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Abstract: Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a 

genetic change—mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits 

considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed 

by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the 

fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the 

outcome of antibiotic therapy in vivo.
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Introduction

Free-living bacteria commonly face changing environments 
and must cope with varying condition, thus they have 
developed mechanisms that favour genome modifications 
either by transiently increasing their mutation rates, 
inducing re-arrangements, or by horizontal gene transfer 
(HGT) (1). One of the better known responses of this kind 
is the trigger of the SOS, by which bacteria can counteract 
DNA damage and promote survival to antibiotics like 
fluoroquinolones. The development of fluoroquinolone 
resistance by bacteria constitutes a remarkable bacterial 
success story, in which the SOS response plays an 
indispensable role. 

SOS induction

An increase in expression of the SOS genes begins when 
DNA is damaged, or when replication of DNA is blocked 
and single stranded DNA (ssDNA) accumulates. As 
the sole inducer of the SOS response, ssDNA mostly 
originates from double-strand breaks (DSBs) (2). Al Mamun 

argued that the SOS response was activated by DSBs and 
promoted mutation via transcriptional up-regulation of 
DNA polymerases (Pols) IV and V (3), which respectively 
appeared in the early and final stages of SOS induction, 
and Pol V was seen as the most error-prone enzyme (4). 
Several internal and additional external processes could 
trigger the SOS response, which was first identified in UV-
irradiated E. coli cells and was soon also linked to other 
DNA-damaging factors, like mitomycin C, antibiotics, 
classic DNA-damaging agents, endogenous alkylating 
agents like nitrosated amines or S-adenosylmethionine, 
chromate shock, acoustic cavitation or pH levels (5), all of 
which would create DNA DSBs that subsequently lead to 
SOS induction (Figure 1). It is to be observed that Kohanski 
et al. have demonstrated that sublethal concentrations of 
some bactericidal antibiotics induce mutagenesis and that 
this induction correlates with an increase in reactive oxygen 
species (ROS), which in turn produces induction of the 
SOS response in 2003 (6). Nevertheless, more recently, Liu 
demonstrated that antibiotic exposures did not produce 
ROS and that lethality more likely resulted from the direct 
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inhibition of cell-wall assembly, protein synthesis, and 
DNA replication on Science (7), meanwhile, another study 
also reported that ROS do not play a role in killing of 
bacterial pathogens by antibiotics (8), both of which drew 
diametrically opposite conclusions from former study.

SOS genes

Many bacteria are able to mount the SOS response, which 
involves more than 30 genes, allowing bacteria to increase 
DNA damage tolerance and DNA repair. Members of the 
SOS regulon include umuDC, recA, uvrA and dinB and 
many others (9). According to the extensive research on 
SOS response in Escherichia coli, more than 40 genes are 
directly regulated by LexA (10). Analyses in Bacillus subtilis 
have enlarged the list of LexA-regulated genes to 33 while 
the initial SOS network of the B. subtilis reported only 
five SOS-inducible genes (11), but only seven genes were 

found to be common between these two bacteria (12). And 
16 LexA target genes have been identified in Staphylococcus 
aureus (13).

Moreover, it should come as no surprise that lexA itself is 
an SOS gene (14). the recombination and repair genes recA, 
recN, and ruvAB, the nucleotide excision repair genes uvrAB 
and uvrD, the error-prone DNA polymerase (Pol) genes 
dinB (encoding Pol IV) and umuDC (encoding Pol V), and 
DNA polymerase II, are regulated by the LexA regulon (15).  
Notably, the low-fidelity, error-prone repair DNA 
polymerases permit DNA replication across persistent DNA 
lesions that block the primary replicative DNA polymerase 
Pol III, but also promote an elevated mutation rate that 
generates genetic diversity and adaptation, including the 
evolution of antibiotic resistance. The SOS genes, however, 
are not all induced at the same time and to the same level, 
which varies due to differences in LexA binding affinity, 
number and location of the SOS boxes relative to the 

Figure 1 SOS induction process. Initially, the LexA repressor binds to SOS box, in the form of dimers, downstream of which are SOS 
genes. Once DNA lesions occurred, the single stranded DNA (ssDNA) originates from double-strand breaks (DSBs), RecA filaments 
formed and induces the autocatalytic cleavage of LexA, allowing SOS genes expression. While the repair work complete, SOS induction 
would be reversed due to the disappearance of the RecA filaments, and the newly synthesized LexA dimers bind to SOS box. †, UV irradia-
tion, chemicals or oxidative compounds, acids, organic mutagens, some antibiotics (e.g., fluoroquinolones such as ciprofloxacin), etc.; ‡, the 
transcription of SOS genes is hindered by blocking RNA-polymerase activity.
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promoter, as well as promoter strength. The first genes to 
be induced are uvrA, uvrB, and uvrD (14).

LexA and RecA protein

Under normal conditions, LexA represses the transcription 
of a regulon encompassing more than 50 genes that 
encoding various DNA repair proteins by binding to SOS 
box (the region of a promoter that is recognized by LexA) 
in its operator, in the form of dimers (16). Zhang et al. also 
demonstrated that the LexA protein contained two domains: 
an N-terminal winged helix-turn-helix (wHTH) DNA 
binding domain, and a C-terminal dimerization and latent 
protease domain, and the relative position of the N- and 
C-terminal domains is highly variable (16). In the three-
dimensional model of the RecA-ssDNA-ATP complexes 
Kovačič et al. generated, besides the catalytic C-terminal 
domain of LexA, its N-terminal DNA-binding domain also 
interacted with RecA–ssDNA filament (RecA*) (17).

Once the cell senses the presence of an increased 
level of DNA damage, accumulating RecA-ssDNA-
ATP complexes activate LexA for autocleavage and the 
SOS genes are de-repressed. While the LexA protein is 
the repressor, The RecA protein is the inducer, working 
together alternate between on and off states (18). Contact 
with single-stranded DNA activates the coprotease activity 
of the RecA protein, which promotes self-cleavage of 
LexA, and leads to increased transcription of the SOS 
response regulon (19). While the repair work complete, 
SOS induction would be reversed due to the disappearance 
of the RecA filament, and the newly synthesized LexA 
dimers bind to SOS box. Additionally, RecA not only 
plays a major role in UmuD, promotion homologous 
recombination and the rescue of stalled replication, but is 
also important for control of swarming motility and the 
behaviour of bacteria in biofilms (20).

However, RecA binding to ssDNA is regulated. Previous 
study suggested that RecA in E. coli is loaded by the 
RecBCD and RecFOR pathways in vitro and in vivo (21). 
Based upon early and recent studies (22,23), RecBCD 
operates late in the recombination process—after initiation, 
strand invasion, and crossover resolution have occurred, 
processing double-strand ends and loading RecA onto 
single-stranded DNA. A previous study of RecFOR proteins 
and RecA protein had emphasized that the RecFOR 
proteins specifically target RecA protein to gapped DNA 
(gDNA) even in the presence of a thousand-fold excess of 
single-stranded DNA (24).

LexA/RecA-independent pathways

It was evident that mutations could not be completely 
obliterated with recA deletion in Renu Singh’s recA-
deleted E. coli models (15), which has demonstrated that 
besides LexA/RecA dependent SOS regulatory system, 
there are LexA/RecA-independent pathways to trigger the 
SOS response. For instance, several β-lactams can induce 
translesion synthesis and mutagenesis by activating dinB 
via LexA/RecA-independent way, another example, many 
of the DNA repair genes of Mycobacterium tuberculosis have 
been shown to be DNA damage-inducible in a LexA/RecA-
independent manner (25). What’s more, fluoroquinolones 
have also been suggested to st imulate intra- and 
interchromosomal recombination in E. coli through a 
mechanism that does not require LexA cleavage (26).

Fluoroquinolone resistance

Fluoroquinolones are commonly prescribed antimicrobial 
agents all over the world and have seen increasing clinical 
use because of their potent and broad antimicrobial activity. 
Unfortunately, over the 20 years that have elapsed since 
the introduction of fluoroquinolones, the prevalence of 
fluoroquinolone resistance amongst clinical isolates has 
become an increasingly challenge at an alarming speed. 
Based on a meta-analysis of Shigella in the area of Asia-
Africa, resistance rate to ciprofloxacin was 0.6% during the 
years 1998-2000 and dramatically rose to 29.1% in 2007-
2009, this 12-year period witnessed a 48.5-fold increase in 
resistance to ciprofloxacin (27). Acinetobacter baumannii is 
one of the main infectious nosocomial pathogens which lead 
multidrug-resistant strains worldwide, showing resistance to 
clinical commonly used antibiotics such as cephalosporins, 
carbapenems, fluoroquinolones and aminoglycosides. 
Another report argued that overuse of fluoroquinolone 
antibiotics (FQs) in medicine had promoted bacterial 
resistance to FQs in recent years, which had caused a huge 
challenge in the anti-infective therapy of Pseudomonas 
aeruginosa (28).

Quinolone-resistance determining region (QRDR)

Resistance to fluoroquinolones typically arises as a 
result of alterations in the two essential target enzymes: 
DNA gyrase and topoisomerase IV. DNA gyrase is 
the more susceptible target in which mutations are 
selected first in gram-negative bacteria, whereas the 
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topoisomerase IV in gram-positive bacteria (29). Both 
are large, complex enzymes composed of 2 pairs of 
subunits. The subunits of DNA gyrase are GyrA and 
GyrB, encoded by the gyrA and gyrB genes, respectively. 
While the corresponding subunits of topoisomerase IV 
are ParC and ParE, encoded by the parC and parE genes, 
together termed the quinolone-resistance determining 
region (QRDR). In Enterobacteriaceae, fluoroquinolone 
resistance is mainly caused by point mutations in the 
quinolone resistance-determining region of gyrase (gyrA 
and gyrB) and topoisomerase (parC and parE) genes (30). 
Likewise, Bonomo et al. have shown that resistance to 
fluoroquinolone in Acinetobacter baumannii is mainly caused 
by mutations in the QRDRs of gyrase and topoisomerase 
genes (31).

Some epidemiological surveys have been reported 
using polymerase chain reaction (PCR) methodologies 
to examine QRDRs and mutations occurred leading to 
the clinical fluoroquinolone resistance (Table 1), we have 
randomly reviewed 30 articles in total of 13,068 strains 
including Salmonella, Escherichia coli, Klebsiella pneumoniae, 
Enterobacteriaceae, Mycobacterium tuberculosis, Shigella, 
Streptococcus, Neisseria meningitidis, Pseudomonas aeruginosa, 
Haemophilus parasuis, Acinetobacter and Pasteurella multocida 
studied in different areas and different years. There are 4,247 
(32.5%) Salmonella with the fluoroquinolones ciprofloxacin 
resistance changed from 0.0% to 68.0%, 2,911 (22.3%) 
Escherichia coli and among ciprofloxacin resistance ones, 
the average drug resistance rate was 30.3%, 337 Klebsiella 
pneumoniae strains in two reports with fluoroquinolone 
resistance up to more than 50.0%. Of the two studies 
on Enterobacteriaceae including three or more bacteria, 
the prevalence of ciprofloxacin resistance was 10.7% and 
61.7%, respectively. The drug resistance of Mycobacterium 
tuberculosis [333] was observed for ofloxacin with an 
average prevalence of 57.0%. Given the circumstances of 
high resistance rate, the frequently seen point mutations 
in the isolates detected were gyrA Ser83Phe/Tyr/Ile and 
Asp87Asn/Tyr, while among parC genes, the commonly 
abundant mutations were Ser80Ile and Glu84Gly/Val. 
However, the frequencies of gyrB and parE genes were 
much lower in the researches we reviewed, for gyrB, 
mutations of Gly, Leu, Ser, Asp, Asn and Gln amino acid 
substitution at different codons were reported, and it may 
be a few more common to see Ser substituted by others 
in parE genes. Also, some new target gene mutations have 
been detected in recent years, which exhibit polymorphism 
of fluoroquinolone resistance.

Plasmid-mediated quinolone resistance (PMQR)

Another mechanism of fluoroquinolone resistance PMQR 
have also been characterized, which was first reported 
in a clinical isolate of Klebsiellae pneumoniae from the 
USA in 1988, named the qnrA (62), since then, other 
PMQR determinants have been detected: qnrB, qnrS, 
aac(6’)-Ib-cr and qepA, conferring low-level resistance to 
fluoroquinolone (63). It has been reported that aac(6’)-
Ib-cr significantly increased the frequency of selection of 
chromosomal mutants upon exposure to ciprofloxacin, as 
for the MIC of ciprofloxacin increased by 3- to 4-fold when 
aac(6’)-Ib-cr was introduced into E. coli (64).

In the present study, fluoroquinolone resistance could 
be transferred by conjugation from all four PMQR-
positive donors, suggesting that the dissemination of the 
PMQR determinants is mostly due to the transmission 
of plasmids by horizontal exchange (65). Additionally, 
also noteworthy is the finding that the strong association 
between broad-spectrum β-lactamases and qnr genes, most 
qnr-bearing plasmids for which sequencing is available carry 
a β-lactamase gene, which creates a situation ripe for the 
dissemination of multidrug-resistant Enterobacteriaceae (66). 
PMQR has so far managed to achieve global distribution in 
a variety of plasmid environments and bacterial genera (67), 
the qnrS, aac(6’)-Ib-cr and qepA genes were predominantly 
distributed in China (30,67-69), while the qnrB account 
for a moiety of PMQR genes besides others in some other 
countries (70-72). Also, it is believed that the presence of 
PMQR may facilitate the selection of QRDR mutations, 
resulting in higher levels of fluoroquinolone resistance. 
The data we concluded from several studies has shown 
the high prevalence of PMQR genes and the relatively 
resistance to fluoroquinolones in certain organisms (Table 2),  
the qnrB, qnrS and aac(6’)-Ib genes were at higher 
prevalences among the PMQR genes detected, with the 
positive rate of 10.4% in 2,269 isolates, 11.9% in 2,066 
isolates and 16.5% in 3088 isolates, respectively. Moreover, 
six variant qnrB genes (qnrB1/2/4/6/10/19) and three 
qnrS genes (qnrS1/2/3) were identified in several studies. 
Besides, qnrA accounted for 5.6% in a total of 735 strains 
in 10 reports, efflux pump gene qepA reached 20.1% in 
900 strains of 7 reports. Nevertheless, another efflux pump 
gene, oqxAB, only detected in two studies with 49 out of 
710 was positive. No qnrC gene was reported and qnrD was 
detected in none but a report on Salmonella enterica. The 
data listed might set off alarm bells, which calls for intensify 
fluoroquinolone surveillance and a more cautious approach 
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Table 1 Studies about fluoroquinolone resistance and detection of quinolone resistance-determining region (QRDR)

Bacteria [No. of 

isolates]

Fluoroquinolone 

resistance (%)
QRDR (%, n/N) Mutations Year

Country/

location
References

Salmonella enterica 

Serovar Typhi [19]

CIP (68.0) gyrA (68.4%, 13/19) gyrA (Ser83Phe, Ser83Tyr, 

Asp87Asn, Asp82Asn)

2011–2013 Italy (32)

gyrB (26.3%, 5/19) gyrB (Gly435Ala, 

Gly435Glu, Gly435Val)

parC (15.8%, 3/19) parC (Thr57Ser, Ser80Ile)

parE (5.3%, 1/19) parE (Ser493Phe)

Salmonella [2,680] CIP (6.4) gyrA (43.2%, 19/44) gyrA (Ser83Phe, Ser83Tyr, 

Ser83Leu, Asp87Asn, 

Asp87Tyr, Asp87Gly)

2008–2011 Poland (33)

gyrB (2.3%, 1/44) gyrB (Leu470Met)

parC (52.3%, 23/44) parC (Thr57Ser, 

Ala141Ser)

Salmonella [284] NAL (49.3); CIP 

(1.1); NOR (0.7); 

LVX (0.4)

gyrA (84.5%, 60/71) gyrA (Asp87Gly, Asp87Tyr, 

Asp87Asn, Ser83Phe, 

Glu133Gly)

2008 Korea (34)

gyrB (2.8%, 2/71) gyrB (Gly434Leu, 

Gly447Cys)

parC (26.8%, 19/71) parC (Thr57Ser, 

Gly72Cys)

parE (9.9%, 7/71) parE (Glu459Thr, 

Gly468Cys, Arg507Ile, 

Lys514Asn)

nontyphoid 

Salmonella [1,279]

NAL (39.6); CIP 

(0.0); ENR (8.5)

gyrA (38.9%, 197/507) gyrA (Asp87Tyr, Asp87Gly, 

Asp87-Asn, Ser83Tyr, 

Ser83Phe)

1995–2009 Korea (35)

parC (20.3%, 103/507) parC outside the QRDR 

(Thr57Ser, Glu51Lys)

Salmonella [67] NAL (23.9) gyrA (100.0%, 16/16) gyrA (Asp87Tyr, 

Asp87Asn, Asp87Gly, 

Ser83Tyr)

2002–2005 Korea (36)

parC (25.0%, 4/16) parC (Thr57Ser)

Salmonella enterica 

[10]

Reduced-

susceptibility to 

CIP (100.0)

parC (80.0%, 8/10) parC (Thr57Ser) 2003–2007 Finland (37)

Salmonella enterica 

[192]

CIP (20.3) gyrA (85.4%, 35/41) gyrA (Ser83Phe, Ser83Tyr, 

Asp87Asn)

2002–2013 Switzerland (38)

parC (22.0%, 9/41) parC (Glu84Gly, Glu84Lys, 

Ser80Ile)

Table 1 (continued)
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Table 1 (continued)

Bacteria [No. of 

isolates]

Fluoroquinolone 

resistance (%)
QRDR (%, n/N) Mutations Year

Country/

location
References

Escherichia coli 

[365]

NALR-CIPS (50.7);  

NALR-CIPR (49.3)

gyrA (3.6%, 13/365) gyrA (Ser83Leu, Ser83Ala, 

Asp87Tyr, Asp87Asn)

2003–2011 Korea (39)

parC (1.4%, 5/365) parC (Ser80Arg, Ser80Ile, 

Glu84Gly, Ala56Thr)

gyrB (0.3%, 1/365) gyrB (Ser492Asn)

parE (0.3%, 1/365) parE (Ser458Ala)

MDR Escherichia 

coli [41]

FQs (100.0); FQs 

(ENR, PRA, MAR)

gyrA (100.0%, 13/13) gyrA (Ser83Leu, 

Asp87Asn)

1999–2004 Australia (40)

parC (100.0%, 13/13) parC (Ser80Ile, Glu84Gly)

Esherichia coli [30] Reduced-

susceptibility to 

FQs (80.0) FQs 

(NOR, CIP, OFX, 

LVX)

gyrA (96.7%, 29/30) gyrA (Ser83Leu, 

Asp87Asn, Asp87Tyr, 

Asp87Gly)

2010–2011 Algeria (41)

parC (70.0%,21/30) parC (Ser80Ile, Glu84Val, 

Glu84Lys)

Escherichia coli 

[80]

CIP (100.0) gyrA (96.3%, 77/80) gyrA (Ser83Leu, 

Asp87Asn, Asp87Gly, 

Asp87Tyr)

2004–2012 Portugal (42)

parC (87.5%, 70/80) parC (Ser80Ile, Ser80Arg, 

Glu84Gly, Glu84Val)

Escherichia coli 

[1,702]

CIP (24.5) gyrA (78.4%, 149/190) gyrA (Ser83Leu, Ser83Ala, 

Asp87Gly, Asp87Asn, 

Asp87Tyr)

2007 Canada (43)

parC (34.2%, 65/190) parC (Ser80Ile, Glu84Gly, 

Glu84Val, Ser57Thr)

Escherichia coli 

[590]

CIP (25.9); LVX 

(47.9)

gyrA (84.3%, 328/389) gyrA (Ser83Leu, 

Asp87Asn)

2010–2011 China (44)

gyrB (10.5%, 41/389) gyrB (Ser492Asn)

parC (72.0%, 280/389) parC (Ser80Ile, Glu84Val)

parE (20.6%, 80/389) parE (Ser458Ala)

Escherichia coli 

[103]

LVX (13.6) gyrA (83.3%, 15/18) gyrA (Ser83Leu, Ser83Ala, 

Asp87Asn, Arg237His)

ND Egypt (45)

parC (52.9%, 9/17) parC (Ser80Ile)

parE (41.2%, 7/17) parE (Ser458Ala, 

Leu416Phe)

Klebsiella 

pneumoniae [102]

CIP and/or LVX 

(59.8)

gyrA (69.0%, 20/29) gyrA (Ser88Phe, Ser88Ile, 

Ser88Tyr, Asp87Asn, 

Asp87Gln, Asp87Tyr)

2009–2012 Japan (46)

parC (34.5%, 10/29) parC (Ser80Arg, 

Ser80Met, Ser80Ile)

Table 1 (continued)
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Table 1 (continued)

Bacteria [No. of 

isolates]

Fluoroquinolone 

resistance (%)
QRDR (%, n/N) Mutations Year

Country/

location
References

Klebsiella 

pneumoniae [235]

CIP (52.8) gyrA (96.7%, 119/123) gyrA (Ser83Phe, Ser83Tyr, 

Ser83Ile, Ser83Leu, 

Asp87Gly, Asp87Glu, 

Asp87Ala, Asp87His, 

Asp87Asn, Asp87Tyr)

2002 China (47)

parC (84.6%, 104/123) parC (Ser80Arg, Ser80Ile)

Enterobacteriaceae 

[2,017]

CIP (10.7) gyrA (87.8%, 43/49) gyrA (Ser83Tyr, Ser83Leu, 

Ser83Phe, Ser83Ile, 

Asp87Asn, Asp87Ala, 

Asp87Glu, Asp87Gly, 

Ala84Val)

2010 Poland (48)

parC (81.6%, 40/49) parC (Ser80Ile, Ser80Arg, 

Glu84Val, Glu84Gly)

ESBL-EN [120]: 

Escherichia coli 

[40], Klebsiella 

pneumoniae [40], 

Enterobacter 

cloacae [40]

CIP: E. coli (67.5); 

K. Pneumoniae 

(82.5); E. cloacae 

(35.0)

gyrA (66.7%, 48/72) gyrA (Ser83Tyr, Ser83Phe, 

Ser83Leu, Ser83Ile, 

Asp87Asn, Asp87Ala)

2010 Tunis (49)

parC (27.8%, 20/72) parC (Ser80Ile, Glu84Val, 

Glu84Gly)

Mycobacterium 

tuberculosis [200]

OFX (50.0) gyrA (79.0%, 79/100) gyrA (Gly88Ala, Ala90Val, 

Ser91Pro, Asp94His, 

Asp94Gly, Asp94Asn, 

Asp94Ala, Asp94Tyr)

2012–2013 India (50)

gyrB (5.0%, 5/100) gyrB (Thr539ASn, 

Asp500Ala, Pro592Ser, 

Asn538Ile)

Mycobacterium 

tuberculosis [133]

OFX (63.9) gyrA (61.7%, 82/133) gyrA (Ala90Val, Asp89Asn, 

Asp89Gly, Asp94Ala, 

Asp94Tyr, Asp94Asn, 

Asp94Gly, Gly88Cys, 

Ser91Pro)

2000–2010 America (51)

gyrB (50.0%, 5/10) gyrB (Asp500His, 

Asp500Asn, Asn538Asp, 

Asn538Lys)

Shigella sonnei [15] CIP (100.0) gyrA (100.0%, 15/15) gyrA (Ser83Leu, 

Asp87Gly)

2014 Korea (52)

parC (100.0%, 15/15) parC (Ser80Ile)

Shigella flexneri 

[2,181]

CIP (14.5) gyrA (96.0%, 304/317) gyrA (Ser83Leu, 

Asp87Asn, Asp87Gly, 

His211Tyr)

2004–2010 Bangladesh 

and China

(53)

parC (96.0%, 304/317) parC (Ser80Ile)

Table 1 (continued)
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Table 1 (continued)

Bacteria [No. of 

isolates]

Fluoroquinolone 

resistance (%)
QRDR (%, n/N) Mutations Year

Country/

location
References

Streptococcus 

agalactiae [322]

FQ (1.6 ) gyrA (100.0%, 5/5) gyrA (Ser81Leu) 2007–2008 China (54)

parC (100.0%, 5/5) parC (Ser79Phe, Ser79Tyr, 

Asp83Tyr)

Streptococcus 

pneumoniae [45]

LVX (0.0) parC (4.4%, 2/45) parC (Asp83Asn) 2010–2012 Lebanon (55)

parE (2.2%, 1/45) parE (Asp435Asn)

Neisseria 

meningitidis [69]

CIP (71.0) gyrA (100.0%, 51/51) gyrA (Thr91Ile, Asp95Asn, 

Asn103Asp, Ile111Val, 

Ala105Ser)

2005–2013 China (56)

Pseudomonas 

aeruginosa [256]

CIP (25.4); LVX 

(28.5); MXF (27.7)

gyrA (75.4%, 49/65) gyrA (Thr83Ile) 2010 China (57)

gyrB (3.1%, 2/65) gyrB (Ser467Phe, 

Gln468His)

parC (1.5%, 1/65) parC (Ser87Leu)

Haemophilus 

parasuis [115]

FQs (17.4) FQs 

(NAL, LVX, CIP, 

ENR, NOR, LOM)

gyrA (100.0%, 20/20) gyrA (Ser83Tyr, Ser83Phe, 

Asp87Tyr, Asp87Asn, 

Asp87Gly)

2008–2010 China (58)

parC (30.0%, 6/20) parC (Tyr577Cys, 

Val648Ile, Glu678Asp, 

Ser669Phe, Ala464Val, 

Ala466Ser)

parE (10.0%, 2/20) parE (Ser283Gly, 

Ala227Thr, Gly241Ser)

Acinetobacter pittii 

[27]

CIP (25.9) gyrA (25.9%, 7/27) gyrA (Ser83Leu) 2013 China (59)

parC (22.2%, 6/27) parC (Ser80Leu)

parE (18.5%, 5/27) parE (Tyr317His, 

Met370Ile)

Acinetobacter 

baumannii [50]

CIP (100.0) gyrA (100.0%, 50/50) gyrA (Ser83Leu) 2010–2012 Iran (60)

Pasteurella 

multocida [23]

CIP (0.0) gyrA (60.9%, 14/23) gyrA (Asp87Asn, 

Ala84Pro)

2011–2013 China (61)

QRDR, quinolone-resistance determining region; n, number of positive isolates; N, number of isolates detected; ND, not 

determined; NAL, nalidixic acid; LVX, levofloxacin; CIP, ciprofloxacin; ENR, enrofloxacin; NOR, norfloxacin; LOM, lomefloxacin; 

OFX, ofloxacin; MXF, moxifloxacin; PRA, pradofloxacin; MAR, marbofloxacin; FQs, Fluoroquinolone antibiotics; MDR, multidrug-

resistant; ESBL-EN, extended-spectrum β-lactamase-harbouring Enterobacteriaceae; NALR-CIPS, nalidixic acid resistant and 

ciprofloxacin susceptible; NALR-CIPR, nalidixic acid and ciprofloxacin resistant.
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Table 2 Studies about fluoroquinolone resistance and detection of plasmid-mediated quinolone resistance (PMQR) genes

Bacteria [No. of isolates]
Fluoroquinolone resistance 

(%)
PMQR (%, m/M) Year

Country/

location
References

Salmonella enterica serovar 

typhi [19]

CIP (68.0) NEG 2011–2013 Italy (32)

Salmonella [2,680] CIP (6.4) qnrB10/B19 (27.3%, 24/88) 2008–2011 Poland (33)

qnrS1/S3 (56.8%, 50/88)

qnrS2 (2.3%, 2/88)

Salmonella [284] NAL (49.3); CIP (1.1); NOR 

(0.7); LVX (0.4)

qnrB19 (0.7%, 2/284) 2008 Korea (34)

qnrS1 (1.4%, 4/284)

aac(6’)-Ib-cr (0.4%, 1/284)

Nontyphoid Salmonella 

[1,279]

NAL (39.6); CIP (0.0), ENR 

(8.5)

aac(6’)-Ib (1.2%, 6/507) 1995–2009 Korea (35)

Salmonella enterica [10] Reduced-susceptibility to 

CIP (100.0)

qnrA1 (10.0%, 1/10) 2003–2007 Finland (37)

qnrS1 (90.0%, 9/10)

Salmonella enterica [192] CIP (20.3) qnrS1 (1.0%, 2/192) 2002–2013 Switzerland (38)

Salmonella enterica [4,561] CIP (4.4) qnrA1 (6.3%, 1/16) 2009–2013 Belgium (73)

qnrS (56.3%, 9/16)

qnrD1 (25.0%, 4/16)

qnrB (25.0%, 4/16)

Salmonella [20] NAL (70.0); CIP (60.0); LVX 

(80.0)

qnrA (30.0%, 6/20) ND Romania (74)

qnrB (20.0%, 4/20)

qnrS (25.0%, 5/20)

aac(6’)-Ib-cr (25.0%, 5/20)

qepA (20.0%, 4/20)

Escherichia coli [365] NALR-CIPS (50.7); NALR-

CIPR (49.3)

qnrB4 (0.5%, 2/365) 2003–2011 Korea (39)

qnrS1 (2.2%, 8/365)

aac(6’)-Ib-cr (2.7%, 10/365)

MDR Escherichia coli [41] FQs (100.0); FQs (ENR, 

PRA, MAR)

qnrA (51.2%, 21/41) 1999–2004 Australia (40)

qnrB (56.1%, 23/41)

qnrS (39.0%, 16/41)

qepA (73.0%, 30/41)

Escherichia coli [80] CIP (100.0) aac(6’)-Ib-cr (62.5%, 5/8) 2004–2012 Portugal (42)

qnrS1 (25.0%, 2/8)

qepA (25.0%, 2/8)

Escherichia coli [1,702] CIP (24.5) aac(6’)-Ib-cr (2.1%, 4/190) 2007 Canada (43)

qnrB (1.1%, 2/190)

Table 2 (continued)
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Table 2 (continued)

Bacteria [No. of isolates]
Fluoroquinolone resistance 

(%)
PMQR (%, m/M) Year

Country/

location
References

Escherichia coli [590] CIP (25.9); LVX (47.9) PMQR genes (37.3%, 

220/590)

2010–2011 China (44)

aac(6’)-Ib (33.1%, 195/590)

aac(6’)-Ib-cr (19.7%, 

116/590)

qnrB (1.5%, 9/590)

qnrS (2.2%, 13/590)

qepA (14.4%, 85/590)

oqxAB (3.8%, 23/590)

Esherichia coli [30] Reduced-susceptibility to 

FQs (80.0) FQs (NOR, CIP, 

OFX, LVX)

qnrB (3.3%, 1/30) 2010–2011 Algeria (41)

qnrS (6.7%, 2/30)

Escherichia coli [579] CIP (91.9); LVX (82.4) qnr (14.9%, 11/74) 2008 China (75)

aac(6’)-Ib-cr (55.4%, 41/74)

qepA (37.8%, 28/74)

Escherichia coli [202] LOM (77.5); OFX (68.8); 

ENR (56.4)

qnrS (10.4%, 21/202) 2012 China (76)

aac(6’)-Ib-cr (32.2%, 65/202)

Escherichia coli [80] Not susceptible: CIP (5.0); 

OFX (16.0); LVX (6.2)

aac(6’)-Ib-cr (27.5%, 22/80) 2009–2012 Poland (77)

qnrB (8.8%, 7/80)

qnrS (2.5%, 2/80)

qepA (73.0%, 30/41)

Escherichia coli [1,013] Reduced susceptibility CIP 

(17.0)

qnrS1 (87.1%, 54/62) 2010–2011 Europe (78)

qnrS2 (1.6%, 1/62)

qnrB19 (6.5%, 4/62)

aac(6’)-Ib-cr (1.6%, 1/62)

Escherichia coli [126] ND qnrA (0.8%, 1/126) 2008–2011 Japan (79)

aac(6’)-Ib-cr (8.7%, 11/126)

qepA (1.6%, 2/126)

Klebsiella pneumoniae 

[102]

CIP and/or LVX (59.8) qnrS (27.6%, 8/29) 2009–2012 Japan (46)

qnrB (24.1%, 7/29)

aac(6’)-Ib-cr (17.2%, 5/29)

qnrA (6.9%, 2/29)

Klebsiella pneumoniae 

[235]

CIP (52.8) qnrB2 (21.1%, 26/123) 2002 China (47)

qnrB4 (15.4%, 19/123)

qnrS1 (10.6%, 13/123)

aac(6’)-Ib-cr (16.3%, 20/123)

Klebsiella pneumoniae 

[112]

CIP (59.3); LVX (47.5) qnr ((88.1%, 52/59) 2008 China (75)

qnrB (54.2%, 32/59)

qnrS (30.5%, 18/59)

Table 2 (continued)
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Table 2 (continued)

Bacteria [No. of isolates]
Fluoroquinolone resistance 

(%)
PMQR (%, m/M) Year

Country/

location
References

Klebsiella pneumoniae [24] non-susceptible in qnr-

positive isolates, CIP 

(35.3%, 6/17); LVX (29.4%, 

5/17)

qnrB4 (45.8%, 11/24) 2008–2011 Japan (79)

qnrB6 (4.2%, 1/24)

qnrS1 (16.7%, 4/24)

aac(6’)-Ib-cr (4.2%, 1/24)

ESBL-EN [63] Reduced-susceptibility to 

NOR and OFX (74.6)

qnrS1 (4.3%, 2/47) 2006 France (80)

aac(6’)-Ib-cr (25.5%, 12/47)

Enterobacteriaceae [2017] CIP (10.7) aac(6’)-Ib-cr (85.7%, 42/49) 2010 Poland (48)

qnrB (26.5%, 13/49)

qnrA (6.1%, 3/49)

qnrS (6.1%, 3/49)

ESBL-EN [120]: 

Escherichia coli [40], 

Klebsiella pneumoniae [40], 

Enterobacter cloacae [40]

CIP: E. coli (67.5); K. 

Pneumoniae (82.5); E. 

cloacae (35.0)

qnr genes (25.8%, 31/120) 2010 Tunis (49)

qnrB1 (83.8%, 26/31)

qnrB4 (6.4%, 2/31)

qnrB2 (3.2%, 1/31)

qnrS1 (6.4%, 2/31)

oqxAB (21.7%, 26/120)

aac(6’)-Ib-c (19.2%, 23/120)

ESBL-EN [73] CIP (77.0) PMQR genes (57.5%, 42/73) 2008 Israel (81)

qnrB (21.9%, 16/73)

qnrA (2.7%, 2/73)

aac(6’)-Ib-cr (52.1%, 38/73)

Shigella sonnei [15] CIP (100.0) NEG 2014 Korea (52)

Pseudomonas aeruginosa 

[256]

CIP (25.4); LVX (28.5); MXF 

(27.7)

qnrA1 (0.4%, 1/256) 2010 South China (57)

Haemophilus parasuis [115] FQs (17.4) FQs (NAL, LVX, 

CIP, ENR, NOR, LOM)

qnrA1 (2.6%, 3/115) 2008–2010 South China (58)

qnrB6 (0.9%, 1/115)

aac(6’)-Ib-cr (2.6%, 3/115)

Acinetobacter pittii [27] CIP (25.9) NEG 2013 China (59)

Acinetobacter baumannii 

[50]

CIP (100.0) qnrA (0.0%, 0/50) 2010–2012 Iran (60)

PMQR, plasmid-mediated quinolone resistance; m, number of positive isolates; M, number of isolates detected; NEG, negative; 

ND, not determined; NAL, nalidixic acid; LVX, levofloxacin; CIP, ciprofloxacin; ENR, enrofloxacin; NOR, norfloxacin; LOM, 

lomefloxacin; OFX, ofloxacin; MXF, moxifloxacin; PRA, pradofloxacin; MAR, marbofloxacin; FQs, Fluoroquinolone antibiotics; 

MDR, multidrug-resistant; ESBL-EN, extended-spectrum β-lactamase-harbouring Enterobacteriaceae; NALR-CIPS, nalidixic acid 

resistant and ciprofloxacin susceptible; NALR-CIPR, nalidixic acid and ciprofloxacin resistant.
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to fluoroquinolone use.

Other mechanisms

Except for the QRDR and PMQR, the other classically 
described mechanism of fluoroquinolone resistance 
operates by decreasing intracellular drug accumulation 
via upregulation of native efflux pumps, which has been 
reported in a number of Gram-negative pathogenic bacteria 
such as E. coli, P. Aeruginosa and Shigella dysenteriae (82). 
Additionally, the alterations in the composition of bacterial 
outer membrane proteins (OMPs) may render a strain more 
or less permissive towards fluoroquinolones (83).

SOS regulation

It should be noted that these reports suggest that 
fluoroquinolone resistance in different regions seemed to 
have had different characteristics; furthermore, the mutation 
may vary in different strains. It has been demonstrated 

that ciprofloxacin stimulate mutagenesis in E. coli through 
the induction of mutagenic DNA polymerases of the SOS 
system, with a 106-fold increase in mutational frequency (16). 
Besides, Cirz and Romesberg have recently shown that the 
evolution of resistance to ciprofloxacin in vivo and in vitro 
requires the induction of a mutation that is mediated by 
the cleavage of the SOS repressor LexA and the associated 
derepression of three specialized DNA polymerases (Pol 
II, Pol IV, and Pol V) (84). Afterwards, a study showed 
that a majority of persisters to ciprofloxacin were formed 
upon exposure to the antibiotic, in a manner dependent 
on the SOS gene network, contrary to the prevailing view 
of persister formation (85). Likewise, in Staphylococcus 
aureus, persistence and the evolution of resistance may 
be related to several complex regulatory networks, such 
as the SOS response, which modifies transcription in 
response to environmental stress. It has been confirmed 
that ciprofloxacin leads to higher recA transcription and 
translation as well as activation of the SOS response, which 
was indicated by the up-regulation of the error-prone 
polymerase umuC, accounting for the higher mutation 
frequency (86).

A research has demonstrated that fluoroquinolone-
resistance phenotype of a gyrA mutation was influenced 
by mutations in the recA gene, by the fact that recA142 
mutation caused a remarkable decrease in fluoroquinolone 
resistance (87). Moreover, recBCD mutations affecting 
recombination also reduce the level of fluoroquinolone 
resistance, indicating that an SOS-dependent process was 
acting in the repair of DNA damage (Figure 2).

A study targeting the impact of recA on levofloxacin 
in Staphylococcus aureus and Escherichia coli showed that 
recA deletion itself resulted in a 4-fold reduction in the 
levofloxacin MIC, and E. coli resistance emergence was 
delayed by 24 h in the recA-deleted mutant, which provided 
useful insights into a potential target to combat the looming 
danger of antibiotic resistance (16). What’s more, Yim et al.  
stated that even at the subinhibitory concentrations 
employed, the older as well as newer FQs, upregulating 
genes involved in the SOS response, umuD, lexA, sbmC and 
dinP (88).

Sandra Da Re and his partners have interestingly identified 
the CTGTATAAAAAAACAG sequence between the +1 start 
site and the initiation codon of qnrB2, which is homologous 
to the gammaproteobacteria LexA-protein-binding site 
consensus, CTGTN8ACAG, suggesting that qnrB2 
expression might be regulated through the SOS response in a 
LexA/RecA-dependent manner, and that it can be induced by 

Figure 2 Regulation of SOS response on fluoroquinolone-
resistance genes expression. In the uninduced state, the 
LexA protein is bound to SOS box at the promoter region of 
fluoroquinolone-resistance genes. On induction of the SOS 
response by fluoroquinolone antibiotics, RecA-ssDNA results 
in autoproteolytic cleavage of LexA and subsequently in 
fluoroquinolone-resistance genes derepression, leading to an 
increase in the resistance to fluoroquinolone antibiotics. FQ-R, 
fluoroquinolone resistance; FQs, fluoroquinolone antibiotics.
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ciprofloxacin, a known inducer of the SOS system (89). And 
via a recombinant plasmid, pPqnrB2-lacZ, they confirmed 
that LexA is involved in qnrB2 negative regulation, by 
binding to the identified motif. Since phylogenetic analysis 
have showed that qnrB and qnrD are closer to one another 
than to the other qnr determinants, qnrA, qnrS and qnrC, a 
potential LexA-binding site was identified upstream from 
the qnrD gene (89). Wang et al. have also examined that in 
the sequence upstream from qnrB (but not qnrA or qnrS) was 
a LexA binding site, and qnrB was shown to be under SOS 
control by demonstrating that fluoroquinolone susceptibility 
decreased with increasing temperature (90). 

Recently, a new pentapeptide repeat proteins (PRP) 
protein, named SmaQnr, which shares 80% amino acid 
identity with QnrB1, has been reported as reducing 
susceptibility to fluoroquinolone when expressed in 
both E. coli ATCC 25922 and E. coli DH10B. Sequences 
upstream of these genes contained an LexA box, implicated 
in regulation of gene expression mediated by the SOS 
system, and the different positions of the LexA box could 
be partly responsible for the differences observed in terms 
of induction (89). The smaqnr and qnrD LexA-binding 
sites are found in both cases downstream of the 210 box 
sequence, in a similar position compared with qnrB1. 
Moreover, fluoroquinolones, as well as other antimicrobial 
agents, causing induction of the qnrB1, qnrD and smaqnr 
promoters, were regulated by the SOS system, in an RecA-
dependent pathway, which was investigated successfully in 
2012 (91).

Besides that, SOS is also known to promote HGT, 
which plays an essential role, especially for the antibiotic 
resistance development and dissemination among bacteria 
(1,92,93). The conjugative transfer of plasmids have been 
demonstrated to trigger a bacterial stress response—
the SOS response—in recipient cells and can impact the 
cassette content of integrins (1). Integrating conjugative 
elements (ICEs), a diverse group of mobile elements that 
could recruit the SOS response to mobilize themselves 
from the bacterial chromosome and infect other cells, 
which transfers resistance to multiple antibiotics (92). Also, 
activation of the SOS response in both E. coli and V. cholerae 
greatly stimulates the transfer of SXT (a 100-kilobase 
ICE) and SXT-related elements (93). Another report on 
qnrVC3, which encodes a PRP of the Qnr subfamily, is 
present within a member of the SXT ICE family found 
commonly on the chromosomes of multidrug-resistant 
strains of V. cholerae and on the chromosomes of Escherichia 
coli transconjugants, proved to be accounted for transferable 

multidrug resistance that includes ciprofloxacin in isolates 
positive for qnrVC3 (94). Thus, the use of fluoroquinolones 
or some other antimicrobial agents, either clinically or 
in agricultural settings, causing induction of the SOS 
response, might potentiate the horizontal dissemination 
of antibiotic resistance genes to a broad range of bacterial 
species, and SOS response could then be a suitable target 
for co-treatment of infections in order to prevent exchange 
of antibiotic resistance/adaptation genes.

Conclusions

Hence, widespread use of fluoroquinolones has inevitably 
led to a sharp increase in the rate of resistance among 
different bacterial species in areas around the world, which 
the SOS response plays an unsuspected role and deserves 
comprehensive attention. As described above, we have a 
preliminary understanding of the induction, molecular 
mechanism, and modulation of fluoroquinolone resistance 
so as to search for effective ways to suppress the SOS 
network to reduce the number of resistant bacteria that arise 
from antibiotic treatment, and remains to be improved.
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