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Adult T-cell leukemia/lymphoma (ATL/ATLL) and 
mogamulizumab (moga)

ATL/ATLL is a peripheral T-cell neoplasm that occurs 
in around 5% of human T-lymphotropic virus type-1  
(HTLV-1) carriers and is one of the most aggressive 
hematologic malignancies (1,2). HTLV-1 is endemic in 
some areas, such as coastal regions of southwest Japan, 
South America, and Africa (2). ATL comprises four 

clinical subtypes, namely, acute, lymphoma, chronic, 
and smoldering, the former two of which show more 
aggressive courses (2). Generally, ATL responds to primary 
chemotherapy, but it soon becomes refractory to multiple 
anticancer reagents (3). Therefore, even the currently 
most intensive chemotherapy regimen modified LSG15 
(mLSG15, VCAP-AMP-VECP) results in a median survival 
of only 13 months (4). Although allogeneic hematopoietic 
stem cell transplantation (allo-HSCT) may lead to long-
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term remission in a proportion of patients with aggressive 
ATL (5), it can also cause fatal complications such as graft-
versus-host disease (GVHD) (6). 

Interestingly, there are several lines of evidence that 
tumor immunity can suppress ATL. Some cases experience 
spontaneous remission without any anticancer treatment 
(7-10). The occurrence of mild GVHD correlates with 
reduced relapse of ATL patients after allo-HSCT (11). 
Chemotherapy-resistant cases with substantial tumor 
burdens sometimes achieve long-term remission after 
allo-HSCT (12). Even relapsing cases after allo-HSCT 
still respond and achieve complete remission again only 
following withdrawal of immunosuppressants (13). These 
observations may be due to the high immunogenicity of 
ATL cells such as the tumor antigens Tax or NY-ESO-1, 
and several projects have aimed to treat ATL by enhancing 
tumor immunity (14,15).

The advent of clinically feasible monoclonal antibodies 
enabled specific depletion of tumor cells. They enhance 
antitumor immunity by antibody-dependent cellular 
cytotox ic i ty  (ADCC) or  complement-dependent 
cytotoxicity (CDC) (16). As for hematologic malignancies, 
the anti-CD20 antibody rituximab gained FDA approval 
for B cell-lineage malignant lymphoma in 1997. Since then, 
many antibodies have been developed, and their specificities 
and potentials have been greatly improved. Currently, novel 
monoclonal antibodies that target immune checkpoint 
signals such as nivolumab and ipilimumab are about to 
change cancer therapy (17,18). However, their adverse 

effects can result in unknown severe pathology, partly due 
to incomplete understanding of the human immune system. 
Therefore, careful and close monitoring of cases that are 
treated with immunomodulatory reagents is needed.

Chemokines and their receptors play important roles in 
tumorigenesis and the expansion and migration potentials of 
tumor cells in the body (19). Moga, a monoclonal antibody 
that targets the chemokine receptor CCR4, was developed 
in Japan (20,21). Many T-cell neoplasms including ATL 
express CCR4 (22,23), for which moga gained approval 
for clinical use. It binds to CCR4 on ATL cells, inducing 
ADCC by natural killer (NK) cells (Figure 1). The most 
notable feature of moga is elimination of fucose from sugar 
chains on the antibody by Potelligent® technology, which 
strikingly enhances its ADCC activity (24).

Moga shows substantial antitumor activity against 
relapsed/refractory ATL and peripheral T-cell lymphoma. 
Notably, it is effective even in chemotherapy-resistant 
or relapsing cases, which means that many unfavorable 
ATL cases can achieve remission using moga (25,26). 
Furthermore, its indication may be widened to solid organ 
malignancies (27). However, there are still some problems 
to be solved or overcome. Although the effects of moga are 
often dramatic, some ATL cases are still resistant. There is 
no clear conclusion regarding the appropriate combination 
therapy of moga with conventional chemotherapy (28). 
The effects of moga on extramedullary lesions are limited 
(25,29). Furthermore, moga has immunomodulatory 
effects, including depleting regulatory T cells (Tregs) (30). 
Therefore, concerns have been raised regarding the use of 
moga, especially prior to allo-HSCT. In this review, the 
risks of the use of moga in transplant settings and some 
possible approaches to avoid adverse events are discussed. 

Moga and Tregs

Foxp3+ Tregs are an indispensable cell subset in human 
immunity. Because they suppress antitumor immunity in 
addition to autoimmunity, suppression of Tregs enhances 
antitumor immunity. Depletion of Tregs reduces the tumor 
burden in vivo in mice (31,32). In humans, the higher 
density of Tregs among tumor-infiltrating lymphocytes 
is associated with poor prognosis in several cancers  
(33-36). Tregs are classified into several subtypes: the most 
suppressive subset has the CD45RA−Foxp3++ phenotype, 
called effector Tregs (37). Effective depletion of effector 
Tregs may be crucial to achieve strong antitumor  
immunity (30). It should be noted that effector Tregs 

Figure 1 Moga depletes not only ATL cells, but also Tregs. Moga 
depletes ATL cells through ADCC by NK cells, but also depletes 
Foxp3+ Tregs through ADCC. As a result, moga enhances anti-
ATL immunity of anti-ATL NK cells and T cells.
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express CCR4 (30) and that depletion of Tregs might 
mount autoimmune pathology. 

Tregs  are  a lso important  in  a l lo-HSCT. They 
appropriately modulate immunity, establish graft tolerance, 
enhance engraftment, and suppress GVHD (38,39). 
A reduced frequency of Tregs correlates with chronic 
GVHD (40). Although a reduction in Tregs should mount 
substantial antitumor immunity, depletion of Tregs may 
increase severe complications such as GVHD in allo-
HSCT.

Several reports have indicated that ATL cells and Tregs 
share similar features, such as the CD3+CD4+CD25+ 
phenotype (41). Although they can be differentiated 
by CADM1 antigen expression (41), they share the 
CCR4+Foxp3+ phenotype in many cases. Therefore, moga 
might deplete Tregs in addition to ATL cells. Moga results 
in severe autoimmune pathology coincident with depletion 
of Tregs (41). In addition, T cells with the Th2 phenotype 
also express CCR4 (42). Theoretically, moga would shift 
the Th1/Th2 balance to the Th1 axis, which might enhance 
tissue damage through GVHD, although this has not been 
sufficiently investigated yet.

Collectively, while moga should enhance antitumor 
immunity, it may be problematic in cases that subsequently 
receive allo-HSCT because it can increase the risks of 
GVHD, graft rejection, impaired immune reconstitution, 
and other post-transplant complications.

Moga and establishment of tolerance after allo-
HSCT

As described above, there are major concerns that 
pretransplant moga could increase the risk of GVHD. 
Recently, several groups reported the clinical outcomes 
of cases that received moga before allo-HSCT. These 
studies consistently reported that the use of moga before 
allo-HSCT was associated with an increased risk of severe 
acute GVHD (43-46), although a case report showed the 
successful management of acute GVHD (45). However, 
these studies were rather small to conduct multivariate 
analyses to adjust for the other risk factors of acute GVHD 
and other clinical events. Our group recently performed 
a retrospective analysis using a database of a nationwide 
survey of aggressive ATL (12). In this study, 82 patients out 
of 996 allo-HSCT recipients received moga before allo-
HSCT. The risk of grade III–IV acute GVHD and steroid-
refractory acute GVHD was significantly higher in patients 
who received moga before allo-HSCT than in those who 

did not receive moga before allo-HSCT. The cumulative 
incidence of non-relapse mortality was significantly higher 
in the moga group than in the no-moga group (43.7% 
in the moga group and 25.1% in the no-moga group 
at 1 year). There was no significant difference in the 
incidence of relapse between the two groups. As a result, 
the probability of overall survival in the moga group was 
significantly inferior to that in the no-moga group (32.2% 
in the moga group and 49.4% in the no-moga group 
at 1 year). The median interval between the last moga 
administration and allo-HSCT was 45 days in this study. 
Using 50 days as a cut-off, a shorter interval between the 
last moga administration and allo-HSCT was significantly 
associated with an increased risk of non-relapse mortality 
and overall mortality. Sugio et al. suggested that an interval 
of <3 months between the last moga administration and 
allo-HSCT might be associated with an inferior clinical 
outcome (46). According to some previous reports, the 
concentration of moga remains more than 10 μg/mL for 
weeks even after the last administration of 1.0 mg/kg (25). 
Although we do not have any data about the correlation of 
immune recovery and plasma concentrations of moga, we 
assume that in patients with a shorter interval between the 
last moga administration and allo-HSCT, the concentration 
of moga remained high enough to deplete donor-derived 
Tregs after allo-HSCT, which is expected to induce severe 
acute GVHD as shown in Figure 2. In patients with longer 
intervals between the last moga administration and allo-
HSCT, moga would deplete recipient-derived Tregs, but 
might not be able to deplete donor-derived Tregs. Recent 
reports showed that the majority of Tregs in the early 
period after transplant shows a CD45RA− effector/memory 
phenotype (30,47). Because effector/memory phenotype 
Tregs express CCR4, the use of moga might result in a 
critical decrease in the overall Treg population during the 
early period after allo-HSCT (47,48). To elucidate the 
mechanisms in vivo further, prospective monitoring of 
the moga level and immune recovery including Tregs in 
peripheral blood is warranted. 

How to incorporate moga in transplant-eligible 
patients with ATL

Considering the dismal outcome after allo-HSCT in 
patients who received moga before allo-HSCT, moga 
should be cautiously used in transplant-eligible patients 
with ATL. However, as described above, a proportion of 
patients with relapsed/refractory ATL could be rescued by 
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moga (25,26). Therefore, incorporation of moga into the 
salvage treatment strategy might increase the number of 
potential candidates for allo-HSCT, and the development 
of transplant methods to maximize the benefits of moga in 
the treatment strategy of aggressive ATL is desired. 

First, we can prolong the interval between the last moga 
administration and allo-HSCT. As previously reported and 
theoretically, the effects of moga could be reduced because 
the concentration of moga could be lowered as shown in 
Figure 2. Therefore, we could use moga in combination 
with other chemotherapies or moga alone in patients with 
relapsed/refractory ATL but only use moga for a short 
period and continue conventional salvage chemotherapy 
after sufficient disease control is achieved. The drawback 
of this strategy is that there is a possibility that disease 
control could worsen after moga is stopped and that the 
appropriate interval may depend on each patient. In our 
experience, this strategy is highly efficient in ATL cases 

with tumor cells only in peripheral blood (25,26). As 
aforementioned, moga is expected to persist for several 
months in vivo as the half-life of moga is approximately 16 
to 18 days (26). In addition, the effects of moga may last for 
more, because its pharmacodynamics may be different from 
its pharmacokinetics. Thus, we have to pay much careful 
attention to the development of severe GVHD, even when 
a long interval exists between administration of moga and 
allo-HSCT.

Second, we can intensify GVHD prophylaxis in patients 
who received moga before allo-HSCT. It is expected that 
a higher ratio of effector T cells/Tregs might lead to the 
development of acute GVHD (49). Although there are 
no data regarding how to intensify GVHD prophylaxis in 
patients who received moga, we could incorporate anti-
thymocyte globulin (ATG) to deplete effector T cells and 
induce Tregs. ATG was reported to deplete effector T cells 
but possibly expand Tregs (50-54). The dose of ATG that 
is practically used differs among centers/countries (55-57). 
A low dose of ATG (58-61) is usually used in Japan because 
previous reports showed that the incidence of acute GVHD 
is lower in the Japanese population than in the Caucasian 
population (62-64). However, in patients who received 
moga, it is expected that higher doses of ATG are needed, 
which should be determined in the future. Although post-
transplant cyclophosphamide (PT-Cy) might be an option 
as a potent GVHD prophylaxis, GVHD prophylaxis using 
PT-CY relies heavily on the expansion of Tregs (65,66) and 
seems ineffective in patients who received moga before allo-
HSCT in our experience (personal communication). 

Third, we can possibly use adoptive Treg therapy, 
although it is not usually available in clinical practice. 
Several studies showed promising results using adoptive 
Tregs (67-74). However, before adoptive Treg therapy is 
a cellular therapeutic agent, there are various hurdles to 
overcome (75). We need to identify and isolate Tregs, and 
expand them under good manufacturing practice for cellular 
product manufacturing.

In addition, it is important that some patients do not 
experience any immunological complications even after a 
short interval of moga use. This diversity might depend on 
some polymorphisms such as HLA and KIR, which should 
be further investigated.

On the other hand, moga might be incorporated as 
consolidation or salvage therapy “after” allogeneic HSCT. 
Ipilimumab, a checkpoint inhibitor, was reported to have 
some beneficial effects in relapses after allogeneic HSCT 
despite the risk of GVHD (76). Although there have not 

Figure 2 Importance of the interval between the administration 
of moga and allo-HSCT. (A) With a short interval between moga 
administration and allo-HSCT, the concentration of moga at allo-
HSCT might be high, which is sufficient to deplete donor-derived 
Tregs as well as recipient-derived Tregs; (B) with a long interval 
between moga administration and allo-HSCT, the concentration 
of moga at allo-HSCT might be low, which is no longer able 
to deplete donor-derived Tregs, although moga has depleted 
recipient-derived Tregs.
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been sufficient data about the feasibility and efficacy of 
posttransplant moga, moga might be safely administered 
as ipilimumab. In any case, however, we should carefully 
monitor the incidence of adverse events, as moga could 
induce GVHD and other alloreaction-related complications.

In summary, because moga might have beneficial effects 
in a significant proportion of patients, we need to conduct 
prospective studies to establish a way to inhibit severe/
steroid-refractory GVHD in patients who have received 
pretransplant moga. 

Conclusions

Moga has a therapeutic potential in patients with relapsed/
refractory ATL. To improve the clinical outcome of 
relapsed/refractory ATL, we need to develop a treatment 
strategy incorporating chemotherapy, moga, and allo-
HSCT. To optimize such a treatment strategy, more 
studies are needed to clarify the effects of moga on immune 
tolerance and tumor immunity.
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