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Background: Long-term management of individuals post-stroke is essential due to the resultant chronic 
disability and risk for recurrent stroke. Mobile health technology shows increasing promise to provide 
cost-effective monitoring and support systems for the patient, caregiver, and healthcare team. Ideally, such 
systems will include stroke management adherence support, mechanisms to link patients and caregivers 
to resources, and secure longitudinal data collection with archive that are employed to optimize recovery. 
However, healthcare providers and computer science application developers must first collaborate to identify 
meaningful measures and develop methods to reliably gather such data remotely via mobile systems. 
Methods: mStroke is a mobile health system composed of two sensors and a mobile application designed 
to support optimal recovery for stroke survivors. Using the World Health Organization’s International 
Classification of Functioning, Disability and Health model (ICF model), the authors identified 4 measures 
that are commonly used in the clinic and developed the mobile application features to support remote data 
collection: National Institutes of Health Stroke Scale (NIHSS) items 5 and 6 (Motor Arm and Leg function), 
Functional Reach Test (FRT), and 10 Meter Walk Test (10MWT). At a local inpatient rehabilitation facility, 
each measure was executed with 35 stroke survivors through simultaneous scoring by the mStroke system 
and standardized clinical assessment. Correlation coefficients were calculated for clinician versus mStroke 
system scoring. 
Results: All four clinical measures significantly correlated with mStroke system app scoring: NIHSS 
Motor Arm—0.839, P<0.001; NIHSS Motor Leg—0.736, P<0.001; FRT—0.630, P<0.01; 10MWT—0.994, 
P<0.001. 
Conclusions: Results should be approached with caution as significant data skew was present for NIHSS 
Motor Arm and Motor Leg tests and the FRT results are not strong enough for broad translation. However, 
positive findings were demonstrated that support further investment in development, refinement, and testing 
of mobile health systems to provide clinically meaningful remote measurement via mobile technology. 
The ICF model was a helpful framework for guiding clinician and application developer collaboration and 
identifying meaningful features for app development.
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Introduction

Stroke is the leading cause of serious, long-term disability 
in adults in the United States. Each year, approximately 
795,000 individuals suffer new or recurrent strokes (1). An 
individual’s risk of recurrent stroke increases six-fold after 
his or her first stroke (2). At an annual cost of more than $40 
billion (1), the cost of care post-stroke is significant, and 
earlier hospital discharge is becoming more common (3). 
The average acute care hospital length of stay post-stroke 
has decreased dramatically in recent years from 10.2 days 
in 1989 (3) to 4.7 days in 2014 (1). After discharge from 
an acute care hospital, patients ideally enter a coordinated, 
multidisciplinary rehabilitation phase in an inpatient 
rehabilitation hospital focused on stroke recurrence 
prevention, restoration of systems impaired by the stroke, 
and functional return to activities of daily living (4). This 
early rehabilitation decreases disability and dependency (5). 
Professional intervention during this stage is restricted to a 
short time frame, with formal rehabilitation typically ending 
3-4 months after the initial stroke (4). Departure from this 
stage is far from the end of the restorative process, as stroke 
sequelae have potential for improvement years after the 
acute management phase ends (6). Whether in an acute care 
hospital or an inpatient rehabilitation hospital, the brevity 
of organized, professional care is disproportionate to the 
long-term effects of stroke.

The objectives of longitudinal post-stroke management 
are two-fold: to prevent stroke recurrence and provide 
support toward optimal functional recovery. Early discharge 
from rehabilitation can leave many functional gains 
unrealized. Due to the chronicity of stroke disability, these 
objectives require long-term attention (4,7). Evidence of 
prolonged disability is apparent in stroke survivors’ increased 
risk of falls (8), sedentary lifestyle (9), decreased use of 
affected limbs (10), and decreased community integration (4).  
As stroke prevalence continues to rise, innovative methods 
must be leveraged to provide patients post-stroke with 
quality long-term care at a decreased burden of cost.

Mobile health technology shows burgeoning potential 
to meet this need for cost-effective, long-term care (11-13).  
With advancements in mobile application and wearable 
sensor technology, medical and rehabilitation management 
may be extended beyond the hospital stay. Mobile health 
may improve both early and standard discharge by allowing 
continued facilitation of functional recovery in the context 
of home and community integration (14). A mobile 
health system for individuals post-stroke must meet a 

myriad of needs including adherence support, streamlined 
communication between the patient and healthcare team, 
early identification and mitigation of complications, and 
caregiver support. Development of a patient-friendly, 
clinically useful, and cost-effective mobile health system 
may provide the long-term support and monitoring needed 
to reduce stroke recurrence and optimize recovery. 

The authors propose a mobile health system called 
mStroke. This system consists of two wearable sensors and 
a mobile application (app) designed to be a comprehensive 
support management system for patients post-stroke. 
Current market-available, stroke-focused mobile applications 
have limited utility and focus on providing only one aspect of 
support, such as exercise plans or clinical measurement tools 
for healthcare providers (11,15). In the development of this 
app, healthcare providers collaborated with computer science 
application developers using the World Health Organization’s 
International Classification of Functioning, Disability, and 
Health (ICF) model to determine meaningful features as they 
pertain to individuals who have suffered a stroke. mStroke 
will be the first stroke-specific, comprehensive system 
designed to symbiotically benefit the patient, the patient’s 
caregivers, and the healthcare providers. The mobile app will 
allow personal goal setting and benchmarking; health status 
monitoring; medication, nutrition, exercise, and activity 
adherence tracking and support; depression and stroke 
impact surveys; streamlined communication; and real-time 
motion monitoring. 

This study focuses on the capture of real-time movement 
data in four common clinical tools used to assess stroke 
recovery at the body function and activity levels of the ICF 
model. The National Institutes of Health Stroke Scale 
(NIHSS) is used to evaluate neurological status (16). Items 
5 (Motor Arm) and 6 (Motor Leg) of the NIHSS are used in 
this study to measure extremity strength at the ICF model 
body function level. The Functional Reach Test (FRT), a 
clinical measure at the ICF model activity level, documents 
how far an individual can forward reach before taking a 
step (17) and assesses fall risk (18). The 10 Meter Walk Test 
(10MWT), also an activity level measurement, defines an 
individual’s preferred gait speed (19,20). The purpose of 
this study was to examine correlations between clinician and 
mobile app scoring for these tests.

The NIHSS is a tool designed to indirectly measure 
neurological function with a 15-item impairment scale 
that covers consciousness, ocular movement, vision, facial 
muscle function, upper and lower extremity strength, 
reflexes, coordination, sensory function, neglect, speech, 
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and language (21). It was designed to be a practical and 
efficient tool used at the patient’s bedside, and takes 
approximately 7 minutes to complete (21). The NIHSS is a 
strong predictor of outcomes after stroke and may influence 
decisions of future management based on prognosis (22,23). 
The scale exhibits high concurrent validity to stroke 
severity (24), high inter- and intrarater reliability in both 
neurologically-trained and non-neurologically-trained 
raters (25), and reliability and validity via telemedicine (26). 
Items 5 (Motor Arm) and 6 (Motor Leg), which test upper 
and lower extremity strength, were selected for use in this 
study. Stroke typically affects primarily one side of the body; 
thus, comparing the strength of both sides may provide 
valuable information about recovery.

The FRT measures margin of stability, including change 
in balance performance over time (27). In assessment 
of patients post-stroke, the FRT has a high intrarater 
reliability (ICC =0.89) and validity (r=0.71) (28). The FRT 
is correlated with the Berg Balance Scale (BBS) (r=0.78), 
making it a good stand-in assessment for fall risk when the 
BBS is not feasible (18). The FRT is well represented in 
the literature and has documented norms for patients post-
stroke (29).

The 10MWT is the gait speed assessment of choice 
for patients “with neurologic conditions who have 
goals to improve walking speed and have the capacity 
to change in this area,” as substantiated by Moore et 
al., 2018 (30). The 10MWT has been shown to be a 
clinically meaningful measure of walking ability with 
excellent interrater reliability (ICC =0.998) (31), test-
retest reliability (ICC =0.94) (19), and good predictive 
validity of dependence in instrumental activities of 
daily living (r=0.76) (32). The 10MWT has a minimal 
clinically important difference of 0.16 m/s (33). Gait speed 
has also been correlated with the BBS (r=0.627) (31),  
which indicates fall risk in patients post-stroke (34). Gait 
speed is also a valuable method of gauging community 
access. For example, the average speed required to cross the 
street during a signal change is 0.49 m/s (35). Based on this 
and other known gait speeds required for safe ambulation 
in the community, functional ambulation classes have been 
defined. Gait speeds between 0.4–0.8 m/s allow limited 
community ambulation, while speeds greater than 0.8 m/s  
allow regular community ambulation (36,37). Transition 
to a higher functional ambulation class is indicative of 
improvement in function and quality of life (20). 

Methods

Materials

mStroke is a wireless system composed of a mobile app 
installed on an iPad and two NODE sensors worn on the 
chest and/or arm or leg. Each sensor is a 25.4 mm diameter 
cylinder with a length of 83.8 mm. It is a low-power, low-
latency device with modular platform that uses Bluetooth 
low-energy protocol to communicate with a computer/
smart phone base station. The sensor platform is an inertial 
motion unit (IMU) containing a 3-axis accelerometer, 
magnetometer, and gyroscope. It sends motion data to the 
base station app at up to 120 samples per second with a 
range of up to 50 m.

Participants

This study was approved by hospital and university 
institutional review boards (IRB approval #14-023). After 
performing preliminary testing on healthy individuals, 35 
patients post-stroke (21 males, 14 females) at a local inpatient 
rehabilitation hospital were recruited for participation. 
Informed consent from all participants and their physicians 
was obtained prior to study enrollment. Nineteen participants 
presented with left hemiparesis, 11 with right hemiparesis, 
and 5 with mild bilateral hemiparesis. To be considered for 
inclusion, participants were required to have suffered a stroke 
within the last 3 months, comprehend and follow 3-step 
commands, and ambulate 10 meters without rest and with 
no more than minimal physical assistance with or without an 
assistive device. Patients were excluded from the study if they 
had previous neurological diagnosis(es), neglect syndrome, 
aphasia, apraxia, amputation, or surgery within the last  
6 months. Upon vital sign screening, patients were excluded 
if their resting heart rate was greater than 90 beats per minute 
and/or blood pressure was greater than 180/90 mmHg. 
Patients were also excluded if they displayed a blood pressure 
drop of more than 20 mmHg upon standing with symptoms 
of blurred vision, cognitive decline, and/or dizziness.

Procedures

Heart rate and blood pressure were assessed before data 
collection. Upon inclusion based on the criteria above, 
participants provided demographic information and were 
fitted with the sensors. Participants were assigned a subject 
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identification number, which they were instructed to enter 
into the mStroke app; iPad and sensor donning/doffing 
assistance was provided as necessary. 

The NIHSS Motor Arm and Motor Leg tests were 
administered per the protocol provided by the National 
Institutes of Health (38). In the NIHSS Motor Arm test, 
one sensor was placed on the distal humerus. In a seated 
position, the participant’s arm was placed at 90 degrees of 
shoulder flexion. The participant was instructed to hold their 
arm in this position for 10 seconds. If the limb exhibited 
no effort against gravity in the original testing position, the 
arm was positioned in an anatomic neutral position at their 
side and the patient was asked to try to lift the limb from 
this position. Three repetitions were performed on each 
upper extremity beginning with the less affected side. In 
the NIHSS Motor Leg test, one sensor was placed on the 
ankle just proximal to the malleolus. The patient assumed a 
supine position. To protect the low back, the contralateral 
lower extremity was placed in hip and knee flexion with the 
foot planted on the bed. The participant’s tested leg was 
placed at approximately 30 degrees of hip flexion with full 
knee extension. The participant was instructed to hold their 
leg in this position for 5 seconds. If the limb exhibited no 
effort against gravity in the original testing position, the 
patient was asked to try to lift the limb from a supine resting 
position. Three repetitions were performed on each lower 
extremity beginning with the less affected side. 

In the FRT, two sensors were used, one on the wrist and 
one on the sternum. Per the testing protocol described by 
Duncan et al. 1990, participants began in standing and were 
instructed to lift their less affected arm to 90 degrees of 
shoulder flexion and reach as far forward as possible without 
moving their feet or losing their balance (27). Three 
repetitions were performed. 

In the 10MWT, two sensors were used, one on each 
ankle just proximal to the malleoli. Per the testing protocol 

described by Steffen & Seney 2008, from a standing position, 
participants were asked to walk at a self-selected comfortable 
pace over a level surface in a controlled environment (39). 
Participants were provided assistance from a licensed 
physical therapist following standard precautions including 
use of a gait belt and physical guarding.

All tests were clinically scored by the physical therapist 
using the standard test protocols. Simultaneously, IMU 
data were collected by the sensor(s) and transferred to the 
mobile app, which scored the performance. Clinician and 
app scores for each trial were documented. 

Analysis

Data were transferred from individual participant data 
collection forms to an Excel spreadsheet, then imported 
into SPSS version 23 (40). Nonparametric (small number 
of participants; NIHSS ordinal data) Spearman Rho 
correlation coefficients were calculated between clinician 
and mobile app scores for each activity.

Results

The mobile app failed in data collection for two participants, 
thus their data were discarded, and results analyzed for 33 
participants. For the FRT and 10MWT, three trials were 
performed with each participant: 99 total trials for each 
FRT and 10MWT. For the NIHSS Motor Arm and Leg 
tests, three trials were performed on the lesser affected and 
more affected limbs with each participant: 198 total trials 
for each Motor Arm test and Motor Leg test. For each of 
the NIHSS Motor Arm and Leg tests on the participant’s 
lesser affected limbs, the resulting NIHSS score was 0 
(normal function) for all trials. Thus, the distribution 
of NIHSS scores (Likert scale range 0–4) were strongly 
skewed to the 0 score for both Motor Arm and Motor Leg 
trials. Table 1 shows the NIHSS score distributions. 

Clinician and mobile app scores Spearman Rho 
correlation coefficient results are listed in Table 2.

Discussion

Significant correlation between clinician and mobile app 
scores for all four tests supports the authors’ objectives to 
create a mobile health app that provides clinicians with 
objective movement data to inform and track recovery. 
These findings have valuable safety implications in 
that remotely gathered information could be used to 

Table 1 NIHSS motor arm and motor leg trials clinician and 
mobile app score distributions

NIHSS score Motor Arm Motor Leg

0 157 145

1 20 43

2 5 10

3 10 0

4 6 0
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identify potentially harmful changes in patient status and 
trigger timely healthcare interventions, thus mitigating 
complications. These results support investment in 
additional development, refinement, and testing of mobile 
health systems to provide clinically meaningful remote 
measurement via mobile technology. 

The best results were demonstrated for the 10MWT 
(0.994; P<0.001), which is consistent with prior research 
documenting the reliability of gait speed data collected via 
body worn sensors (41-43). For the NIHSS Motor Arm 
and Motor Leg tests, the results are promising but far 
from conclusive (0.839 and 0.736; P<0.001, respectively). 
A chief limitation in the NIHSS-related analyses were 
the aforementioned data skew toward NIHSS Motor 
Arm and Motor Leg score of 0. Additionally, participant 
inclusion criteria included the ability to ambulate 10 meters 
without rest and minimal physical assistance. This resulted 
in excluding participants functioning at lower mobility 
levels, many of whom are likely to have more moderate to 
severe motor impairment of the affected upper and lower 
extremities. Additionally, the NIHSS Motor Arm and 
Leg tests mobile apps employed a rule-based algorithm 
for scoring. The authors hypothesize that a machine-
based approach, while labor intensive in development, may 
significantly improve correlations.

The FRT results were disappointing and represent the 
challenge of designing a mobile app that uses data from 
two sensors to capture a discrete measurement (forward 
functional reach) obtained during a complex and highly 
variable functional activity. The forward functional reach 
involves multi-planar movement at the ankles, knees, hips, 
trunk, and shoulder complex. Thus, while the correlation 
results for the FRT were statistically significant (0.630; 
P<0.01), they are insufficient for clinical use. The primary 
goal of the FRT remote measurement app was to reliably 
capture a clinically relevant measure that has predictive 
capacity. Documenting an individual’s fall risk is important 

post-stroke. The authors propose that the Timed Up and 
Go (TUG) test may be a better clinical measurement to 
translate to mobile systems for remote data collection as it 
includes both fast self-selected gait speed and is predictive 
of fall risk (44). The TUG test measures the time required 
for an individual to stand up from a standard-height chair, 
walk 3 meters, turn 180 degrees, walk to the chair, turn 
180 degrees, and sit down (45). Clinically, the TUG has an 
excellent test-retest reliability (ICC =0.96) (19).

Future research should repeat this study with a larger 
number of participants who present with greater diversity 
of sensory and/or motor impairments as well as a range 
of functional abilities. Future studies should also explore 
caregiver collaboration with focus on quantifying and 
refining the user-friendliness of these types of apps, 
especially as it relates to usage in elderly and disabled 
populations. Next steps for mStroke specifically will include 
identification and further development of additional key 
measures and features to be included in the app, such as 
adherence support, streamlined communication between 
the patient and healthcare team, methods for early 
identification and mitigation of complications, and caregiver 
support. The NIHSS Motor Arm and Motor Leg tests 
will receive further attention; namely, the employment of 
machine-learning in app development. 

In conclusion, mobile applications such as mStroke are 
necessary to provide the long-term support and monitoring 
needed to reduce stroke recurrence and optimize recovery. 
This study represents the development of a few of many 
features within the mStroke system. The results support 
additional investment in mobile health technology as 
a viable and affordable way to improve the quality and 
efficiency of post-stroke care through remote monitoring, 
ongoing treatment and assessment, and communication 
links between patients and their healthcare providers. 
Additionally, information gathered through mobile health 
applications may contribute to longitudinal analyses 
regarding recovery and stroke recurrence after initial stroke.
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Table 2 Correlation between clinician and mobile app scores

Clinical measure Spearman Rho

NIHSS Motor Arm 0.839*

NIHSS Motor Leg 0.736*

FRT 0.630**

10MWT 0.994*

*, significant at P<0.001; **, significant at P<0.01. FRT, Functional 
Reach Test; 10MWT, 10 Meter Walk Test.
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