
Page 1 of 5

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(4):78atm.amegroups.com

Big-data Clinical Trial Column

Reshaping and aggregating data: an introduction to reshape 
package

Zhongheng Zhang

Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua 321000, China

Correspondence to: Zhongheng Zhang, MMed. 351#, Mingyue Road, Jinhua 321000, China. Email: zh_zhang1984@hotmail.com.

Author’s introduction: Zhongheng Zhang, MMed. Department of Critical Care Medicine, Jinhua Municipal Central 
Hospital, Jinhua Hospital of Zhejiang University. Dr. Zhongheng Zhang is a fellow physician of the Jinhua Municipal 
Central Hospital. He graduated from School of Medicine, Zhejiang University in 2009, receiving Master Degree. He has 
published more than 35 academic papers (science citation indexed) that have been cited for over 200 times. He has been 
appointed as reviewer for 10 journals, including Journal of Cardiovascular Medicine, Hemodialysis International, Journal of 
Translational Medicine, Critical Care, International Journal of Clinical Practice, Journal of Critical Care. His major research 
interests include hemodynamic monitoring in sepsis and septic shock, delirium, and outcome study for critically ill patients. 
He is experienced in data management and statistical analysis by using R and STATA, big data exploration, systematic 
review and meta-analysis.

Zhongheng Zhang, MMed.

Abstract: It is common that data format extracted from clinical database does not meet the purpose of statistical 

analysis. In clinical research, variables are frequently measured repeatedly over the follow-up period. Such data 

can be displayed either in wide or long format. Transformation between these 2 forms can be challenging by hand. 

Fortunately, there are sophisticated packages in R environment. Data frame should firstly be melted and then casted 

to format that you want. Aggregation over unique combination of id variables is also allowable. Additionally, the 

article also introduces 2 functions colsplit() and funstofun() that can be useful in some circumstances.

Keywords: Aggregating; reshape package; R

Submitted Dec 20, 2015. Accepted for publication Jan 09, 2016.

doi: 10.3978/j.issn.2305-5839.2016.01.33

View this article at: http://dx.doi.org/10.3978/j.issn.2305-5839.2016.01.33



Zhang. Reshaping and aggregating data: an introduction to reshape package

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(4):78atm.amegroups.com

Page 2 of 5

Introduction

In clinical studies involving data management of electronic 
medical record, variables are frequently grouped by one or 
more other variables (1). For example, when you follow up 
stroke patients for their quality of life (measured by some 
certain scores), the scores are recorded at each visit. In other 
words, these scores are nested within each patient. The 
display of such data can adopt long or wide format. The 
former listed each visit score longitudinally in a column and 
a variable denoting patient identification is mandatory. One 
patient can take up several rows in long format. One the 
other hand, the wide format displays 1 patient per row, and 
each visit score is listed consecutively in a single row. Both 
formats have their advantages and disadvantages depending 
on the purpose of analysis. These are a simple example 
illustrating the importance of data shape during analysis, 
and some are far more complex. This article introduces 
a powerful R package named “reshape”, which is able to 
handle varieties of data format (2). 

Working example

Suppose we have 3 patients, and each of them has blood 
partial pressure of oxygen measured on daily basis for 3 
days. Blood oxygen can be measured from arterial line 
(PaO2) and central venous line (PcvO2). 

> id<-rep(1:3,each=3)

> time<-rep(1:3,3)

> PaO2<-round(rnorm(9,mean=70,sd=10))

> PcvO2<-round(rnorm(9,mean=40,sd=8))

> data<-data.frame(id,time,PaO2,PcvO2)

> data

id time PaO2 PcvO2

1 1 1 78 42

2 1 2 86 36

3 1 3 72 39

4 2 1 89 37

5 2 2 81 47

6 2 3 66 36

7 3 1 65 30

8 3 2 60 46

9 3 3 88 30

Oxygen content is significantly lower in central vein 

than that in artery, which is consistent with the common 
sense that arterial oxygenation is much greater than venous 
oxygenation.

Melting a dataset

The melt() function converts a wide format into long 
format. A number of variables listed in columns can be 
stacked into a single column. As in our example, both 
venous and arterial partial pressures can be stacked in a single 
column after application of melt(). This function requires 
an id variable and variables of interests to be stacked. The 
generic form of melt() function is like this:

melt(data, id.vars, measure.vars,

           variable_name = "variable", 

          na.rm = !preserve.na, preserve.na = TRUE, ...)

If either id.vars or measure.vars is specified, the function 
takes the remainder variable in the data frame belong to 
the other. If neither is specified, the function assumes 
the character and factor variable as the id.vars, and the 
remainders are measure.vars. To avoid confusion, you’d 
better specify both of them. The “variable_name” argument 
specified the name of the new variable that will be created 
to store stacked variables. Now let’s take a close look at how 
melt() works by using our working example. 

> data.melt<-melt(data, id=(c("id", "time")),measure.va
rs=(c("PaO2","PcvO2")),variable_name="PO2")

> data.melt

id time PO2 value

1 1 1 PaO2 78

2 1 2 PaO2 86

3 1 3 PaO2 72

4 2 1 PaO2 89

5 2 2 PaO2 81

6 2 3 PaO2 66

7 3 1 PaO2 65

8 3 2 PaO2 60

9 3 3 PaO2 88

10 1 1 PcvO2 42

11 1 2 PcvO2 36

12 1 3 PcvO2 39

13 2 1 PcvO2 37



Annals of Translational Medicine, Vol 4, No 4 February 2016 Page 3 of 5

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(4):78atm.amegroups.com

14 2 2 PcvO2 47

15 2 3 PcvO2 36

16 3 1 PcvO2 30

17 3 2 PcvO2 46

18 3 3 PcvO2 30

Both id and time are id.vars and thus they remain 
unchanged. PaO2 and PcvO2 are stacked into a single 
column and a new variable called “PO2” is added to 
distinguish between arterial and venous oxygen. This 
melted format is not only useful for statistical analysis but 
also helpful in reshaping and aggregating data. 

Casting a data frame

The cast() function contained in reshape package works on 
melted dataset. It transforms long data into wide format 
and can aggregate variable within any combinations of id 
variables. The generic form of cast() function takes the 
following form:

cast(data, formula = ... ~ variable, fun.aggregate=NULL, 
...,

         margins=FALSE, subset=TRUE, df=FALSE, 

         fill=NULL, add.missing=FALSE,

         value = guess_value(data))

the argument data is a melted dataset. The cast formula has 
the format: 

x_variable + x_2 ~ y_variable + y_2 ~ z_variable ~ ... | 
list_variable + ...

The x variables in combination define the rows, and y 
variables in combination defines the columns. If a set of x 
variables does not uniquely identify a row, the fun.aggregate 
argument should be given. Then the aggregate function 
can be applied to rows identified by a certain combination 
of x variables. List variables and z variables are usually not 
required. We don’t have dataset of that complex! Next, I 
will show how to cast the melted data in different formats. 

> cast(data.melt,id~PO2,mean)

id PaO2 PcvO2

1 1 78.66667 39.00000

2 2 78.66667 40.00000

3 3 71.00000 35.33333

The rows are defined by the id variable on the left side 
of the formula, and columns are defined by PO2 variable. 
There are 2 levels contained in the PO2, thus we obtain  
2 columns. Because the id variable does not uniquely 
identify a row, function mean is applied to vectors identified 
by id variable.

> cast(data.melt,time~PO2,mean)

time PaO2 PcvO2

1 1 77.33333 36.33333

2 2 75.66667 43.00000

3 3 75.33333 35.00000

When id is replaced by time, the row represents mean 
value across id variable. 

> cast(data.melt,id+time~PO2)

id time PaO2 PcvO2

1 1 1 78 42

2 1 2 86 36

3 1 3 72 39

4 2 1 89 37

5 2 2 81 47

6 2 3 66 36

7 3 1 65 30

8 3 2 60 46

9 3 3 88 30

Variables id+time on the left side of the formula define 
the rows. Each unique combination of id and time defines 
a row. Columns are in line with the levels of PO2 variable. 
Because the 3 variables have identified a unique row, 
aggregating function is no longer applicable. 

> cast(data.melt, id ~ time+PO2, subset=time < 3 & id 

< 3)

id 1_PaO2 1_PcvO2 2_PaO2 2_PcvO2

1 1 78 42 86 36

2 2 89 37 81 47

Data can be subset before reshaping. In the above 



Zhang. Reshaping and aggregating data: an introduction to reshape package

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(4):78atm.amegroups.com

Page 4 of 5

example, we restrict subset of data with time<3 and id<3. 

> cast(data.melt,id~time~PO2)

, , PO2 = PaO2

   time

id 1 2 3

1 78 86 72

2 89 81 66

3 65 60 88

, , PO2 = PcvO2

   time

id 1 2 3

1 42 36 39

2 37 47 36

3 30 46 30

When a z variable is applied, we can see that the melted 
data is split into 2 datasets by variable PO2. Each item can 
be directly called by using the following code:

> cast(data.melt, id~time| PO2)$PaO2

id 1 2 3

1 1 78 86 72

2 2 89 81 66

3 3 65 60 88

Row and column margins can be calculated with 
following code. 

> cast(data.melt, time ~ PO2, mean, margins=c("grand_
row", "grand_col"))

time PaO2 PcvO2 (all)

1 1 77.33333 36.33333 56.83333

2 2 75.66667 43.00000 59.33333

3 3 75.33333 35.00000 55.16667

4 (all) 76.11111 38.11111 57.11111

Split character vector into multiple columns

The function colsplit() in reshape package is to split 
character vector into multiple columns on certain 
expression. This can be helpful in handling a list of variable 

names. Suppose that we have 3 laboratory items measured 
on consecutive 3 days. Their variable names can be denoted 
by: lac_1, lac_2, lac_3, wbc_1, wbc_2, wbc_3, hb_1, hb_2 
and hb_3. In analysis, you want to list laboratory values in 
a column, and the type of value and measurement days are 
denoted by separate variables. 

> data.split<-data.frame(lac_1=2.3, lac_2=3.4, 
lac_3=4.5, wbc_1=12, wbc_2=11, wbc_3=6, hb_1=60, 
hb_2=77, hb_3=89)

> variable.name<-colsplit(names(data.
split),"_",c("lab","days"))

> data.reshape<-cbind(variable.name,t(data.split))

> row.names(data.reshape)<-NULL

> names(data.reshape)[3]<-"value"

> data.reshape

lab days value

1 lac 1 2.3

2 lac 2 3.4

3 lac 3 4.5

4 wbc 1 12.0

5 wbc 2 11.0

6 wbc 3 6.0

7 hb 1 60.0

8 hb 2 77.0

9 hb 3 89.0

The first  l ine creates a data frame that can be 
encountered in practice. All variable names are composed 
of type of measurement and day, and the latter two are 
separated by “_”. In such case, colsplit() can be used to 
separate the variable names into 2 columns, with each 
representing the type of laboratory measurement and the 
day. Next, values of measurements are added by cbind() 
function. The following lines rename the variable names to 
make them easy to understand.  

Producing baseline characteristics of cohort 
automatically

In big-data clinical study, there are numerous covariates 
under consideration. The first step is usually to take a look 
at these variables one by one. Suppose you want to have a 
look at the mean, median, range, and standard deviation of 
a variable. The traditional way is to execute functions one 
by one. Alternatively, you can combine these functions into 



Annals of Translational Medicine, Vol 4, No 4 February 2016 Page 5 of 5

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(4):78atm.amegroups.com

a single one.
> round(funstofun(mean, median,min,max,sd)
(data$PaO2),1)

mean median min max sd

76.1 78.0 60.0 89.0 10.8

> round(funstofun(mean, median,min,max,sd)
(data$PcvO2),1)

mean median min max sd

38.1 37.0 30.0 47.0 6.1

Sometimes, the summary() function contained in the 
base R package can fulfill the task of general description of 
variables. However, the output parameters are fixed. The 
funstofun() function overcomes this limitation that functions 
can be flexibly adapted to the needs of specific purpose. 

Summary 

The article provides a gentle introduction to data 
reconstruction and aggregating. It is common that the 
format of data output from case report form (CRF) does not 
meet the purpose of statistical analysis. In clinical research, 
variables are frequently measured repeatedly over the follow-
up period. Such data can be displayed either in wide or 

long format. Transformation between these 2 forms can be 
challenging by hand. Fortunately, there are sophisticated 
packages in R environment. Data frame should firstly be 
melted and then casted to format that you want. Aggregation 
over unique combination of id variable is also allowable. 
Additionally, the article also introduces 2 functions colsplit() 
and funstofun() that may be useful in some situations.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to 
declare.

References

1. Twisk JW. Applied longitudinal data analysis for 
epidemiology: a practical guide. Second edition. 
Cambridge, England: Cambridge University Press, 
2013:321.

2. Wickham H. Reshaping data with the reshape package. 
Journal of Statistical Software 2007;21:1-20.

Cite this article as: Zhang Z. Reshaping and aggregating 
data: an introduction to reshape package. Ann Transl Med 
2016;4(4):78. doi: 10.3978/j.issn.2305-5839.2016.01.33


