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Editorial

Genetic modulation of oxytocin’s effects in social functioning
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The contactin-associated protein-like 2 (Cntnap2) gene 
consists of 24 exons and spans 2.3 Mb at chromosome 
7q35 (1). Mutations in this gene have been implicated in 
a broad range of neurological disorders such as autism 
spectrum disorders (ASD), schizophrenia, intellectual 
disability, dyslexia, language impairment, cortical dysplasia 
and focal epilepsy (2,3). Intriguingly, individuals carrying 
mutations in the Cntnap2 gene seem to show similar 
abnormal phenotypes such as intellectual disability, seizures, 
language and social abnormalities (2).

Social abnormalities as well as communication and 
language deficits are characteristic core behavioural features 
of ASD, a group of neurodevelopmental disorders (4). 
Although the pathogenesis of ASD is not yet well known, 
there is strong evidence from twin studies that genetics 
play a crucial part (5-7). While earlier studies implicated 
the influence of genetic components in the range of about 
90%, more recent findings lowered this estimate (to about 
50%), emphasizing instead interaction with contributory 
environmental factors (8,9). For example, environmental 
factors such as smoking, alcohol, medication and pesticides 
have been consistently implicated (8). To date, early 
genome-wide linkage studies and more recently, genome-
wide association studies (GWAS) in huge samples sizes 
have been able to highlight several vulnerability genes. 
However, replications are unfortunately still infrequent and 
inconsistent (10-14). Thus, we embrace the hypothesis that 
genetics might account for only a part of the aetiology of 
ASD. However, genetics remains a key influential factor 
that might constitute a basis for differential developmental 
t ra jector ies  as  wel l  as  for  d i f ferent  react ions  to 
environmental elements, including therapeutic treatments.

The neuropeptide oxytocin (OXT) has been shown to be 
an important modulator of social behaviours such as social 

recognition, social memory, pair bonding, sexual behaviour, 
paternal and maternal care (15-20). Conceivably, this has 
led to considerable interest in the oxytocinergic system 
as a potential therapeutic target in the treatment of social 
behavioural impairments in neuropsychiatric disorders 
such as ASD (21,22). Despite early promising findings 
(14,23-26), thus far, preclinical experiments in animal 
models and preliminary clinical studies in humans have 
produced conflicting results of oxytocin’s pro-social effects 
(27,28). Some trials have shown moderate improvement in 
social function in adults and children, but others have not 
yielded any positive effects (27,29). Notably, various pieces 
of research suggest that chronic exogenous OXT treatment 
in subjects with relatively normal functioning oxytocinergic 
systems might actually cause detrimental effects (28,30). 
Altogether, these findings highlight the importance of 
dealing cautiously with therapeutic use of OXT, and that 
more research is still needed in this promising field. In this 
context, genetically modified mouse models might prove to 
be invaluable tools in our future investigations and help to 
implement/improve the use of OXT as a therapeutic tool.

In line with this, the recent work by Peñagarikano and 
coworkers in issue 271 of STM 2015 (31) constitute one of 
the first important examples. In particular, these authors 
have previously characterized a mouse model of autism 
where the Cntnap2 gene, responsible for cortical dysplasia 
and focal epilepsy syndrome, is knocked out. These mice 
have been shown to display social deficits. Now, in their 
recent report, the authors observed that an acute (both 
intraperitoneal and intranasal) dose of OXT or arginine 
vasopressin (AVP) was able to rescue the social behavioural 
deficits observed in Cntnap null mutant mice (−/−). Further 
experiments suggest that these behavioural improvements 
might be more dependent on OXT pathways as the OXT 
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receptor antagonist L371,257 was also able to block the 
prosocial effects of AVP in Cntnap−/− mice. Furthermore, 
additional behavioural tests revealed that the effects of OXT 
were specific to social behaviour, in agreement to what has 
already been shown following exogenous OXT in wild-
type mice (28,30). Unfortunately, in Peñagarikano’s work, 
mice carrying a partial genetic disruption of the Cntnap2 
(i.e., heterozygote +/−) or knock-in with a human-like 
mutation have not been investigated. This will be crucial 
in a translational perspective, as it might better mimic the 
genetic variations that could be present in human subjects.

An interesting point reported in Peñagarikano’s work 
support increasing evidence indicating that different 
receptors expressed on OXT neurons could be targeted 
using pharmacological agents to stimulate OXT release. 
Ultimately, these non-OXT drugs that enhance endogenous 
oxytocin release, could be the most effective in stimulating 
the oxytocinergic system in a more physiological way 
in order to improve social abnormalities. In agreement, 
acute melanocortin-4 receptor (MC4R) agonist treatment, 
which activate PVN OXT neurons (32) and induce central 
OXT release (33), remarkably improved Cntnap2−/− social 
deficits. Moreover, this effect was absent in wild-type mice 
and it was blocked in Cntnap2−/− when an OXT receptor 
antagonist was previously administered.

The next question would be, how to reconcile these 
clearly positive effects of OXT in social behaviour with the 
mixed results obtained so far in the clinic and in wild-type 
mice? The key is the status of the endogenous OXT system! 
Indeed, in Cntnap2−/− mice, the number of OXT-expressing 
cells in the PVN is reduced in comparison with wild-type 
littermates. Correspondingly, reduced OXT levels were 
also found in radioimmunoassay analysis of whole brain 
extracts. These findings support still preliminary evidence 
that only subjects with abnormal brain OXT systems might 
be expected to manifest ameliorative effects following OXT 
treatment. It will be important to demonstrate this in order 
to build a foundation for more effective and personalized 
healthcare in ASD.

Finally, the authors commenced investigating the effects 
of early postnatal sub-chronic intranasal administration of 
OXT in Cntnap2−/− and wild-type mice. Interestingly, in 
contrast to chronic treatment in adult mice (28), exogenous 
OXT during development seemed to be completely 
ineffective in wild-type mice. This might suggest that 
maybe during early development of the OXT system, 
exogenous OXT might not be deleterious. However, to 
strengthen this conclusion, quantification of endogenous 

OXT levels should have been performed not only in 
Cntnap2−/− mice, but also in wild-type mice following the 
early postnatal treatment. Despite this, these novel findings 
put forth an important conjecture that OXT treatment in 
early critical developmental windows, and particularly in 
OXT-deficient systems, could bring about diverse outputs 
and longer lasting effects on social behaviours compared to 
treatment during adulthood.

In conclusion, the work by Peñagarikano and co-workers 
has added valuable knowledge about the potential benefits 
of OXT manipulation in ameliorating social deficits and its 
interaction with the genetics of ASD. Even though at the 
moment, it is still unclear whether a compromised oxytocin 
system contributes to the aetiology of ASD (14,34-36), 
further knowledge about gene variations that might impact 
the OXT system in different ways will prove to be valuable 
in order to identify which subjects might most likely benefit 
from treatments targeting the OXT system. Further parallel 
studies in animals and humans are required to address these 
issues and to investigate the interaction of genetics with 
potential oxytocin treatments.
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