patients, via enhanced 
lymph vessel formation and lymph node metastasis (36). 

This role of JAM-C in promoting metastasis has 
been highlighted further in a study showing that JAM-
C-overexpressing fibrosarcoma cells display increased 

migration and invasive potential, and that mice bearing 
these cells have shorter survival times than those implanted 
with JAM-C negative tumours (35). A complementary 
study also showed that conditional silencing of endothelial 
JAM-C in a murine ovarian cancer model hindered tumour 
growth via impairment of the tumour vasculature (40), 
indicating a vital role for JAM-C in driving metastasis via 
pro-angiogenic effects. 

Coxsackievirus and adenovirus receptor (CAR)

CAR is another TJ protein in the Ig-superfamily. It is a 
46-kDa transmembrane protein with two Ig-like domains 
in the extracellular region and, as the name indicates, it 
acts as a receptor for coxsackie- and adenoviruses (113). 
Overexpression of CAR has been reported in breast cancer 
compared to healthy tissue, with levels of expression 
positively correlating with tumour grade and metastasis (41).  
CAR expression has also been noted to increase after 
transition from precursor lesions to neoplastic breast 
tumours (42). Mechanistically, CAR overexpression has 

Figure 1 Mechanisms by which JAM-A may promote tumorigenesis. (A) JAM-A dimerization leads to Rap1 activation and subsequent 
upregulation of β1-integrin, enhancing cell migration; (B) JAM-A overexpression promotes cancer stem cell (CSC) self-renewal in triple-
negative breast cancer; (C) JAM-A induces epithelial to mesenchymal transition (EMT) in nasopharyngeal carcinoma cells via the PI3K and 
MAPK pathways; (D) JAM-A stabilises HER2 expression in breast cancer cells by putatively inhibiting HER2 proteasomal degradation, 
promoting signalling via the PI3K and MAPK pathways which results in cellular proliferation and the inhibition of apoptosis. Many of the 
arrows depict processes that require several steps.
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been shown to promote breast cancer cell survival following 
application of an apoptosis-inducing ligand, in a pathway 
involving Bcl-2 upregulation and reduced caspase-3 
activation (42). Furthermore, levels of both transmembrane 
CAR and soluble CAR isoforms were shown to increase 
in breast cancer cells following tamoxifen treatment (114),  
suggesting that the protein may be upregulated in order 
to protect the cells from apoptosis. Augmented levels of 
soluble CAR isoforms (CAR 3/7 and 4/7) have also been 
reported to correlate with reduced overall survival in 
ovarian cancer patients (46). Furthermore CAR expression 
has been associated with tumour grade in endometrial 
adenocarcinoma and lung cancer patients (43,44), while 
CAR silencing decreased cellular adhesion, colony 
formation, and invasion in lung cancer cells (44). Studies 
in a thyroid tumour tissue microarray have also revealed 
over-expression of CAR in malignant compared with 
benign tumours, in addition to a correlation between CAR 
expression and larger tumour size (47). Previous studies 
have also shown that CAR expression is significantly 
upregulated in neuroblastomas and medullablastomas, 
the most common paediatric gliomas, compared to other 
central nervous system tumours (115). An anti-apoptotic 
role for CAR has also been postulated in oral squamous 
cell carcinoma, with gene silencing reported to suppress 
growth and induce apoptosis (45). Collectively these results 
suggest that CAR may represent a good drug delivery target 
for anti-cancer gene therapies, a concept which will be 
addressed more comprehensively in section “TJ proteins as 
therapeutic drug targets in cancer” of this review.

Claudins

The claudin family consists of 24 transmembrane proteins 
exhibiting distinct tissue- and development-specific 
distributions, with subtle differences in their extracellular 
loops which determine ionic selectivity (116). Claudins 
are expressed in both epithelial and endothelial cells 
and form a complex with occludin and/or JAM family 
members. They encode 20-27 kDa proteins with four 
transmembrane domains, two extracellular loops and a 
short carboxyl intracellular tail (117). Claudins expressed 
on adjacent cells interact via their extracellular loops, 
while those expressed in the same cell interact through 
their intracellular N-terminal domains (118). The last 
amino acids of this tail constitute highly conserved PDZ-
binding motifs. Through these motifs, claudins are linked 
to the TJ PDZ-containing proteins ZO-1, ZO-2, ZO-3,  

PATJ and MUPP1 (119). Claudins have been shown to 
be essential and sufficient to induce TJ formation (119). 
Regardless of this critical role in normal physiology, 
overexpression of various claudin family members has also 
been associated with a number of cancers.

Claudin-1 and Claudin-2
Although Claudin-1 and -2 are frequently expressed 
in a similar pattern in cancers (52,120,121), some 
differences do exist. For instance, it has been reported 
that Claudin-1 levels decrease in skin squamous cell 
carcinoma while those of Claudin-2 increase (70). 
Elevated Claudin-1 expression has been noted in many 
cancers including ovarian, breast, colorectal, gastric, 
cervical and liver (15,48,52-58,60,61,122). Furthermore 
augmented Claudin-1 protein expression in colon cancer 
has been correlated with tumour growth, metastasis and 
poor patient prognosis (52,55,57). However, mechanisms 
underlying the upregulation of claudins in cancer are still 
unclear. One potential mechanism involves transcriptional 
activators such as Cdx-2, according to colon cancer 
model studies in conjunction with Claudin-1 and Cdx2 
expressional data from colon cancer patients (54).  
However, it is likely that Claudin-1 upregulation in 
cancer could also reflect other mechanisms. Another 
study has revealed an association between Claudin-1 
mRNA expression and histone deacetylase (HDAC)-2 
mRNA in colon cancer patients; while HDAC inhibitors 
decreaseed Claudin-1 expression and inhibited colonic 
tumour cell invasion (59). Together, these results suggest 
that the upregulation of Claudin-1 in colon cancer is a 
dynamic process involving both transcriptional regulation 
and epigenetic modifications.

Post-transcriptional regulation of Claudin-1 has also been 
demonstrated in ovarian cancer-initiating cells (OCICs) (62). 
Specifically, Claudin-1 mRNA was shown to be upregulated 
in OCICs compared to ovarian cancer cells. Its expression 
correlated with downregulation of the microRNA miR-
155, which directly targets Claudin-1 for degradation, 
thereby acting as a tumour-initiating cell suppressor (62). 
Other diverse mechanisms have also been reported to 
regulate Claudin-1 expression in a range of cancer types. 
For instance, elevation of Claudin-1 mRNA has been 
demonstrated following tamoxifen treatment in breast 
cancer cells, and linked with protection from apoptosis. 
This suggests that up-regulation of Claudin-1 may confer 
some degree of resistance to the drug (48). Other work has 
supported an anti-apoptotic role for Claudin-1 in breast 
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cancer (49,50), with silencing of Claudin-1 shown to induce 
apoptosis in a number of cell lines (50). In addition, an 
increase in Claudin-1 expression and subsequent inhibition 
of apoptosis was observed following treatment with tumour 
necrosis factor α (TNFα), a cytokine which induces cancer 
cells to undergo apoptosis (49). 

A role for Claudin-1 in inhibiting apoptosis has also 
been observed in colon cancer through suppression of 
anoikis via Src, Akt and Bcl-2-dependent pathways (58). 
Overexpression of Claudin-1 in colon cancer has also been 
shown to upregulate the transcription factor ZEB1 which 
represses E-Cadherin expression, resulting in augmented 
invasive capacity and reduced cell death (122). Furthermore, 
Claudin-1 has been linked with the induction of EMT in 
human hepatocellular carcinoma via ZEB1 and Slug acting 
upstream of MAPK signalling (61).

Although a similar role for Claudin-2 has not yet been 
demonstrated in liver cancer, Claudin-2 has nonetheless 
been associated with liver metastasis of breast cancer 
through the engagement of integrin complexes (63). 
Significantly, Claudin-2 is much upregulated in primary and 
secondary tumours that metastasise to the liver compared 
to other metastatic sites (63,64), and its expression shown 
to correlate with reduced metastasis-free survival (64). 
A recent study has suggested that Lyn, a member of the 
SRK family kinases, is responsible for increased Claudin-2 
expression in primary breast tumours and their subsequent 
liver metastases (65). Preference for the liver as a metastasic 
site is thought to be exerted via interactions between 
Claudin-2 expressed on both breast cancer cells and primary 
hepatocytes (66). 

Yet another alternative mechanism for Claudin-2 
upregulation has been reported in lung cancer cells, with 
the demonstration that MMP-mediated release of EGF 
promotes Claudin-2 upregulation via the EGFR/MEK/
ERK pathway (68). As EGFR is significantly upregulated 
in lung carcinoma tissue (123), this mechanism offers a 
potential explanation as to why Claudin-2 is expressed in 
human lung adenocarcinoma but absent in healthy lung 
tissue (68,69). When Claudin-2 is expressed in lung cancer 
cells, it has been shown to translocate to the nucleus, 
form a complex with ZO-1, ZONAB and cyclin D1 
and consequently to promote proliferation (69). Similar 
interactions have also been reported in colorectal cancer, via 
a symplekin-dependent mechanism promoting Claudin-2 
expression and subsequent enhancements in cyclin D1 
expression and nuclear localisation of ZONAB to enhance 
proliferation (67). 

Claudin-3 and Claudin-4
A myriad of studies have shown that Claudin-3 and -4 are 
frequently overexpressed in several carcinomas, including 
endometrial, breast, ovarian, lung, prostate, kidney, 
gastric and pancreatic (16,71-78,83,85). Gene expression 
profiling has demonstrated that both Claudins-3 and -4 
are overexpressed in uterine serous papillary carcinoma 
(USPC), a highly aggressive and chemotherapy-resistant 
variant of endometrial cancer characterized by particularly 
poor prognosis (75). Complementary studies have also 
supported a role for Claudin-3 and -4 upregulation 
correlating with aggressive disease phenotypes and poor 
prognosis in endometrial cancer patients (74), with 
progressive expressional enhancements at both mRNA and 
protein levels along a scale of normal to hyperplastic and 
finally malignant endometrial tissue (82). The mechanism 
by which Claudins-3 and -4 are upregulated in cancer is 
not entirely understood. However, as discussed in the case 
of Claudin-1 upregulation in colon cancer (54), evidence 
from gastric cancer settings suggests that the transcriptional 
enhancer Cdx-2 may be involved (76). 

Although much remains to be understood about 
the upstream regulators of claudin family members 
in  carcinomas,  some progress  has  been made on 
understanding the downstream events that drive claudin-
dependent tumorigenesis. As already discussed for 
JAM-A (27), one way in which claudin upregulation 
could similarly influence cancer progression is via 
positive effects on cell motility at the start of the invasive/
metastatic cascade. Claudin-4 overexpression in gastric 
cancer has been shown to increase cell invasion and 
migration, putatively via coordinate regulation of the 
expression or activation of matrix metalloproteinases 
(MMP)-2 and -9 (83). Similarly, studies have alluded 
to Claudin-3 and -4 overexpression in ovarian cancer 
cells promoting cell survival, invasion and motility via 
increased MMP-2 activity (79). Intriguingly, although 
the simultaneous overexpression of both Claudins-3 and 
-4 has been reported in ovarian cancer, findings suggest 
that Claudin-3 may be of more importance (77,78,80,81). 
Specifically, patient tissue analyses have revealed a 
significant correlation between tumours overexpressing 
Claudin-3 and a shorter survival time, suggesting that 
Claudin-3 alone may represent a novel therapeutic 
target for ovarian cancers (77). Thus, although these two 
proteins are usually analysed hand-in-hand and assumed to 
function together, this is not always the case. For instance, 
a study analysing Claudin-3 and -4 levels in a large 
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cohort of breast cancer patients found that expression 
levels of the proteins act as differential prognostic 
factors in breast cancer (72). Specifically, overexpression 
of Claudin-3 in conjunction with downregulation 
of  Claudin-4 was associated with poor prognosis 
in triple negative breast cancer, while the opposite 
was the case in luminal breast cancer subtypes (72).  
Such findings suggest crosstalk between these proteins 
and hormone receptor signalling in cells of the breast 
epithelium. Taken together, and in conjunction with 
the previously noted divergence between the utility of 
Claudins-1 and -2 as prognostic factors in skin cancer (70), 
these studies highlight a complex regulation of claudins in 
cancer which merits further unravelling.

Other claudins
Besides Claudins-1-4, several other members of the claudin 
family have also been linked with tumorigenesis in tissue-
specific contexts. These include Claudin-7, Claudin-11, 
Claudin-16 and Claudin-20 (86-90,92,93). Although loss 
of Claudin-7 has been associated with tumorigenesis in a 
number of cancers including those of the lung, breast and 
pancreas (2,12,88), other studies have shown that Claudin-7 
is upregulated in different cancers such as thyroid, liver, 
stomach, kidney and ovarian (51,71,86,87). For example, 
Claudin-7 expression has been shown to promote EMT 
and cancer cell motility and invasion in human colorectal 
cancer and has been associated with decreased survival 
in nasopharyngeal carcinoma patients (84,86). In ovarian 
cancer cells, Claudin-7 knockdown has been shown to drive 
differential expression of genes involved in proliferation, 
apoptosis and development (87). Claudin-16 protein has 
also been implicated in ovarian cancer, being identified 
as a human ovarian-cancer specific transcript during 
serial analysis of gene expression contributing to ovarian 
tumorigenesis (91). Interestingly, Claudin-16 is also 
highly expressed in renal cell carcinoma (92), while on the 
contrary loss of Claudin-16 appears to enhance tumour 
progression in breast cancer (124). Primary breast cancer 
tumour mRNA expression analysis has also revealed that 
high Claudin-20 expression correlates with poor patient 
prognosis (93). Overall it is clear that no simple paradigm 
exists in relation to the role of claudin family expression 
in cancer. However further elucidation of their spatial and 
temporal regulation is likely to reveal fascinating insights 
into their mechanistic contribution to cancer development 
and progression, in addition to exploring their feasibility as 
druggable targets.

TJ proteins as therapeutic drug targets in cancer

TJ proteins are barely accessible in well-structured 
normal epithelia but, due to abnormal function on 
tumour cells resulting in the disruption of cellular 
polarity, they become exposed (18). Therewith, as TJ 
proteins are overexpressed in several types of carcinomas, 
different approaches using monoclonal antibodies (mAbs), 
enterotoxins and therapeutic gene delivery have been 
created and tested as new promising candidates for anti-
cancer drug therapy.

Currently, mAbs against cancer-specific antigens have 
shown enormous potential and efficacy as a new class of 
drugs. Specificity to the target, long stability in blood and 
several clinically relevant mechanisms of action are some of 
the features which make them interesting and useful (125). 
Briefly, mAbs bind to a specific receptor on the cell surface 
and induce one or more actions: firstly the recruitment 
and activation of immune cells resulting in cell lysis, and 
secondly the antagonism of ligands to interrupt signalling, 
normalize growth rates, induce apoptosis and sensitize 
tumours to chemotherapeutic agents (126). 

Based on the advantages of using mAb therapy, a variety 
of pre-clinical studies have tested the efficacy of targeting TJ 
proteins via this approach in cancer. One study generated a 
dual-targeting mAb specific against Claudin-3 and -4, and 
found it to significantly inhibit tumour formation in cell lines 
of breast and ovarian cancer both in vitro and in vivo (127). 
Previously, another study succeeded in isolating a mAb which 
specifically bound to Claudin-4 and proved to be a promising 
therapeutic approach for pancreatic and ovarian cancers (19). 
Furthermore, an anti-JAM-C mAb was effective in reducing 
tumour growth by decreasing angiogenic vascularization of 
tumours (128) and a mAb against JAM-A resulted in tumour 
growth inhibition in several mouse models (29).

Although promising, there are some limitations to mAb 
therapy. In order to obtain maximum efficiency, high doses 
of therapeutic antibody for a prolonged time are needed, 
which could make the treatment prohibitively expensive. 
Moreover, pharmacokinetic and pharmacodynamic problems 
such as distribution and administration, individual variability 
(age, gender, other diseases) and safety, since the necessity for 
high concentrations leads to increased immunogenicity, are 
some of the problems with mAb therapy. Producing mAbs 
can also be particularly difficult. Besides the high cost, there 
is the challenge of large-scale antibody production from 
hybridomas, as it is limited by the quantity, quality and type 
of cell line used in the process (129).
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Clostridium perfringens (C. perfringens) enterotoxin (CPE) 
mediated therapy represents a different approach which 
benefits from specific expression patterns of Claudins-3 and 
-4 in cancer cells. CPE is a toxin produced by C. perfringens 
bacteria which is associated with gastrointestinal symptoms 
of type A food poisoning. Another known characteristic 
of this 35 kDa polypeptide is its ability to rapidly lyse 
cells upon binding to its receptors, through its effects on 
membrane permeability (130).

Interestingly, Claudins-3 and -4 have been identified as 
natural CPE receptors, enabling the use of the enterotoxin 
to induce cell death in cancers which express those 
receptors. One study carried out with CPE-mediated 
therapy resulted in rapid and dose-dependent cytolysis 
exclusively in breast cancer cells that express Claudin-3 
and -4. The same group also used the treatment to reduce 
significantly tumour volume in xenografts (131). Similarly, 
pancreatic (132), prostate (133), ovarian tumours (134) in 
addition to brain metastases (135) have also been shown to 
be sensitive to CPE treatment. 

Although studies in mice have not demonstrated 
significant toxicity following intra-tumoural treatment with 
CPE, it must be noted that Claudins-3 and -4 are expressed 
in many normal tissues as well as being over-expressed in 
certain cancers. This may pose as a risk in the systemic 
utilization of this therapy, potentially restricting it to cancers 
accessible via local application. In turn this could lead to 
distribution problems of CPE in tumour tissue, principally in 
large solid tumour masses. The dependence of the expression 
of claudins and the need for multiple applications leading 
to immuno-sensitisation against the treatment are other 
limitations of CPE-mediated therapy (14,134).

With the establishment of therapeutic gene delivery, 
which consists of vector-driven insertion of DNA or RNA 
sequences into cells to correct a malfunctioning gene, 
switch it off or even cause cancer cell death (136), the search 
for mammalian receptors that enable virus attachment to 
target cells has increased. In this context, the involvement 
of the TJ protein CAR in attachment and infection by 
group B coxsackieviruses (CVB) and adenoviruses (Ad), 
has led CAR to be extensively studied in terms of cancer 
treatment (137). The fact that CAR over-expression has 
been reported in several cancers (as discussed previously) 
would suggest promise for some selectivity in this treatment 
approach. Paradoxically, however, some studies have shown 
that CAR expression is heterogeneous. Some types of 
cancer cell lines including glioma (138,139), bladder (140), 
prostate (141), rhabdomyosarcoma (142), colorectal (143), 

ovarian (144), lung (145) and breast (146), have low levels 
of CAR expression, limiting efficient adenovirus infection 
in those cancer cells and therefore the use of gene therapy. 
Thus, several studies have used pharmacological approaches 
to induce CAR expression in highly tumourigenic cancers 
which are normally CAR deficient. In some cases this has 
been shown to have growth-inhibitory effects, suggesting 
that the role of CAR in cancer progression is complex and 
likely tissue-specific (141,147-149). Accordingly this will 
influence its potential as a delivery target for gene therapy.

However, although most clinical trials have demonstrated 
adenoviral gene therapies to be safe, well-tolerated and 
minimally toxic, reasonable concerns still exist. The tragic 
death of a patient following a massive immune response to 
the viral vector in a Phase I trial sparked an FDA decision 
to investigate 69 US gene therapy trials in 2000 (150), and 
seriously set back research in the area. Besides negative 
press, the incidents exposed some problems related to the 
therapy such as purification of viral particles, measurement 
of vector concentration, selection of hosts (151) and indeed 
the choice of subjects in which to perform the trials.

Despite the limitations of each previously-mentioned 
form of therapy, the techniques described are already widely 
used in the treatment of various diseases including cancer; 
and many of the problems and side effects of the treatments 
have been well established. Thus, pending a greater 
mechanistic understanding of how TJ proteins contribute to 
the pathophysiology of diseases including cancer, the time 
is ripe to move forward with these therapeutic approaches 
using TJ proteins as targets. 

To this end, it is necessary to expand our font of 
knowledge regarding the mechanistic contributions of TJ 
proteins to cancer. This in turn will drive the testing of new 
therapies including small molecule inhibitors of TJ protein 
signalling, and foster clinical trials to better understand 
treatment regimens and to maximise the safety and efficacy 
of TJ-targeted reagents as future anti-cancer therapies.

Conclusions

In conclusion, TJ proteins have a vast potential to both 
repress tumorigenesis (via the promotion of stable cell-
cell adhesion) or to promote tumorigenesis (via adhesion-
independent signal transduction events that control 
migration, proliferation and apoptosis). This review has 
highlighted a myriad of studies demonstrating TJ protein 
overexpression in specific cancers, and attempted to address 
mechanisms whereby such events would actively contribute 
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to tumour progression or metastasis (rather than simply 
acting as passive biomarkers of the disease process). The 
highlighted findings regarding claudins, JAMs and CAR 
in tumorigenesis suggest great potential for these TJ 
proteins in particular to act as novel molecular targets in 
semi-personalised cancer strategies. The development 
of therapeutic reagents against these proteins will pose 
challenges, not least how to avoid interfering with their 
intrinsic roles in normal physiology while consciously 
interrupting their contributions to cancer pathophysiology. 
However several parallel avenues of promising pre-clinical 
data support the possibility that this is an exciting path 
towards a future of targeted cancer therapies, once it is 
firmly underpinned by solid mechanistic investigations 
into the biology of how TJ molecules contribute to disease 
pathogenesis.
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