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Introduction

According to the World Health Organization (WHO), in 
2015, cardiovascular diseases represented 31% of all global 
deaths (1), with ischemic heart disease often cited as the 
leading cause of death worldwide. Furthermore, public 
health statistics have shown an increase of patients with 
some form of cardiovascular disease in countries with low 
or middle gross national income (2). Although serious and 
often life threatening, cardiovascular disease in individuals 
can be managed clinically as a chronic condition, and treated 
with medications, diet, and regular monitoring of specific 
health indicators. Risk factors are fairly well defined and 
lifestyle changes can mitigate some risks. The motivation to 
prevent and manage heart disease has spurred development 
of numerous mHealth applications for consumer use, some 

of which have been scientifically assessed for efficacy (3). 
In this paper, we provide an overview of telemedicine and 
mHealth technologies applied in rural healthcare settings, 
using one form of cardiovascular disease for context. 
Additionally, we discuss the need for computer-aided 
diagnosis (CADx) as well as the implementation of machine 
and deep learning techniques in these systems. Finally, we 
explore the issues and solutions associated with using deep 
learning algorithms for medical applications.

Coronary artery disease

Coronary artery disease, a common type of heart disease, 
occurs from the build-up of plaque within arteries that 
supply blood to the heart muscles. As an artery is gradually 
obstructed, blood flow to the heart muscles is reduced, 
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which impairs heart motion. This is referred to as 
myocardial ischemia. When irreversible damage is done to 
the heart muscles due to partial or complete blockage of an 
artery, myocardial infarction, also known as a heart attack, 
occurs.

The heart is divided into four chambers, the upper 
receiving chambers (right and left atria), and the lower 
pumping chambers [right and left ventricle (LV)]. De-
oxygenated blood is collected in the right atrium and 
is pumped to the lungs by the right ventricle for the 
oxygenation process. The oxygenated blood returns to 
the heart by entering the left atrium and is distributed 
to all parts of the body by the LV. The LV is the biggest 
chamber of the heart and one of the most important 
due to its function. Because of this, it is also typically 
responsible for heart failure. Throughout the progression 
of coronary artery disease, wall motion abnormalities 
would begin to appear, which can be detected via the use of 
echocardiography (4). These flaws can be diagnosed with 
LV measurements and scoring of wall motions. Therefore, 
it is essential to continuously monitor the LV as prolonged 
damage will affect function, size and shape.

Echocardiography is a common heart imaging technique 
which captures ultrasound videos of distinct cardiac 
views, the structures within, and their movements. It 
is an important tool for morphological and functional 
assessment of the heart, and can be utilized to diagnose 
cardiac diseases associated with motion abnormalities (5). 
Moreover, quantitative assessments such as left ventricular 
ejection fraction and cardiac output can be measured by an 
echocardiogram (6). Numerous factors contribute to the 
dominance of echocardiography as the preferred cardiac 
imaging method. The creation of portable ultrasound 
devices, spurred by technological advancements have 
enabled the use of echocardiography in diverse scenarios 
such as health missions to rural areas of developing  
nations (7). Compared with other imaging modalities, 
ultrasound has no known adverse effects and does not 
expose patients to radiation or contrast agents (4). Also, it is 
the most cost efficient and sustainable imaging technology 
in comparison to computed tomography, magnetic 
resonance imaging and nuclear perfusion imaging (8). 
Lastly, echocardiography can be performed in real time 
with the benefit of having a low acquisition duration (9). 
The integration of echocardiography with telemedicine and 
mHealth applications have proven to be quite effective in 
rural healthcare scenarios for capturing and transmitting 
heart imagery, thereby permitting diagnosis and remote 

monitoring, as well as alleviating the need for patients to 
travel from distant areas to a clinician’s location. 

Rural healthcare, telemedicine & mobile health 
(mHealth)

There is a strong need for diagnostic imaging to accurately 
treat patients who are located in developing countries (10). 
Healthcare is most deficient in rural or remote areas 
because of issues such as absence or shortage of electricity 
and telecommunication services, lack of treatment 
services and medical specialists, low per capita income, 
basic infrastructure, and severe weather conditions (11). 
Compared to urban communities, the rural population 
possesses higher death and disease rates as well as health 
disparities due to insufficient medical care (12). 

A viable solution to this predicament is telemedicine, 
which involves the delivery of health care and sharing of 
medical knowledge to sites located at a distance from the 
provider (13). Research has shown that telemedicine can 
enable access to specialized services in regions with scarce 
infrastructure, increase information availability and improve 
retention of physicians in remote areas, and impact the 
rural economy by decreasing costs (14,15). The methods to 
conduct telemedicine can be divided into two categories, 
namely synchronous (real-time) and asynchronous 
(store-and-forward). The approach chosen depends 
on the data that needs to be transmitted, availability 
of telecommunications resources, and the urgency of  
response (16). Synchronous applications require high 
bandwidth usage as data transmission in the form of video 
and audio occurs in real time while an examination is 
being performed (15). A general example would be a video 
conference call between doctor and patient. Conversely, 
asynchronous applications collect, store and forward 
information such as images, text or audio without the need 
for either parties to be simultaneously present (17). An 
example asynchronous application is emailing of medical 
images and waiting for a subsequent diagnostic reply. 
Regardless of the selected methods, mobile devices such 
as compact medical equipment, smartphones, and laptops, 
play an important role in bridging the gap between distant 
locations.

Telesonography, a subtype of telemedicine, involves the 
guidance of a novice sonographer in ultrasound acquisition, 
and the interpretation of ultrasound imagery by a remote 
expert through the use of mobile devices (18). Numerous 
researchers have experimented with real-time streaming 
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applications whereby an ultrasound machine, connected to 
a computer, streams the video feed to offsite devices (17,19). 
Among these works, many have focused on the feasibility of 
video streaming to mobile phones and tablets (20,21), while 
others concentrated on the viability of different internet 
connection types (22,23). Results show that conducting 
remote guidance and interpretation on mobile devices 
connected to low bandwidth networks are possible. Though 
image quality and transmission speeds would be inferior 
due to slower internet connectivity (20,24). Despite this, 
evaluations were not significantly affected and transmitted 
images maintained their clinical value (21).

mHealth, which is the use of mobile devices for health 
care services, is a rapidly evolving field that has grown 
in tandem with telemedicine. It has been utilized for 
various applications such as treatment compliance, data 
collection, disease surveillance and prevention, point-
of-care support and emergency response (25). Several 
studies have demonstrated the positive impacts of mHealth 
projects towards developing nations. These benefits 
include, widening access to healthcare services particularly 
for remote communities, lowering service costs for 
financially challenged or resource scarce areas, promoting 
the dissemination of health education thereby improving 
disease monitoring and treatment, as well as supporting 
health providers by providing efficient portable tools (26,27). 
Telecommunication technologies, especially mobile phones 
have contributed greatly to the successful implementation 
of mHealth initiatives. The popularity of smartphones 
to the global population, its computing capabilities and 
affordability have made it an effective tool for disseminating 
health care (28,29).

mHealth cardiology applications have generally been 
utilized for the following purposes: monitoring, self-
management, reporting, adherence and rehabilitation. 
The majority of research has focused on monitoring 
systems which aim to detect abnormalities in patients 
through the integration of mobile technologies in their 
daily life (30,31). For instance, the pairing of a wireless 
heart monitor to a smartphone, and data transmission 
over mobile telecommunications networks would provide 
physicians a constant stream of reports regarding a patient’s 
status (27,32,33). Additionally, through the use of mobile or 
web based applications, interaction between physician and 
patient can be achieved on a consistent basis regardless of 
distance between both parties (34,35). Studies have shown 
that mHealth applications can achieve similar utility in 
urban and rural settings (36), increase patient adherence 

towards therapy and rehabilitation (37,38), and successfully 
identify and manage health deteriorations (39). Although 
preliminary testing demonstrates the potential of mHealth, 
results are still inadequate due to the limited number of 
trials that have been performed (28,40).

Despite its potential, telemedicine and mHealth faces 
several issues when applied to rural areas. First of all, the 
availability and speed of an internet connection can be a 
limiting factor to the quality of exchanged information as 
well as the timeliness of vital answers (10,41). The poor 
quality or lack of mobile telecommunication infrastructures, 
and limited power supplies are serious impediments to the 
usage of mobile devices (42,43). Even with the appropriate 
technologies and infrastructures, the acquisition and 
interpretation of imagery are highly user-dependent 
and require a certain level of expertise, which may not 
be available in geographically isolated areas (17,19). In 
the case of echocardiography, physicians are required to 
undergo a long training process which has a steep learning 
curve (44,45). Furthermore, during interpretation, image 
quality can be affected by speckle noise, low contrast and 
signal dropouts which interfere with diagnosis (9,46). 
Apart from that, the complex spatio-temporal motion of 
the heart can cause difficulties in interpretation (5). Lastly, 
after evaluation, high inter- and intra-observer variations 
as well as subjective interpretations can occur, even for 
experts (47). The current echocardiography workflow  
consisting of examination, image analysis, final integration 
and reporting, can be a time-consuming and inefficient 
process (48). Besides that, the obstacles mentioned above 
play a part in influencing the overall health outcomes. 
Because of this, there is a critical need for automated 
systems capable of providing diagnostic assistance, decision 
support and objective interpretation (49). In telemedicine or 
mHealth scenarios where the absence of medical expertise 
and telecommunications infrastructures are prevalent, 
CADx systems can potentially overcome these issues.

CADx and machine learning

CADx systems are capable of assisting physicians during 
the interpretation and diagnosis of medical imagery. 
CADx systems can be divided into low complexity and 
sophisticated systems. Low complexity systems offer only 
disease or non-disease diagnosis while sophisticated systems 
are able to diagnose different stages of diseases (2). A CADx 
system normally consists of four phases, which are image 
acquisition and pre-processing, segmentation or region-of-
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interest selection, feature extraction and classification (49). 
Following the acquisition of medical imagery, frames are 
normally pre-processed to remove visual abnormalities and 
improve diagnostic quality. Next, depending on the purpose 
of classification, segmentation is performed to properly 
delineate objects or areas of importance. Features are then 
extracted from these regions for the purposes of training 
learning algorithms. Once properly trained, the CADx 
system would be able to provide disease classifications for 
new patient data. As mentioned earlier, the diagnosis of 
a disease is highly dependent on a physician’s subjective 
interpretation. CADx systems can reduce this subjectivity 
by offering precise tools capable of improving diagnosis and 
providing quantitative support for decision making (50). 

Smartphones are particularly useful for the task of 
acquiring and processing images. As technology improves, 
hardware components such as digital displays and cameras 
are constantly being upgraded (51). Some works have 
successfully embedded mobile devices with CADx systems 
for the purpose of identifying specific diseases. For example, 
researchers investigating the detection of retinal diseases 
combined a smartphone and microscopic lens to perform 
eye examinations and disease diagnosis (52). By capturing 
retinal images and analyzing them, normal or infected 
conditions could be identified. Similar research involving 
the detection of ultrasound kidney abnormalities also 
made use of a smartphone camera and machine learning 
algorithms for diagnostic analysis (53). In both cases, the 
disease detection rates were competitive with accuracies 
above 80%.

The clinical and system benefits of tools such as CADx 
are maximized when coupled with machine learning 
techniques, which are an assortment of mathematical 
algorithms capable of identifying patterns in data and 
performing predictions on new information (54). In general, 
machine learning techniques are divided into supervised 
learning, unsupervised learning and reinforcement  
learning (55). In supervised learning, labelled inputs and 
outputs are provided for training, with the goal of predicting 
new data. On the other hand, unsupervised learning does 
not require any labelled inputs nor desired outputs. Instead, 
it focuses on discovering naturally occurring patterns within 
the given data. Reinforcement learning involves interactions 
with a changing environment whereby feedback is received 
in the form of rewards or punishments, and answers are 
found through trial and error. Out of the three techniques, 
supervised learning is the most widely used (56). The role 
of machine learning in the field of medicine, particularly 

cardiology, has been covered in several papers (57,58). 
Various supervised learning algorithms including support 
vector machines, decision trees, random forests, k-nearest 
neighbors, and others, have been applied to problems 
ranging from image analysis, prediction, diagnosis and 
treatment of heart disease (57). For example, many works 
have utilized machine learning algorithms to discover and 
rank features (49) as well as segment heart walls and analyze 
their motion patterns (59,60) in an effort to determine the 
lack or presence of abnormalities. Automated systems like 
CADx can gain incremental improvements in accuracy and 
reliability by employing these methods, though they may be 
constrained by their ability to process raw data.

Deep learning

The creation of conventional machine learning systems 
require careful engineering and substantial expert knowledge 
to design feature extractors capable of transforming raw 
data into suitable representations for classification (61). 
Furthermore, the engineering process is a time-consuming 
effort and features are often low-level since prior knowledge 
is hand-crafted (62). In recent years, deep learning has 
emerged as the leading technique for computer vision and 
imaging tasks. Deep learning is a class of machine learning 
algorithms that use supervised or unsupervised strategies to 
automatically learn features through the implementation of 
multi-layered hierarchies for the purpose of classification (63). 
Compared to traditional machine learning techniques, 
deep learning has the potential to change the modelling 
of CADx systems. Cheng et al. (64), discussed a 3-fold 
advantage as follows. With deep learning, features can be 
directly uncovered without the effort of explicitly defining 
them. These deep learning discovered features may surpass 
those found with conventional means. Furthermore, feature 
interaction and hierarchy can be simultaneously maintained 
within the deep neural network architecture, which would 
lead to the simplification of the feature selection process. 
Finally, feature extraction, selection and classification can be 
jointly optimized within the same architecture.

An important component of deep learning algorithms is 
the artificial neural network (ANN). ANNs are information 
processing systems composed of multiple interconnected 
elements which cooperate to perform parallel processing 
in an effort to solve a particular problem (65). In visual 
tasks where raw features are not individually interpretable, 
ANNs have achieved a high level of success as a result of 
their ability to learn hierarchical representations (66). One 
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type of ANN, convolutional neural network (CNN), has 
produced many accomplishments in detection, segmentation 
and recognition of objects and regions within images (61). 
A CNN comprises of multiple layers with neurons that 
process portions of an input image. The outputs of these 
neurons are tiled to form an overlap, which provides a 
filtered representation of the original image. This process 
is repeated for each layer, until the final output, which is 
typically the probabilities of predicted classes. The training 
of a CNN requires many iterations to optimize network 
parameters. During each iteration, a batch of samples are 
chosen at random from the input training set and undergoes 
forward-propagation through the network layers. In order 
to achieve optimal results, parameters within the network 
are updated through back-propagation to minimize a cost 
function. Once trained, a network can be applied on new 
or unseen data to obtain predictions. The main advantages 
of CNNs, can be summarized as follows. Features can be 
automatically learned from a training set without the need 
for expert knowledge or hard-coding (67,68). Additionally, 
it has been demonstrated that the extracted features are 
relatively robust to image transformations or variations 
(63,67). Finally, research has shown that CNNs outperform 
traditional image classification methods and can achieve 
state-of-the-art results (67,69). The application of deep 
learning techniques for general and healthcare (70-72) 
purposes have been reviewed by various researchers. In the 
field of medical imaging, CNNs have been mainly utilized 
for detection, segmentation and classification (71). These 
tasks make up part of the CADx process flow as discussed 
before. 

Issues & potential solutions

Despite its benefits, deep learning and CNN models face 
certain complications during training. A large amount 
of training data is required to avoid the over-fitting 
problem (73,74). In the medical field, this is a challenging 
requirement as expert annotation is costly and disease 
specific datasets are rare (70,75). When a dataset is 
imbalanced, predictions are biased towards the majority 
samples, thus leading to over-fitting (76). A commonly 
used method to reduce over-fitting is through the 
implementation of data augmentation to artificially enlarge 
a dataset using label-preserving transformations (77,78). 
Data augmentation, which can be applied during training 
or testing, perturbs an image through transformations such 
as cropping or flipping, in order to generate additional 

samples in the dataset (79). Many tests have proven that 
data augmentation improves classification accuracy (77,79), 
though there are cases where a reduction in accuracy occurs 
instead (80). Medical images that are acquired at fixed 
viewpoints or infrequently experience variations of angles 
may encounter reduced performance due to added noise 
created from augmented data. A further step to handling 
limited training data is by performing transfer learning 
which applies knowledge learned from a previous task to 
a new task (74). The availability of big data repositories, 
though dissimilar, has made transfer learning a suitable 
choice for pretraining and adapting CNNs for the medical 
imaging domain (75,81). Additionally, research has shown 
that transfer learning can be exploited in data scarce 
scenarios even when the knowledge transferred is derived 
from unrelated domains such as natural images (73,82).

Deep learning algorithms can be optimized through the 
tuning of hyperparameters such as learning rate, network 
architectures, activation functions and more. These 
parameters are essential for controlling learning behavior 
and must be determined before the training process (83). 
The act of choosing ideal hyperparameters is a long and 
tedious process as many values are interdependent and 
require multiple trials to refine (84,85). Furthermore, many 
experts still rely on their own technical savvy to manually 
determine appropriate values (86). Because of this, several 
automated hyperparameter optimization methods were 
created. The works focused on enhancing different factors 
ranging from prediction accuracy (85), speed of parameter 
selection (84,86), and ranking of hyperparameters (83). 
Evaluations have demonstrated that hyperparameter values 
chosen by these algorithms can yield higher accuracy 
rates compared to experts. Moreover, the time needed for 
parameter optimization is continually decreasing. 

The popularity of deep learning can be attributed to 
the tremendous increase of computational processing 
power in the form of graphics processing units (GPU) as 
well as the lowered hardware costs (87,88). Although this 
is so, substantial computational and memory resources 
are still necessary to ensure timely completion of the 
CNN training process (70,75). Likewise, when adapted 
for use on mobile devices, the requirements for training 
and running deep learning algorithms are magnified to 
a greater extent (72). A typical solution is for the mobile 
device to offload execution to powerful cloud servers by 
exchanging training data and output results. In normal 
circumstances where telecommunications infrastructures 
are available, this could be a viable choice. But as discussed 
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earlier, rural locations may not possess the foundations 
necessary to accomplish cloud computing. Additionally, 
even with available communications networks, cloud-
based options may potentially expose private data, consume 
significant bandwidth and deplete mobile battery reserves 
(89-91). Research has therefore been undertaken to 
enable local processing on mobile devices with the goal of 
alleviating computational requirements (89-91), reducing 
power consumption (92-94) and ensuring privacy (95). 
Experimental results indicate that it is possible to efficiently 
execute deep learning models on mobile processors while 
maintaining low energy usage. 

The above  i s sues  regarding data  preparat ion, 
hyperparameter optimization and mobile deep learning 
are especially important in the context of telemedicine and 
mHealth. As previously discussed, medical datasets can be 
difficult to acquire and may not necessarily be suited for 
training in its raw form. Take for instance a scenario where 
echocardiogram videos are collected from a hospital which 
routinely conducts heart screenings for all their patients. In 
this situation, it is likely that a greater number of patients 
have normal echocardiograms as opposed to abnormal ones. 
As a consequence of the imbalance, classification models 
generated from the raw data may overfit to the majority 
class. This would lead to an increase of false negative 
detections where abnormal hearts are classified as normal 
instead. It is therefore essential to correctly prepare data for 
training through the application of suitable augmentation 
and transfer learning techniques. 

Another concern towards the training process is the 
selection of network architectures and parameters. These 
variables can significantly affect the accuracy, sensitivity 
(true positive rate) and specificity (true negative rate) 
of resulting models. Since the intention is to accurately 
classify the presence of diseases, it is imperative that 
models are sufficiently sensitive and specific to correctly 
identify unhealthy patients as abnormal while ensuring 
healthy patients are not misclassified. The optimization of 
hyperparameters is consequently indispensable considering 
the liabilities and risks involved if a misdiagnosis were to 
occur. 

Embedding deep learning algorithms into telemedicine 
and mHealth CADx applications would bring about many 
benefits in terms of diagnostic capabilities and usability. 
The potency of CNNs for automated visual analysis can 
be applied to rural healthcare scenarios where medical 
expertise is absent. A novice physician with a smartphone 
need only capture videos or images, and then utilize the 

installed CADx system to obtain diagnostic assistance, 
decision support and objective interpretation. Moreover, 
with recent advancements of mobile deep learning, portable 
systems running on smartphones can facilitate the delivery 
of healthcare services in various remote settings. Because 
of these factors, the need to decrease computation time and 
reduce power consumption is crucial to ensuring ubiquitous 
medical support.

Conclusions

The deployment of rural healthcare services in the form of 
telemedicine and mHealth applications is sorely needed. 
Diverse solutions comprised of portable medical equipment 
and mobile technologies have been created to address the 
deficiencies encountered in remote settings. In addition 
to that, CADx systems have also been utilized for assistive 
interpretation and diagnosis of medical imagery. The 
implementation of machine and deep learning algorithms 
to these systems would bring numerous benefits to both 
physician and patient. In the case of deep learning, the 
accuracy, sensitivity and specificity of these systems may 
equal or even surpass human experts. Furthermore, the 
advancement of mobile technologies would expedite the 
proliferation of healthcare services to those residing in 
impoverished regions. This in turn could then lead to the 
further decline of death and disease rates of the global 
population. 
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