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Leukemia patients who have not been cured by drug 
therapy alone require allogeneic hematopoietic stem cell 
transplantation (HSCT). Although the prognosis for 
leukemia patients who underwent allogeneic HSCT has 
greatly improved, relapse remains a major concern. In 
allogeneic HSCT, chemotherapy-resistant leukemia cells 
can be eliminated as a result of immunologic rejection of 
recipient leukemia cells by donor T cells, known as the 
graft-versus-leukemia (GVL) effect (1). Allogeneic HSCT is 
an immunotherapy that exploits the allo-immune response 
of donor immune cells against leukemia cells. Thus, 

enhancement of this response is the most straightforward 
strategy for preventing relapse after allo HSCT, as indicated 
by recent success of checkpoint antibody therapy for 
post-HSCT relapse (2). However, it is not easy to clearly 
separate the GVL effect from graft-versus-host disease 
(GVHD). For this purpose, cancer vaccination represents 
a promising strategy. In this review, we will summarize the 
results of clinical trials of cancer vaccines for hematological 
malignancies, mainly after allogeneic HSCT. We also 
discuss the advantages of the immunological milieu after 
allogeneic HSCT for immunotherapy and the future 
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prospects for this field.  

Vaccines for hematological malignancies

In several types of cancers, allogeneic tumor cells 
expressing granulocyte-macrophage colony-stimulating 
factor (GM-CSF) (GVAX) were tested as vaccine (3-5).  
For example, K562 cells expressing GM-CSF were used as 
vaccine for CML patients. In some patients, the abundance 
of CML cells decreased after immunotherapy, and this 
effect was associated with the induction of high-titer IgG 
antibodies against multiple leukemia-associated antigens 
(LAAs) (6). In another trial by Borrello et al., pre-auto 
HSCT patients were immunized with autologous leukemia 
cells mixed with GM-CSF-secreting K562 cells (7).  
A decrease in Wilms tumor 1 (WT1) transcripts in blood 
was noted in 69% of patients after immunotherapy, and 
was associated with longer 3-year relapse-free survival 
(61% in the immunized group vs .  0% in the non-
immunized group). For successful use of tumor cell 
vaccines, the usage of appropriate adjuvant is essential. 
Recently, Gibbins et al. reported that an intravenously 
administered vaccine consisting of irradiated leukemia 
cells loaded with the natural killer T (NKT)-cell agonist 
alpha-galactosylceramide (alpha-GalCer) was effective in a 
mouse leukemia model (8). 

Dendritic cell (DC)-based vaccines represent another 
effective strategy. For example, leukemic DCs generated 
from peripheral blood of CML patients were used as 
a vaccine and shown to elicit a tumor-reactive T cells 
response (9). DC fusions with leukemia cells or DCs loaded 
with tumor cell lysates also induced a potent tumor immune 
response (10). In addition, vaccination with WT1 mRNA-
electroporated DCs induces molecular remission in AML 
patients (11). 

Several kinds of peptide vaccines have been developed. 
For example, LAA-derived peptides (12) and DNA (13) have 
been used as vaccines in combination with adjuvants. BCR-
ABL for Philadelphia-chromosome–positive leukemia (14), 
and over-or aberrantly expressed LAAs such as proteinase 3 
(PR3) (15,16), WT1 (17,18), PRAME (19), have been tested 
as targets. Among these targets, WT1 is over-expressed in 
most types of acute and chronic leukemia, and is thus one 
of the most promising targets for immunotherapy against 
leukemia. We and other researchers demonstrated the safety 
and immunogenicity of WT1 peptide vaccine for patients 
with leukemia (20-24). Several groups have confirmed 
induction of immune responses by vaccination with WT1 

peptide in patients with AML (25-27). In these studies, not 
only immunological responses but also clinical responses 
(including stable disease and reduced expression of tumor 
markers) were observed in a substantial portion of evaluable 
patients. Regression of minimal residual disease in leukemia 
patients who received repeated vaccination with the WT1-
derived peptide has also been reported (28). Recently, 
Brayer et al. reported that WT1 peptide vaccine was well-
tolerated in leukemia patients, and that clinical benefits 
were observed in several patients (29).

Taken together, these findings indicate that tumor 
cell lysates, DCs, and peptide vaccines have the potential 
to induce T-cell responses. However, it remains unclear 
whether these vaccines can significantly benefit patients, and 
therefore they must be tested in randomized clinical trials. 
Soon, the results of several ongoing clinical trials using 
peptide vaccines will reveal the efficacy of this approach.

The post-allogeneic transplant period provides a 
unique platform for vaccination 

The immunological milieu after allogeneic HSCT is 
suitable for the use of cancer vaccines, as described below 
(Figure 1).

Tumor burden is minimal after allogeneic HSCT

The ratio between target and effector cells is important for 
immune-mediated cancer therapy. In many cases of advanced 
disease, the numbers of antigen-specific cytotoxic T cells 
(CTLs) elicited by immunotherapy may not be sufficient to 
compete with large numbers of tumor cells. Several clinical 
studies demonstrated that of cancer vaccines had significant 
potential to elicit T-cell response, but did not show clinical 
benefits. Thus, patients with minimal tumor burden might 
be appropriate targets for immunotherapy. Because high-
dose chemotherapy and/or total body irradiation before 
transplant, along with the GVL effect after transplant, 
minimize leukemia burden, the post-transplant period is 
suitable for immunotherapy.

Lymphopenia allows for rapid expansion of antigen-specific 
CTLs

The affinities of T-cell receptors (TCRs) to LAA-derived 
peptides are low because most LAAs are self antigens. The 
homeostatic expansion of T cells facilitates and enhances 
T-cell proliferation in response to low-affinity self-
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antigens (30). Severe lymphopenia induced after allogeneic 
HSCT lowers the activation threshold of antigen-specific 
T cells and promotes thymic-independent homeostatic 
T-cell proliferation (30-34). In the first few months after 
transplantation, the T-cell repertoire is oligoclonal, with 
skewing toward host (35), tumor, and viral antigens (34),  
although global immune functions remain severely 
impaired. Reconstitution of the T-cell compartment in 
lymphopenic hosts is regulated by peptides occupying MHC 
class I and II molecules at the time of T-cell recovery (36). 
Therefore, there may be an opportunity to skew the T-cell 
repertoire in a favorable direction by engaging the available 
MHC class I and class II molecules with peptides of specific 
interest. Thus, vaccination with LAA-peptides that can bind 
to MHC class I and class II molecules may induce specific 
expansion of LAA-reactive T cells. These considerations 
imply that the first few months after transplantation might 
be an appropriate period for vaccination with LAA-derived 
peptides to induce T-cell responses. In fact, in our clinical 
trial of WT1 peptide vaccine, efficient expansion of WT1-
specific CD8 CTLs was observed along with recovery of 
total CD8 T cells following administration of the WT1 
vaccine (Figure 2).

Donor-derived antigen-specific CTLs are not exhausted 

T ce l l s  i so la ted  f rom human tumors ,  a s  wel l  a s 

experimental tumor models, share many phenotypic and 
functional characteristics with those of exhausted T cells 
in cases of chronic infection. Tumor-infiltrating CD8 
T lymphocytes (TILs) are deficient in production of 
effector cytokines and express inhibitory receptors such 
as PD-1, LAG-3, 2B4, TIM-3, and CTLA-4. In addition, 
changes in signaling pathways similar to those observed 
in exhausted T cells in chronic infection models have 
been observed in TILs (37). Based on these findings, it 
is commonly assumed that T cells in progressive cancers 
are in an exhausted state due to a high tumor-antigen 
load and the immunosuppressive factors present in the 
tumor microenvironment (38). By contrast, donor-derived 
LAA-specific T cells in allogeneic HSCT have not been 
extensively exposed to LAAs, and consequently are less 
likely to be exhausted.

Inflammatory conditions are induced by allogeneic reactions

The GVL effect in syngeneic HSCT is not as strong as 
that in allogeneic HSCT, suggesting that LAAs alone 
are not sufficient to induce GVL after allogeneic HSCT. 
In allogeneic HSCT, inflammatory conditions caused 
by the GVL and GVHD responses against alloantigens 
may activate antigen-presenting cells and facilitate T-cell 
response to LAAs. Such inflammatory conditions are 
advantageous for vaccination therapies.

Figure 1 The post-allogeneic HSCT period provides a unique platform for vaccination. Boxes describe the favorable conditions for CTL 
expansion/activation arising after allogeneic HSCT. CTL, cytotoxic T cell; LAA, leukemia-associated antigen; HSCT, hematopoietic stem 
cell transplantation.
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Unbalanced recovery of regulatory and effector T cells

The balance between the recovery of CD4 regulatory T 
cells and effector T cells is important for the development 
and maintenance of immune tolerance after allogeneic 
HSCT. Recently, Alho et al. (39) reported reduced recovery 
of Treg cells after allogeneic HSCT. Specifically, they 
analyzed 107 adult patients who received allogeneic HSCT 
after reduced-intensity conditioning. CD8 T cells recovered 
more rapidly than either CD4 Tregs or conventional CD4 
T cells. Moreover, T-cell proliferation was skewed in favor 
of conventional CD4T and CD8 T cells, especially 6 to 
12 months after HSCT. These results also suggest that the 
time period after allogeneic HSCT is advantageous for 
cancer vaccines.

Cancer vaccination after allogeneic HSCT

In patients with acute and chronic leukemia after allogeneic 
HSCT, there is an inverse relationship between the number 
of circulating T cells directed against LAAs and that of 
residual leukemia cells (40-42). This observation suggests 
that GVL effects might be further enhanced by vaccination 

targeting LAAs (43). However, only a few clinical trials of 
vaccination have been conducted in the patients who had 
undergone HSCT, and at least to our knowledge, all of 
these trials were pilot or phase I studies. In addition, the 
vaccination strategies in these trials were variable, with 
tumor cells, DCs, or peptides used as vaccines.

Tumor cell vaccine

A recipient-derived tumor cell vaccine was used in leukemia 
patients, including some who had undergone allogeneic 
HSCT (44). Ten patients with high-risk acute myeloid (n=4) 
or lymphoblastic (n=6) leukemia in cytological remission 
[after allogeneic HSCT (n=9) or chemotherapy alone 
(n=1)] were enrolled in this study. The vaccine consisted of 
leukemic blasts mixed with skin fibroblasts transduced with 
adenoviral vectors expressing human IL-2 and hCD40L. 
Immunization produced a 10- to 890-fold increase in the 
frequencies of major histocompatibility complex (MHC)-
restricted T cells reactive against recipient-derived blasts. 
Eight patients remained disease-free for 27–62 months 
after treatment. In another study, high-risk acute myeloid 
leukemia or myelodysplasia patients were immunized with 

Figure 2 LAA-targeting vaccination and homeostatic T cell expansion after HSCT may work synergistically and induce extensive expansion 
of LAA-specific CTLs. A representative AML patient who was vaccinated with WT1-derived peptide after allogeneic HSCT is shown. 
Graphs show the percentages of CD8+ T cells in peripheral blood (PB) and WT1-specific CTLs among CD8+ T cells. Because the patient 
had active disease before HSCT, tacrolimus was rapidly tapered off. WT1 peptide vaccine administration was started on day 75 after HSCT. 
Along with an increase of CD8+ T cells, WT1-specific CTLs expanded extensively. LAA, leukemia-associated antigen; HSCT, hematopoietic 
stem cell transplantation; CTL, cytotoxic T cell.
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irradiated, autologous, GM-CSF-secreting tumor cells soon 
after allogeneic non-myeloablative HSCT (45). Although 
the frequencies of acute and chronic GVHD did not 
increase, 9 of the 10 subjects who completed the vaccination 
schedule attained long-lasting complete remissions during a 
median follow-up of 26 months. Burkhardt et al. performed 
a prospective clinical trial to evaluate whether vaccination 
with whole leukemia cells soon after transplantation 
facilitates the expansion of leukemia-reactive T cells, 
thereby enhancing antitumor immunity (46). This vaccine 
consisted of irradiated autologous tumor cells mixed with 
GM-CSF-secreting bystander cells. Eighteen patients 
with advanced chronic lymphocytic leukemia (CLL) 
received the vaccine, starting between 30 and 45 days after 
transplantation. The estimated 2-year progression-free and 
overall survival rates of vaccinated subjects were 82% and 
88%, respectively. CD8+ T cells from vaccinated patients 
consistently reacted against autologous tumor, but not 
allogeneic antigen-bearing recipient cells. All of these trials 
using tumor cell vaccines showed promising results, and at 
a minimum demonstrated the safety of this approach. The 
benefit to patient survival will have to be further evaluated 
in randomized studies. Unfortunately, the procedures for 
generating tumor cell vaccines are complex and difficult to 
standardize.

DC vaccine

A pilot study of vaccination with DCs pulsed with idiotype 
(Id)-derived peptide was performed in multiple myeloma 
(MM) patients after allogeneic HSCT (47). Following 
reduced intensity conditioning allogeneic HSCT and failure 
of rescue therapy with donor lymphocyte infusion (DLI) or 
chemotherapy, four patients underwent vaccination with Id-
derived peptide- and keyhole limpet hemocyanin (KLH)-
pulsed donor-derived DCs after disease relapse/progression. 
An Id-KLH-specific T-cell response was detected in vitro. 
Two patients exhibited a transient response. However, three 
patients, including one responder ultimately suffered disease 
progression. In addition, DC vaccination of an AML patient 
after allogeneic HSCT was reported (48). The AML patient 
underwent vaccination with WT1 peptide- and KLH-
pulsed donor-derived DCs to treat relapse after allogeneic 
HSCT. In this patient, leukemia gradually progressed 
despite vaccination, and immune responses to the naive 
antigen KLH, but not to WT1, were detected. These 
studies proved the safety of DC vaccination after allogeneic 
HSCT; however, the clinical benefits were limited for 
patients with advanced disease. The ability of DC vaccines 
to prevent relapse in patients with disease remission after 
HSCT needs to be tested in future studies.

Figure 3 Comparison of alloantigen-specific and WT1-specific T cells as effector cells of the GVL effect. CTL, cytotoxic T cell; GVL, 
graft-versus-leukemia; GVH, graft-versus-host.

Allo Ag-specific CTL WT1-specific CTL

HLA class I

WT1 peptide
Leukemia cells

Any cells

GVL ≈GVH

GVL >>>>>>GVH

WT1 protein

CD8



Stem Cell Investigation, 2016

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2016;3:90sci.amegroups.com

Page 6 of 10

Peptide vaccine 

Several reports suggested that T-cell response to LAAs such 
as PR3 or WT1 is correlated with reduction of leukemia 
burden (41,49). Thus, the GVL effect may be boosted using 
peptide vaccines that target LAAs. Especially in the post–
allotransplant setting, WT1-specific CTLs are excellent 
effector cells of GVL because WT1 expression in normal 
tissues is very limited. In other words, we can separate 
the effects of GVL from those of GVHD by using WT1-
specific CTLs as effector cells (Figure 3). Hashii et al. 
reported the results of WT1-derived peptide vaccination for 
three pediatric leukemia patients with high risk for relapse 
after allogeneic HSCT (50). These patients underwent 
weekly injections of HLA-A*2402-restricted, 9-mer-
modified WT1 peptide (a.a. 235–243, CYTWNQML) 
emulsified in Montanide ISA 51 adjuvant. Vaccinations were 
started between 41 and 173 days post-SCT. Reduced WT1 
mRNA levels in BM and elevated numbers of WT1-specific 
CTLs were observed in all three cases. Two of three cases 
have remained in CR 33.5 and 40.3 months after HSCT. 
In one case, disease recurred on day 201 after the start of 
vaccination, and the frequencies of WT1-specific CTLs in 
peripheral blood CD8+ T cells increased to 0.85%. In that 
case, HLA expression on leukemic cells was lost, implying 
immunological escape of the leukemic cells. Our group 
reported the results of a phase I study of WT1 peptide 
vaccination in adult hematological malignancy patients 
with recurrent disease or high risk factors for relapse after 
HSCT (51). The study design was almost identical to that 
of Hashii et al. Of the nine patients enrolled, three were in 
complete remission (CR), two were in molecular relapse, 
and the remaining four were suffering from hematological 
relapse. We confirmed that an antigen-specific CTL 
response could be elicited even in patients who were 
given immunosuppressive drugs such as tacrolimus or 
prednisolone. Three patients in molecular CR remained in 
CR for 2 years, whereas disease gradually progressed in the 
patients with hematologically relapsed disease. Two patients 
with molecular residual disease achieved CR after the start 
of vaccination.

These reports show that (I) tumor cell vaccines, DC 
vaccines, and peptide vaccines can induce antigen-specific 
T cell response in post allogeneic HSCT patients, even 
in patients who are given immunosuppressive drugs; (II) 
the results of trials using tumor cell vaccine and peptide 
vaccine are promising; and (III) it may be better to test the 
effect of vaccination on the prevention of relapse rather 

than the treatment of hematological relapse that has already 
occurred. To evaluate whether vaccination prevents disease 
relapse and benefits patients, well-controlled randomized 
trials should be conducted.

Future directions

Vaccination therapy has the potential to enhance the GVL 
effect, and thus represents a promising tool for preventing 
relapse after allogeneic HSCT. To develop more effective 
vaccination therapies, several trials are being conducted to 
improve the effect of vaccination after allogeneic HSCT.

Combination with DLI

DLI is widely used as a treatment for relapse after 
allogeneic HSCT (52). Because the effectors of DLI 
include LAAs-specific CTLs, it is reasonable to expand 
this population by vaccination after DLI. In addition, 
Bachireddy et al. recently reported an interesting effect of 
DLI (53). They analyzed the characteristics of cells from 
29 patients categorized according to their response to DLI, 
and found that gene expression profiles before DLI showed 
evidence of “exhaustion” in T cells specifically in the 
marrow of responders; specifically, the response after DLI 
was associated with down-regulation of the pertinent genes. 
These results suggest that infused donor CD4 T cells might 
eliminate recipient leukemia cells by reversing exhaustion 
in donor CD8 T cells that had previously infiltrated the 
marrow.

Activation of CD4 helper T cells

CD4 T helpers are not required for the primary expansion 
and differentiation of CD8 T cytotoxic effectors, but they 
are necessary for the secondary expansion of these effectors. 
The importance of CD4 helper T cells in tumor immunity 
has been highlighted by several authors. Tran et al.  
recently reported convincing evidence from a clinical 
study showing that CD4 helper T cells play essential roles 
in tumor immunity (54). In particular, they showed that 
tumor-infiltrating lymphocytes (TILs) from a patient with 
metastatic cholangiocarcinoma contained CD4+ T cells that 
recognized a mutation in Erbb2-interacting protein, and 
that adoptively transferred mutation-reactive CD4 T cells 
induced tumor regression. To activate WT1-specific CD4 T 
cells along with CD8 CTLs, a polyvalent vaccine consisting 
of longer synthetic peptides was developed to induce 
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stronger WT1-specific CD8+ and CD4+T-cell responses 
across several HLA types, as well as support long-lasting 
immunity (27). Our group also developed a strategy for 
enhancing WT1-specific CD4 T cell response (55,56). The 
clinical benefits of CD4-directed vaccine after allogeneic 
HSCT have not been evaluated, and should be tested in the 
near future. Meanwhile, the influence of CD4 activation on 
GVHD should be assessed very carefully.

Combination with immune checkpoint antibody

Exhaustion of CTLs in advanced disease has been reported 
in leukemia models. However, the recent success of 
checkpoint antibodies clearly demonstrates that exhausted 
status of CTLs is reversible. Therefore, it would be 
reasonable to investigate the synergistic effect of vaccination 
and checkpoint antibodies. Cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) is a key negative regulator of 
T cell activation and proliferation. Bashey et al. conducted a 
phase I clinical trial of ipilimumab, an antagonist for CTLA-
4, in patients with relapsed malignancy following allogeneic 
HSCT (57,58). In that study, only a single infusion was 
administered to patients, primarily to measure the effect of 
ipilimumab on the sizes of T-cell subpopulations. A more 
recent study reported strong efficacy of anti-CTLA4 mAb 
therapy for disease relapse after allogeneic HSCT (2). In 
that trial, patients with relapsed hematologic cancer after 
allogeneic HSCT received an infusion of ipilimumab. 
Among 22 patients who received a dose of 10 mg/kg, 5 
(23%) had a complete response and two (9%) had a partial 
response. Furthermore, four of the responding patients had 
a durable response lasting more than 1 year. Responders 
exhibited infiltration of cytotoxic CD8+ T cells and decreased 
activation of regulatory T cells. Immune-related adverse 
events, including one death, were observed in 6 patients 
(21%), and severe GVHD in 4 (14%). Vaccination is 
expected to have a synergistic effect with other checkpoint 
antibodies, including anti-programmed cell death 1 (PD1) 
or PDL1 mAbs; however, the influence of these antibodies 
on GVHD should be assessed very carefully.

Conclusions

To prevent relapse after HSCT, cancer vaccines targeting 
LAAs such as WT1 is a promising strategy. Randomized 
clinical trials will reveal the efficacy of this approach in the 
near future. It is also important to consider the combination 
of cancer vaccine with checkpoint antibodies.
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