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Heart disease remains one of the leading causes of 
mortality. In contrast to adult teleost fish and amphibians, 
in adult mammals the resident cardiac cells are not able to 
regenerate heart tissue and restore efficiently the cardiac 
function after heart failure, being hypertrophy the most 
relevant compensation for the loss of cardiomyocytes. 
Since there are not enough heart donors available for 
transplantation, in recent years, new approaches have been 
explored, and a number of groups have been focused on 
the use of the stem cells. Although adipose tissue-derived 
cells or cardiac-derived stem cells are being explored 
(1,2), the largest clinical experience has been acquired 
with intracoronary delivery of bone marrow stem cells 
(BMSC) to treat acute myocardial infarction and chronic 
ischemic heart failure. However, the published data in 
the last 10 years do not show a substantial long-term  
benefit (3). The reasons that could explain BMSC inefficacy 
for cardiac repair could be: (I) only a very small fraction 
of the injected cells remain in the targeted area, and (II) 
BMSC are not able to differentiate into cardiac muscle. 
Actually, the current consensus is that any improvement in 
cardiac function after BMSC transplantation is likely to be 
the result of a paracrine action. Thus, success of cardiac cell 
therapy will be determined by the development of methods 
to improve engraftment and generation of cells capable to 
regenerate the damaged tissue (4).

Then, what is the optimal cell type for regeneration 
of the failing heart? Ideal candidate cell types, besides 
ensuring safety, should satisfy the following items: (I) be 
expandable or scalable; (II) be immunocompatible within 
the donor heart or at least immune-tolerant; (III) integrate 
and synchronize with the rest of host myocardium. 

Cardiovascular progenitor cells (CPC) have the potential 
to proliferate and differentiate into the main cardiovascular 
lineages (cardiomyocytes, smooth muscle and endothelial 
cells), thus constituting useful cellular models for studying 
cardiac development and potentially ideal cellular source for 
cardiac regenerative therapy.

Messina et al. first and other groups have demonstrated 
that CPC can be isolated from heart biopsies and enriched 
via cardiosphere culture, but their myogenic potential is 
limited (5,6). Alternatively, human CPC with tri-lineage 
cardiovascular differentiation potential can be isolated 
from differentiating human pluripotent stem cells in vitro, 
based on the expression of CPC-related transcription 
factors [Mesp1 (7), Isl1 (8), Nkx2.5 (9)], or surface markers  
[SSEA1+ (10), KDR+/PDGFR-α+ (11), GFRA2+ (12)]. 
Nevertheless, the study of CPC has been a real challenge 
since these cells  undergo a rapid transit ion from 
multipotency to commitment. Wnt signaling plays essential 
roles during vertebrate heart development, and studies 
in embryos and pluripotent stem cells have shown that 
canonical Wnt pathway induces cardiac specification during 
early developmental/differentiation stages whereas inhibits 
it later (13). In this regard, several groups have used Wnt 
signaling activators (Wnt3a or GSK3 inhibitors) to promote 
pluripotent stem cell-derived CPC expansion (14-16). 

Cell reprogramming has created great opportunities for 
studying cell specification and for modelling and treating 
certain diseases. Cell reprogramming methodologies, based 
on the forced expression of factors that determine the 
desired cell fate and/or alter the epigenome, potentially 
enable the obtainment of any cell type of the human body. 
Specifically, CPC, can be obtained using three different 
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reprogramming approaches:
(I) iPSC reprogramming. Yamanaka laboratory 

demonstrated in 2006 that somatic cells can be 
reprogrammed to induced pluripotent stem cells 
(iPSC) by ectopic expression of Oct4, Sox2, Klf4 
and Myc transcription factors (17). iPSC have 
the capability to differentiate into any cell type, 
including CPC, and constitute an unlimited 
source of cells since these cells can be cultured and 
expanded in their undifferentiated cell state, and 
be cryopreserved. However, these reprogramming 
and differentiation procedures take months, and 
their tumorigenic potential limits their clinical 
application.

(II) “ P l a s t i c ”  r e p r o g r a m m i n g .  A  d i f f e r e n t 
reprogramming approach was described in 2011 
by Ding laboratory by which the desired cell type, 
including CPC (18), could be produced in weeks. 
This reprogramming approach uses the 4 Yamanaka 
factors in combination with JAK inhibitor, to 
induce what it was called a “plastic” cell state, and 
the latter culture of these cells in defined conditions 
promoting the induction of the desired cell type. 
Initially, this “plastic” reprogramming approach 
was described as a direct cell fate conversion 
approach; however, two studies demonstrated that 
it generates a pluripotent intermediate state (19,20). 

(III) Direct reprogramming. The direct reprogramming 
of human fibroblasts into KDR+/Nkx2.5+ induced 
CPC (iCPC) was achieved in 2012 by ectopic 
expression of ETS2 and MESP1 factors (21). 
iCPC were not extensively characterized and their 
function was not studied in vivo since these iCPC 
were spontaneously differentiated into immature 
cardiomyocytes.

A recent study by Lalit et al., demonstrated that at least 5 
cardiac factors (Mesp1, Tbx5, Gata4, Nkx2.5 and Baf60c) in 
combination with the leukemia inhibitory factor (LIF) and 
the 6-bromoindirubin-3’-oxime (BIO), can reprogram adult 
fibroblasts into proliferative and multipotent iCPC (22). First, 
the authors selected 22 candidate genes: 18 cardiac genes 
(including transcription and chromatin remodeling factors) 
and the 4 Yamanaka factors. The coding sequence of each 
gene was individually cloned into a doxycycline inducible 
lentiviral vector. To identify easily reprogrammed iCPC 
and enable doxycycline inducible transgene expression, a 
Nkx2.5 cardiac reporter mouse model expressing enhanced 
yellow fluorescent protein (EYFP) crossed with a transgenic 

mouse expressing a reverse tetracycline transactivator (rtTA) 
was used.

In the first reprogramming assay, adult cardiac fibroblasts 
were infected with a mixture of lentivirus containing all  
22 factors leading to a small number of EYFP+ colonies 
after doxycycline treatment. The EYFP+ colonies formation 
was not affected by the withdrawal of the 4 Yamanaka 
factors. Next, 11 factors were selected based on their early 
expression in cardiac development (Mesp1, Mesp2, Gata4, 
Gata6, Baf60c, SRF, Isl1, Nkx2.5, Irx4, Tbx5 and Tbx20). 
Single EYFP+ cells were detected 6 days after the infection 
with the 11 factors, and by 3 weeks highly proliferative 
colonies of EYFP+ cells were observed. Next, authors tried 
to expand these EYFP+ cells. The reprogramming medium 
(fibroblast medium supplemented with doxycycline) was not 
sufficient to maintain a proliferative state of the EYFP+ cells 
and the cells senesced after few passages. Reasoning that 
Wnt and JAK-STAT signaling pathways play critical roles 
in proliferation of CPCs and cardiogenesis, respectively, 
the reprogramming medium was supplemented with BIO (a 
canonical Wnt signaling activator) and LIF which was called 
iCPC induction medium. Adult cardiac fibroblasts infected 
with 11 factors and cultured in iCPC induction medium 
produced EYFP+ cells which could be robustly expanded 
for over 30 passages. EYFP+ cells size reduction was 
observed during the first passages and the doubling time of 
EYFP+ cells decreased when compared with their parental 
fibroblasts. Once again, in an attempt to reduce the number 
of reprogramming factors, reasoning that Mesp1, Tbx5 and 
Gata4 (MTG) are expressed earliest in cardiac development, 
this combination of factors was tested. Two of these 
three selected factors, Tbx5 and Gata4, were previously 
used together with Mef2c by Ieda et al. to reprogram 
mouse fibroblasts into induced cardiomyocytes (23).  
EYFP + co lon ie s  were  not  observed  us ing  MTG 
combination, however, MTG together with Nkx2.5 and 
Baf60c factors (MTGNB) produced proliferative and 
expandable EYFP+ cells. Next, EYFP+ cells were extensively 
characterized to demonstrate that they were truly iCPC. 
First, protein and RNA expression of CPC-related markers 
in EYFP+ cells was verified by immunostaining and RNA 
sequencing analyses. Second, the ability of EYFP+ cells to 
differentiate into cardiovascular lineages (cardiomyocytes, 
endothelial and smooth muscle cells) was confirmed  
in vitro and in vivo. EYFP+ cells were induced to cardiac 
lineage using a protocol based on cell aggregate induction 
with BMP4, VEGF, bFGF and a canonical Wnt inhibitor 
(IWP4) for the first 4-6 days, and the posterior plating of 
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cell aggregates on gelatin-coated dishes and maintenance in 
fibroblast medium with 1% serum for 20 days. The in vitro  
differentiation potential of iCPC into cardiomyocytes 
(80% to 90%) smooth muscle (5% to 10%) and endothelial 
cells (1% to 5%) was demonstrated by immunostaining. 
However, the iCPC-derived cardiomyocytes, although 
manifested organized microfilaments, did not contract 
spontaneously, and only when cocultured with mESC-
derived cardiomyocytes for two weeks, 5% to 10% of 
iCPC-derived cardiomyocytes started contracting. iCPC 
integrated with host cells within the heart tube and 
differentiated into cardiomyocytes when injected into 
cardiac crescent of E7.75 embryos, and the iCPC capability 
to differentiate into three cardiovascular lineages was shown 
when 1–1.5 million iCPC were injected in a mouse model 
of myocardial infarction. Interestingly, the survival of the 
animals that received iCPC was significantly improved 
when compared to animals that receive PBS (75% vs. 11%, 
respectively). Moreover, Lalit et al. showed the robustness 
and reproducibility of this procedure by the reprogramming 
of adult fibroblasts from different tissues (lung and tail-tip) 
into expandable iCPC. 

The low reprogramming efficiency (0.008% or 
0.014% with 11 or 5 factors, respectively) is offset by 
the fact that iCPC can be expanded in defined culture 
conditions generating billions of cells without losing their 
differentiation potential. However, a study led by Zhang  
et al. published simultaneously in the same scientific journal, 
reported the induction of expandable CPC using different 
culture conditions (18). In this study, iCPC were generated 
by the “plastic” reprogramming approach and were expanded 
with a cocktail called BACS (BMP4, Activin A, CHIR99021 
and SU5402). The common signaling pathway activated 
in both expansion strategies, by BIO or CHIR GSK3 
inhibitors, is the canonical Wnt signaling. Although both 
iCPC populations expressed CPC-related markers as Isl1 
and Nkx2.5 and were tripotent in vitro and in vivo, these 
iCPC populations differed in the expression of surface 
CPC-related markers as PDGFR-α and Flk1. Presumably, 
the use of different markers to isolate iCPC may explain 
these molecular discrepancies and the different expansion 
requirements. In fact, the iCPC described by Lalit et al. 
using the Nkx2.5 reporter, showed very limited endothelial 
potential and heterogeneous cell surface and gene expression, 
so it is reasonable to think that these Nkx2.5+ iCPC may 
contain different subpopulations of CPC. The proportion 
of each cardiovascular lineage derived from iCPC may vary 
depending on the differentiation protocol used in vitro, but 

the utilization of other CPC markers expressed earlier in 
cardiac development might generate iCPC with increased 
potential, although a distinct combination of factors for their 
induction will probably be needed.

There are still pending issues to be solved. Although 
iCPC could be more malleable and adaptable to the 
recipient than their differentiated counterparts, it needs to 
be elucidated to what extent the microenvironmental cues, 
encountered following in vivo administration of iCPC, are 
enough to differentiate these cells into the cardiovascular 
lineages that are functionally required, and if the achieved 
stoichiometry is preserved in different subjects. On the 
other hand, a recent study demonstrated that the use of 
CPC-derived extracellular vesicles is sufficient for the 
functional recovery of mice with chronic heart failure (24),  
thus, another open question is if the survival of the 
animals receiving iCPC improved by their regenerative 
and/or paracrine action. Nonetheless, undoubtedly, the 
direct reprogramming of fibroblasts into expandable 
and multipotent iCPC constitutes a potent tool for 
cardiovascular research and opens up new therapeutic 
avenues. Next challenge should be obtaining proliferative 
and scalable human iCPC to determine their utility for 
disease modelling and drug discovery, and their capability 
to regenerate the injured heart. 
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