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Editorial

One more role for the gut: microbiota and blood brain barrier
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The gut/brain axis

The gut microbiota is composed of trillions of microbes that 
perform several tasks which are essential to our physiology. 
Recent emerging evidences have suggested the important 
contribution of gut microbiota in several biological functions 
of mammals, such as the regulation of the immune system, 
metabolism, intestinal development or brain physiology (1-4).  
In fact, recent work, mainly performed in experimental model 
of Multiple Sclerosis (MS), have demonstrated that resident 
commensal microbiota can modulate central nervous system 
(CNS) autoimmunity (5-8). The microbiota is now known to 
shift the balance between protective and pathogenic immune 
responses, in the CNS, but also in other organs. A growing 
body of evidence in animal support also the concept that 
the gut microbiota influences emotional behavior (9,10) and 
that its products and metabolites may promote metabolic 
effects such as reduced body weight, reduced adiposity, and 
improved glucose control (11). As regards, CNS physiology, 
the gut microbiota influence synaptogenesis, regulate 
neurotransmitters and neurotrophic factors release and 
function (4). 

But what are the products and metabolites produced 
by these microbes that influence all these biological 
functions? The intestinal microbiota produces innumerable 
biologically active ligands, such as the short chain fatty 
acids (SCFAs), i.e., acetate, butyrate or propionate. These 
chain fatty acids are the results of the fermentation of 
polysaccharides by intestinal microbes. They are known 
to exert anti-inflammatory functions not only in the 
gut but also in others organs (12,13). Others microbial 
products which may play a role in autoimmunity have been 
identified as PSA, lipid 654 or peptidoglycan (14). Even if 

numerous functions of this microbiota have been reported, 
its influence on blood-brain barrier (BBB) integrity and 
development has not been established even if suspected (15).

The BBB development

The brain and spinal cord are often reported as immune-
privileged organs, a concept derived from the observation 
that a very limited number of peripheral derived immune 
cells patrol the CNS. This privileged immunological status 
depends on the presence of specialized vascular barriers 
which restrict the passage of large molecules and cells, 
from the blood to the brain. The prototypical barrier of the 
CNS is the BBB. The BBB is constituted by microvascular 
endothelial cells (ECs) which elaborate a continuous 
network of intercellular tight junctions (TJs). ECs of 
the BBB also lack fenestrations and present a low rate of 
transcytosis. The term “neurovascular unit” (NVU) refers 
to BBB-ECs but also to astrocytes, pericytes, neurons, 
microglia and extra cellular matrix component that provide 
functional and structural support to the BBB. Development 
of the BBB starts when endothelial progenitor cells invade 
the embryonic neuroectoderm (16). Neural progenitor 
cells secrete factors that guide sprouting ECs, as VEGF 
(Vascular Endothelial Growth Factor) and Wnt ligands. In 
a second step, astrocytes and pericytes make contact with 
microvascular ECs which promote barrier properties, by 
the release of Sonic hedgehog (Shh) for astrocytes and by 
production of Ang-1 by pericytes. These interactions lead 
to the development of functional (impermeable) TJs, down-
regulation of leukocytes adhesion molecules on the surface 
of the ECs and inhibition of transcytosis. 
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Microbiota and BBB development

Although CNS related mechanisms underlying the 
development of the BBB are the topic of innumerable 
publications, the impact of the non-CNS environmental 
factors has not yet been explored. Recently, Braniste  
et al. (17) identified the gut microbiota as a probable 
regulator of BBB integrity, in both the fetal and adult 
mouse brain. They elegantly demonstrated that the lack of a 
normal gut flora in adult germ-free (GF) mice is associated 
with increased BBB permeability, both in the adult animal 
and in the embryos of GF mice. This dysfunction of 
the BBB is associated with a disorganization of the TJs, 
including a down-regulation of occludin and claudin 5. 
Interestingly, the “conventionalization” of GF adult mice by 
colonization with flora from pathogen-free (PF) mice was 
associated with enhanced integrity of the BBB, decreased 
extravasation of Evans blue dye inside the parenchyma, and 
a re-expression of occludin and claudin 5 in some regions of 
the brain. A similar and rapid correction of BBB dysfunction 
was observed using monocolonization by bacterial strain 
producing mainly butyrate, acetate and propionate [short 
chain fatty acids (SCFAs)]. The exact mechanisms by which 
SCFAs produced by bacteria affect BBB maturity and 
function remains unknown. Those will need to be addressed 
in future studies and might lead to significant developments 
in the fields of neuro-therapeutics, including in neuro-
oncology. Interestingly, the influence of SCFAs has 
previously been identified to impact on brain development 
and function (18-20), including in long-term memory 
consolidation (19), angiogenesis and neurogenesis (21),  
but also in the BBB dysfunction during ischemia (15). 

What is next?

Despite the important observations that SCFAs from 
bacteria influence BBB development and maintenance, 
the exact mechanisms underlying this effect of SCFAs 
remain unknown. Is this effect of SCFAs direct (on ECs) 
or indirect (on astrocytes, on pericytes or on other CNS 
or non-CNS cells)? The authors suggest that these 
carbohydrates could impact histone acetylation status and 
therefore mediate gene expression changes, in ECs directly. 
In fact, so far, researchers suggested that SCFAs could 
operate in two manners: by binding G-protein membrane 
receptors (GPR41 and GPR43) (22) or by entering 
inside the cells, working as Histone Deacetylase (HDAC) 
inhibitors and so modulate epigenetic processes. Several 

important publications confirm the importance of the 
latter in different contexts including inflammatory diseases  
(23-26). Additional investigations are therefore needed 
to understand the way SCFAs impact the development of 
TJs in embryos, and the maintenance of these structures 
but also in adult. Additional pathways could also impact 
BBB permeability, and inflammation is well known to 
increase BBB permeability [for review, (16)]. Are SCFAs 
able to control inflammatory signals? Some studies suggest 
that SCFAs impact on dendritic cells function and T cell 
proliferation (12,13,24). This manuscript by Braniste 
et al. (17) brings a new link between the gut microbiota 
and brain development/function. The challenge now will 
be to translate these animal data into specific therapies. 
Some predict that within the next few years, there will 
be significant investments to support the development of 
microbiome therapies (27), even if Probiotics have failed to 
demonstrate a significant impact on human diseases. 
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