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Abstract: Logistic regression is one of the most commonly used models to account for confounders in medical 

literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on 

the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted 

variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction 

should be checked to disentangle complex relationship between covariates and their synergistic effect on response 

variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the 

real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.
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Introduction 

Logistic regression model is one of the most widely used 
models to investigate independent effect of a variable on 
binomial outcomes in medical literature. However, the 
model building strategy is not explicitly stated in many 
studies, compromising the reliability and reproducibility of 
the results. There are varieties of model building strategies 
reported in the literature, such as purposeful selection of 
variables, stepwise selection and best subsets (1,2). However, 
there is no one that has been proven to be superior to others 
and the model building strategy is “part science, part statistical 
methods, and part experience and common sense” (3). 
However, the principal of model building is to select as less 
variables as possible, but the model (parsimonious model) 
still reflects the true outcomes of the data. In this article, 
I will introduce how to perform purposeful selection in R. 
Variable selection is the first step of model building. Other 
steps will be introduced in following articles. 

Working example

In the example, I create five variables age, gender, lac, hb and 
wbc for the prediction of mortality outcome. The outcome 
variable is binomial that takes values of “die” and “alive”. 
To illustrate the selection process, I deliberately make that 
variables age, hb and lac are associated with outcome, while 
gender and wbc are not (4-6). 

> set.seed(888)

> age<-abs(round(rnorm(n=1000,mean=67,sd=14)))

> lac<-abs(round(rnorm(n=1000,mean=5,sd=3),1))

> gender<-factor(rbinom(n=1000,size=1,prob=0.6),labe
ls=c("male","female"))

> wbc<-abs(round(rnorm(n=1000,mean=10,sd=3),1))

> hb<-abs(round(rnorm(n=1000,mean=120,sd=40)))

> z<-0.1*age-0.02*hb+lac-10

> pr = 1/(1+exp(-z))

> y = rbinom(1000,1,pr)

> mort<-factor(rbinom(1000,1,pr),labels=c("alive","d
ie"))

> data<-data.frame(age,gender,lac,wbc,hb,mort)

Step one: univariable analysis 

The first step is to use univariable analysis to explore the 
unadjusted association between variables and outcome. In 

our example, each of the five variables will be included in a 
logistic regression model, one for each time. 

> univariable.age<-glm(mort~age, family = binomial)

> summary(univariable.age)

Note that logistic regression model is built by using 
generalized linear model in R (7). The family argument 
is a description of the error distribution and link function 
to be used in the model. For logistic regression model, 
the family is binomial with the link function of logit. 
For linear regression model, Gaussian distribution with 
identity link function is assigned to the family argument. 
The summary() function is able show you the results of the 
univariable regression. A P value of smaller than 0.25 and 
other variables of known clinical relevance can be included 
for further multivariable analysis. A cutoff value of 0.25 
is supported by literature (8,9). The results of univariable 
regression for each variable are shown in Table 1. As 
expectedly, the variables age, hb and lac will be included for 
further analysis. The allowance to include clinically relevant 
variables even if they are statistically insignificant reflects 
the “part experience and common sense” nature of the 
model building strategy. 

Step two: multivariable model comparisons

This step fits the multivariable model comprising all 
variables identified in step one. Variables that do not 
contribute to the model (e.g., with a P value greater 
than traditional significance level) should be eliminated 
and a new smaller mode fits. These two models are then 
compared by using partial likelihood ratio test to make 
sure that the parsimonious model fits as well as the original 
model. In the parsimonious model the coefficients of 
variables should be compared to coefficients in the original 
one. If a change of coefficients (∆β) is more than 20%, the 
deleted variables have provided important adjustment of 

Table 1 Univariable analysis for each variable

Variable Coefficient Standard error P value

Age 0.049 0.005 <0.001

Gender −0.044 0.131 0.736

wbc −0.004 0.021 0.845

hb −0.009 0.002 <0.001

lac 0.740 0.047 <0.001



Annals of Translational Medicine, Vol 4, No 6 March 2016 Page 3 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(6):111atm.amegroups.com

the effect of remaining variables. Such variables should 
be added back to the model. This process of deleting, 
adding variables and model fitting and refitting continues 
until all variables excluded are clinically and statistically 
unimportant, while variables remain in the model are 
important. In our example, suppose that the variable wbc is 
also added because it is clinically relevant. 

> model1<-glm(mort~lac+hb+wbc+age, family = 
binomial)

> summary(model1)

The result shows that P value for variable wbc is 0.408, 
which is statistically insignificant. Therefore, we exclude it. 

> model2<-glm(mort~lac+hb+age, family = binomial)

All variables in model2 are statistically significant. Then 
we will compare the changes in coefficients for each variable 
remaining in model2. 

> delta.coef<-abs((coef(model2)-coef(model1)[-4])/
coef(model1)[-4])

> round(delta.coef,3)

(Intercept) lac hb age

0.029 0.004 0.000 0.004

The function coef() extracts estimated coefficients from 
fitted model. The fitted model2 is passed to the function. 
Because there is coefficient for wbc in model1, which has 
nothing to compare with in model2, we drop it by using “[-4]”. 
The result shows that all variables change at a negligible 
level and the variable wbc is not an important adjustment for 
the effect of other variables. Furthermore, we will compare 
the fit of model1 and model2 by using partial likelihood 
ratio test. 

> library(lmtest)

> lrtest(model1,model2)

Likelihood ratio test

Model 1: mort ~ lac + hb + wbc + age

Model 2: mort ~ lac + hb + age

# Df LogLik Df Chisq Pr(>Chisq)

1 5 -322.73

2 4 -323.08 -1 0.6867 0.4073

The result  shows that  the two models  are not 
significantly different in their fits for data. In other words, 
model2 is as good as model1 in fitting data. We choose 
model2 for the principal of parsimony. Alternatively, users 
can employ analysis of variance (ANOVA) to explore the 
difference between models.

> anova(model1,model2,test="Chisq")

Analysis of Deviance Table

Model 1: mort ~ lac + hb + wbc + age

Model 2: mort ~ lac + hb + age

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 995 645.47

2 996 646.15 -1 -0.6867 0.4073

The results are exactly the same. Because of our simple 
example, we do not need to cycle the process and we can be 
confident that the variables hb, age and lac are important for 
mortality outcome. At the conclusion of this step we obtain 
a preliminary main effects model. 

Step three: linearity assumption

In the step, continuous variables are checked for their 
linearity in relation to the logit of the outcome. In this 
article, I want to examine the smoothed scatter plot for the 
linearity. 

> par(mfrow=c(2,2))

> scatter.smooth(age,log(pr/(1-pr)),cex=0.5)

> scatter.smooth(lac,log(pr/(1-pr)),cex=0.5)

> scatter.smooth(hb,log(pr/(1-pr)),cex=0.5)

> scatter.smooth(wbc,log(pr/(1-pr)),cex=0.5)

The smoothed scatter plots show that variables age, lac 
and hb are all linearly associated with mortality outcome 
in logit scale (Figure 1). The variable wbc is not related to 
the mortality in logit scale. If the scatterplot shows non-
linearity, we shall apply other methods to build the model 
such as including 2 or 3-power terms, fractional polynomials 
and spline function (10,11). 

Step four: interactions among covariates

In this step we check for potential interactions between 
covariates. An interaction between two variables implies 
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that the effect of one variable on response variable is 
dependent on another variable. Interaction pairs can be 
started from clinical perspective. In our example, I assume 
that there is interaction between age and hb. In other 
words, the effect of hb on mortality outcome is somewhat 
dependent on age. 

> model.interaction<-glm(mort~lac+hb+age+hb:age, 
data=data,family = binomial)

 > summary(model.interaction)

output omitted to save space

> lrtest(model2,model.interaction)

Likelihood ratio test

Model 1: mort ~ lac + hb + age

Model 2: mort ~ lac + hb + age + hb:age

# Df LogLik Df Chisq Pr(>Chisq)

1 4 -323.08

2 5 -322.91 1 0.3373 0.5614

Note that I use the “:” symbol to create an interaction 
term. There are several ways to make interaction terms in R 
(Table 2). The results show that the P value for interaction 
term is 0.56, which is far away from significance level. 
When the model with interaction term is compared to 
the preliminary main effects model, there is no difference. 
Thus, I choose to drop the interaction term. However, 

Table 2 Methods to create interaction terms in R

Symbols Remarks 

: A simple and direct way to denote an interaction 

between predictor variables. The formula y ~ a + b 

+ a:b is to predict y from a, b, and the interaction 

between a and b

* The code y ~ a * b * c can be expanded to y ~ a +b 

+c + a:b + a:c + b:c + a:b:c. This is a shortcut for 

all possible interaction terms

^ The code y ~ (a +b + c)^2 can be expanded to y 

~ x + z + w + a:b + a:c + b:c. The interaction is in 

specified degree. In this case, the interaction is 

defined to be at degree 2

Figure 1 Smoothed scatter plots showing the relationship between variable of interest with mortality outcome in logit scale.
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if there are interaction effects users may be interested in 
visualizing how the effect of one variable changes depending 
on different levels of other covariates. Suppose we want 
to visualize how the probability of death (y-axis) changes 
across entire range of hb, stratified by age groups. We will 
plot at age values of 20, 40, 60 and 80. 

> newdata<-data.frame(hb=rep(seq(from=4,to
=15),length.out=100,4),lac=mean(lac),age=rep
(c(20,40,60,80),100))

> newdata1 <- cbind(newdata, predict(model.interaction, 
newdata = newdata, type = "link",se = TRUE))

> newdata1 <- within(newdata1, {

       age<-factor(age) 

       PredictedProb <- plogis(fit)

       LL <- plogis(fit - (1.96 * se.fit))

       UL <- plogis(fit + (1.96 * se.fit))

    })

The first command creates a new data frame that 
contains new patients. Variables of each patient are 
artificially assigned. Variable hb is defined between 4 and 
15, with a total of 100 patients at each age group. lac is held 

at its mean value. The next line applies the fitted model to 
the new data frame, aiming to calculate the fitted values in 
logit scale and relevant standard error. The plogis() function 
transforms fitted values into probability scale, which is 
much easier to understand for subject-matter audience. 
Lower and upper limits of the confidence intervals are 
transformed in similar way. The continuous variable age is 
transformed into a factor that will be helpful for subsequent 
plotting. 

> library(ggplot2)

> ggplot(newdata1, 

                 aes(x = hb, y = PredictedProb)) + geom_
ribbon(aes(ymin = LL,

                 ymax = UL, fill = age), alpha = 0.2) + geom_
line(aes(colour = age),

                 size = 1)

The result is shown in Figure 2. Because there is no 
significant interaction the lines are parallel. While the 
probability of death increases with increasing age, increasing 
hb is associated with decreasing mortality rate. 

Step five: Assessing fit of the model

The final step is to check the fit of the model. There are 
two components in checking for model fit: (I) summary 
measures of goodness of fit (GOF) and; (II) regression 
diagnostics. The former uses one summary statistics for 
assessment of model fit, including Pearson Chi-square 
statistic, deviance, sum-of-square, and the Hosmer-
Lemeshow tests (12). These statistics measure the difference 
between observed and fitted values. Because Hosmer-
Lemeshow test is the most commonly used measure for 
model fit, I introduce how to perform it in R. 

> library(ResourceSelection)

> hoslem.test(model2$y, fitted(model2))

 Hosmer and Lemeshow goodness of fit (GOF) test

data:  model2$y, fitted(model2)

X-squared = 4.589, df = 8, p-value = 0.8005

The P value is 0.8, indicating that there is no significant 
difference between observed and predicted values. Model fit 

Figure 2 Effect of hb on the probability of mortality, stratified by 
different age groups.
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can also be examines by graphics. 

> Predprob<-predict(model2,type="response")

> plot(Predprob,jitter(as.numeric(mort),0.5),cex=0.5,yla
b="Jittered mortality outcome")

> library(Deducer)

> rocplot(model2)

> library(lattice)

> histogram(Predprob|mort)

Figure 3 is the plot of jittered outcome (alive=1; die=2) 
versus estimated probability of death from fitted model. 
The classification of the model appears good that most 
survivors have an estimated probability of death less than 
0.2. Conversely, most non-survivors have an estimated 
probability of death greater than 0.8. Figure 4 is the 
histogram of estimated probability of death, stratified 
by observed outcome. It also reflects classification of the 
model. Survivors mostly have low estimated probability of 
death. Figure 5 is the receiver operating characteristic curve 
(ROC) reflecting the discrimination power of the model. 
We consider it an outstanding discrimination when the area 
under ROC reaches above 0.9. 

Summary 

The article introduces how to perform model building by 
using purposeful selection method. The process of variable 
selection, deleting, model fitting and refitting can be 
repeated for several cycles, depending on the complexity 
of variables. Interaction helps to disentangle complex 
relationship between covariates and their synergistic effect 
on response variable. Model should be checked for the 
GOF. In other words, how the fitted model reflects the real 
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Figure 3 The plot of jittered outcome (alive=1; die=2) versus 
estimated probability of death from fitted model.
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data. Hosmer-Lemeshow GOF test is the most widely used 
for logistic regression model. However, it is a summary 
statistic for checking model fit. Investigators may be 
interested in whether the model fits across entire range of 
covariate pattern, which is the task of regression diagnostics. 
This will be introduced in next article. 
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