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Introduction

Hematological malignancies are a group of malignant 
diseases originating from blood, bone marrow cells or 
lymph, including leukemia [myeloid originated: chronic 
myeloid leukemia (CML), acute myeloid leukemia (AML); 
lymphoid originated: chronic lymphoblastic leukemia 
(CLL) and acute lymphoblastic leukemia (ALL)], plasma 
multiple myeloma (MM) (plasma cell originated) and 

lymphoma [non-Hodgkin lymphoma (NHL) and Hodgkin 
lymphoma (HL)] (1). Depending on the type of leukemia 
and the age of the patient at diagnosis, the prognosis of 
leukemia patients differs significantly. However, in general, 
leukemia is the 5th and 6th most common cancer death in 
men and women, respectively (Facts and Statistics 2015, 
Leukemia and Lymphoma Society). AML remains one 
of the worst clinically devastating diseases. The 5-year 
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overall survival rate is about 20% in adult AML patients 
(2,3). These poor outcomes highlight the unmet need for a 
better understanding of leukemogensis and novel, targeted 
therapies to replace chemotherapy, which has not been 
changed for more than four decades (4-7). 

Leukemia stem cell (LSC) was described as source of 
origin and progression of AML in more than 10 years  
ago (8). Accumulating evidence supports the fact that these 
LSC populations acquire self-renewal function and sustain 
the disease (9,10). They are rare, but functionally and 
phenotypically different form bulk of blast cells (11,12). 
AML LSCs are generally insensitive to the conventional 
chemotherapy, instead, they are more enriched after 
chemotherapy (13,14). Physically, LSC populations reside 
in the bone marrow microenvironment and are poised to 
propagate, leading to the therapy failure and disease relapse 
(15-18). Taken together, these discoveries indicate that the 
LSC is the culprit for the dismal prognosis of AML and 
selectively targeting LSC could be a promising strategy for 
AML treatment (19-23). 

The advent of next generation sequencing (NGS) 
technologies has revolutionized the field of genomics, 
enabling us to gain a deep and broad understanding of 
human diseases on a whole genome level, including cancers 
(24-26). Recent studies using NGS platform have revealed 
substantially frequency of recurrent somatic points and 
copy number changes in genes associated with spliceosome 
in leukemias and myelodysplastic syndromes (MDS), which 
are chronic myeloid neoplasms, often progressing to AML  
(27-30). This review will first describe the complex and 
general function of RNA spliceosome. We will outline 
various mis-spliced mRNA in AML and their clinical 
significance, followed by summary of mutations in 
spliceosome and related factors, particularly its role in 
AML LSC. Finally, we will discuss the promises and 
challenges in an attempt to exploit spliceosomal machinery 
therapeutically. 

The spliceosomal machinery and RNA splicing 
regulation

In mammalian cells, genes are transcribed as messenger 
RNA precursors (pre-mRNAs), containing introns, 
which are intervening sequences, noncoding regions (31). 
RNA splicing, the process from nuclear pre-mRNA into 
mature mRNA where introns are excised and the exons 
(coding regions) are joined together is mediated by a large 
complex, called spliceosome or spliceosomal machinery 

(32,33). In human genome, 60% of the mature mRNAs 
are spliced by alternative splicing in which pre-mRNAs 
can be spliced in more than one way (34,35). Alternative 
splicing tremendously increases the diversity of human 
transcriptome, resulting in translation of more complex 
proteome in human. Alternative splicing also acts as a form 
of gene regulation because dominant negative protein 
translated from alternative spliced mRNA can inhibit 
its wild type protein. Thus, RNA splicing ultimately 
influences assorted cellular functions, tissue specificity, and 
developmental states of human. 

The spliceosome is a large molecular machinery, 
consisting of five small nuclear ribonucleoproteins (snRNPs) 
(RNA-protein complex), U1, U2, U4, U5 and U6, as well 
as about 200 associated protein factors, such as serine and 
arginine-rich proteins (SR proteins) and heterogeneous 
nuclear ribonucleoprotein (hnRNP) family (36,37). The 
boundaries between introns and exons of the pre-mRNAs 
are distinguished by specific nucleotide sequences. The 5' 
splice site at the 5' (left) end of the intron includes almost 
an invariant sequence GU, while the splice acceptor site 
at the 3' splice site (right) end of the intron includes an 
consensus sequence AG (GU-AG rule) (38). In general, 
the RNA splicing process involves three steps, recognizing 
the appropriate splice sites, bringing those sites together, 
and catalyzing the splicing reactions. U1 snRNP initiates 
splicing by recognizing the 5' splice site and binding it 
through an RNA-RNA base pairing reaction (canonical 
Watson-Crick or wobble base pairs), resulting in the 
assembly of the commitment (E) complex. U1 snRNP 
plays an important role in the binding of U2 snRNP to the 
branch point region of the intron. Subunit of U2 snRNP, 
U2 auxiliary factors (U2AFs) bind to polypyrimidine 
tract region and the other to the intron’s 3' splice site-AG 
dinucleotide. The association of both of the U1 snRNP and 
U2 snRNP assembles the pre-spliceosome (complex A). 
U4, U5 and U6 form the tri-snRNP complex. When pre-
spliceosome recruits this tri-snRNP complex, it converts 
the A complex into B complex, which comprises all the 
necessary splicing components and poises to catalyze. 
The B complex passes through a series of RNA-RNA 
rearrangements and transform into C complex, in which U2 
and U6 are brought together to create the catalytic active 
site. In human, 99% of the introns is cleaved by this way 
(major spliceosome). An alternative splicing pathway uses 
the minor spliceosome which contains U12 and another 
set of snRNPs in a similar fashion. For the purpose of 
this review, here we only briefly outline the spliceosome 
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formation and splicing process. We recommend a number 
of comprehensive and elegant reviews for a detailed 
coverage of this topic (39-42). 

Abnormally spliced (AS) mRNAs in AML

Before the advent of NGS technology, abnormal RNA 
splicing of certain oncogenes, tumor suppressor gene and 
epigenetic regulators had been noticed in AML, although in 
an unsystematic fashion. Here we have concisely summary 
some of these main findings. 

Myc gene belongs to Myc family of transcription factors, 
which comprises C-Myc, N-Myc and L-Myc genes. Myc 
gene is a prominent oncogene and has been implicated 
in transformation of many types of cancers, including  
leukemia (43). A unique pattern of L-Myc mRNA 
processing with 40% of them lacking exon III and intron 
I has been revealed in AML (44). Importantly, L-Myc 
expression is very low in adult bone marrow and in fetal 
spleen and thymus. However, whether this splicing variant 
functionally contributes to leukemogenicity has not 
been defined. In contrast, two isoforms of Kit transcripts 
created through the alternate use of 5' splice donor sites 
(alternative splicing) are detected in AML (45), but further 
analysis showed no apparent association with pathology of 
AML, indicating naturally occurring changes in splicing 
mechanisms as stem cells differentiate (46). An alternatively 
spliced IL-6R mRNA, encoding soluble IL-6R (sIL-6R) 
expressed in 64% of the primary blast cells of AML patients 
and all AML cell lines tested, supporting the notion of 
alternative splicing as a mechanism of sIL-6R production in 
AML (47). 

PTPN6 is a 68 kDa SH2 domain-containing tyrosine 
phosphatase. PTPN6 regulates hematopoietic cell 
development, proliferation and receptor-mediated 
mitogenic signaling pathways (48). A novel PTPN6 
mRNA species, derived from aberrant splicing within 
the N-SH2 domain leading to retention of intron 3 
has been discovered in CD34(+)/CD117(+) blasts from 
AML patients (49). The level of the aberrant intron-
retaining splice variant, is lower in CD117(+)-AML bone 
marrow mononuclear cells at remission than at diagnosis, 
suggesting the involvement of post-transcriptional PTPN6 
processing in leukemogenesis (49).

Survivin is a member of the inhibitors of apoptosis 
protein family, playing important roles in cell proliferation 
and survival (50). Survivin is highly expressed in CD34+/
CD38− leukemia progenitor cells and associated poor 

prognosis and drug resistance in AML patients (51-54). In 
addition, surviving has been shown to selectively modulate 
genes the epidermal growth factor receptor signaling 
pathway in AML LSCs (55). It has been long recognized that 
alternative splicing of its pre-mRNA generates four different 
mRNAs: survivin, survivin-2B, survivin-ΔEx3 and survivin-
3B (56,57). In AML cells, survivin is the predominant 
transcript variant,  whereas significantly survivin-
2B and survivin-DeltaEx3 express at lower level (58).  
Expression patterns of survivin variants are associated with 
clinical outcome. For example, expression of survivin-3B 
is detected in AML cell lines and may associate with G2/
M phase of cell cycle (59). Low expression of survivin-2B 
correlated with a better overall survival and event-free-
survival, whereas high survivin-DeltaEx3 expression was 
associated with a shorter overall survival (58). However, 
these splice variants don’t correlate with FAB subtypes, 
immunophenotype or cytogenetic risk groups (58). These 
studies support the conclusion that certain survivin splice 
variants have prognostic values and could be implicated in 
the leukemogensis of AML. 

Hoxa9 belongs to a family of homeodomain containing 
transcription factors (60). Hox family regulates genes which 
control the anterior-posterior body plan and assign tissue 
fate in human (61). Dysregulation of Hoxa9 has been found 
in more than 50% of AML patients and highly predicts 
worse survival (62). Research data indicate splicing play 
a central role in Hox gene mediated leukemogenesis as a 
full-length Hoxa9 engineered to prevent natural splicing 
significantly reduced in vivo leukemogenicity (62). 

Oncogene Wilms’ tumor gene 1 (WT1) is a zinc-
finger motif containing transcription factor with a proline/
glutamine-rich DNA-binding domain. WT1 has been a 
target for immunotherapy and biomarker commonly used 
in monitoring of minimal residual disease (MRD) in AML 
patients. A large assortment of isoforms of WT1 transcripts 
as many as 36 has been identified. Among them, +5/+KTS 
are the predominant variants at diagnoses, but their ratio 
vary between diagnoses (63-66). Increased ratio of the 
+5/−KTS is associated with aggressive and/or resistant 
characteristics in FAB subtype M3 and secondary AML 
(sAML) (63). Together, these data suggest the ratio of 
certain WT1 isoforms might be crucial for transformation 
of AML or relapse (66). 

The FMS-like tyrosine kinase 3 (FLT3) is a class III 
RTK family, sharing structural similarity with platelet-
derived growth factors (PDGFRs), the colony-stimulating 
factor 1 receptor (CSF1-R) and steel factor receptor (KIT) 
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(67,68). FLT3 mutations are identified in about one-third 
of adult (AML) (69,70). FLT3 mutations induce constitutive 
activation of phosphoinositide 3-kinase (PI3K)-AKT, RAS-
MEK-mitogen-activated protein kinase (MAPK), and signal 
transducers and activators of transcription (STAT) five 
pathways, leading uncontrolled cell proliferation, blockage of 
differentiation and cell survival (52). Thus, FLT3 mutations 
play a central role in leukemogenesis (71-73). Surprisingly, 
FLT3, together with NOTCH2 has been identified as 
the most commonly mis-spliced genes in more than 70% 
of AML patients (74). The splice variants of NOTCH2 
and FLT3 are produced through complete or partial exon 
skipping and utilization of cryptic splice sites (75). NOTCH2 
and FLT3 aberrant splicing is observed in more than 70% 
of AML cases at diagnosis and their expressions decrease 
at remission. NOTCH-2Va and FLT3-Va transcripts are 
detected in a significant number of AML patients and high 
level of NOTCH-2Va predicts worse outcome independent 
of other known clinical indicators (75). 

Taken together,  accumulating evidence clearly 
demonstrate that mis-splicing of certain genes is a common 
characteristic of AML and some of these mis-spliced 
mRNAs could translate into proteins with altered function 
which contribute to leukemogenesis (Table 1). Notably, 
there is great interest in identification of splice variants 
of these genes as disease markers for both diagnosis and 
stratification and targets for novel therapeutics of leukemia 
patients.

Aberrant RNA splicing and drug resistance in AML

Although initial response to chemotherapy, most of AML 

patients will develop resistance (76). The appearance of 
resistance poises a major therapeutic challenge in the 
treatment of AML and is the primer cause of mortality (77).  
The phenomenon when an untreated patient does not 
respond to chemotherapy is termed as primary resistance 
or intrinsic resistance. Secondary resistance (or acquired 
resistance) is almost unavoidable when chemotherapy 
is used for a long period. Alternative RNA splicing also 
contributes to drug resistance in AML. Cytarabine 
(Ara-C) is one of the core drugs in the combination 
chemotherapy against AML (78). Low expression or activity 
of deoxycytidine kinase (dCK) is responsible for the in 
vitro cellular resistance to Ara-C in AML cells. Only wild-
type mRNA of dCK is amplified from healthy control 
samples, while splicing variants translating inactive dCK 
protein resulting from exon skipping are detected in 7 out 
of 12 purified AML specimen from resistant patients (79). 
Further work indicates that the alternatively spliced dCK 
forms render the AML cells to evade to Ara-C attack when 
there is no wide type dCK (80). On the other side of the 
coin, exon-array analysis has been performed in isogenic 
sensitive and (secondary) resistant AML cell lines to Ara-C, 
doxorubicin (Dox) and hypomethylating agent, azacitidine 
(Aza) and produced novel insight of alternative exon 
usages (AEUs) globally (81). Significant alternations were 
identified in near 1,000 AEU events in a few thousand genes 
on average between these sensitive and resistant cell lines. 
GO analysis uncovers five common functional pathways 
that are shared with resistance to Ara-C, Dox or Aza, 
including T cell receptor signaling pathway, focal adhesion, 
axon guidance, regulation of actin cytoskeleton, and ECM-
receptor interaction. Taken together, aberrant RNA splicing 

Table 1 Abnormally spliced (AS) mRNAs in AML: prognostic biomarkers and therapeutic targets 

Gene Clinical implications of AS forms References

Myc 40% of L-myc mRNA lacks exon III and intron I in AML (44)

Kit Two isoforms Kit and KitA are associated with obvious biological and clinical features of AML (45,46)

IL-6R Alternative splicing produces soluble IL-6R, which stimulates growth of AML cells (47)

PTPN6 Intron-retaining PTPN6 mRNA is high at diagnosis and low at remission samples of AML (49)

Survivin Low survivin-2B correlates with a better survival, whereas high survivin-DeltaEx3 predicts poor survival (51,54,58)

Hoxa9 A full-length Hoxa9 engineered to prevent natural splicing significantly reduces leukemogenicity (62)

WT1 +5/+KTS are the predominant variants. Increased ratio of the +5/−KTS is associated with 

aggressiveness, drug resistant and relapse

(63-66)

FLT3 FLT3-Va expresses 50% of AML cases. Its expression decreases at remission and increases at relapse (74,75)

NOTCH2 High NOTCH2-Va expression is an independent prognostic factor for worse survival (74,75)

AML, acute myeloid leukemia.
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could act as both cause and consequence of drug resistance 
in AML, suggesting that targeting RNA splicing process 
might be a novel approach to overcome resistance in anti-
AML therapy (82). 

Aberrant RNA splicing and genetic alternations 
of spliceosome or splicing factors in AML

NGS analysis of MDS in 2011 unexpectedly discovered 
recurrent somatic mutation of splicing factor 3b subunit 1 
(SF3B1) in 20% of cases (27,83). SF3B1 is a component of 
the U2 snRNP complex and binds pre-mRNA upstream 
of the intron’s branch site (39). Following this initial 
finding, a number of studies aiming to categorize genetic 
alternations in spliceosome and related factors in AML have 
been performed. Although the frequencies of mutations in 
genes involving splicing process is relatively low in AML as 
compared to MDS, these abnormalities influence the overall 
survival rate and contribute to pathogenesis of AML. One 
recent study collecting more than 1,500 samples provided an 
unrivalled understanding of how different driver mutations 
cooperate and lead to AML (84). In this elegant study, a 
new molecular subgroup of AML with mutations in genes 
encoding chromatin, RNA-splicing regulators, or both is 
defined and occurs in 18% of patients. The common mutated 
splicing modulators encompass SRSF2, SF3B1, U2AF1 and 
ZRSR2. SRSF2 is a member of the serine (S) and arginine 
(R) rich family of pre-mRNA splicing factors, consisting of 
an RNA recognition motif (RRM) and an RS domain (84). 
SRSF2 protein regulates diverse RNA-related processes, 
enhancing the U1 snRNP complex binding to the 5' splice 
site of pre-mRNA, U2 snRNP binding at the branch point, 
and mRNA stabilization. Clinically, AML patients carrying 
spliceosome-chromatin mutations has poor prognosis. 
Furthermore, co-occurrence of TP53 mutations in this group 
of patients makes their prognosis even worse. In practice, 
these patients should be the candidates for clinical trials of 
investigational agents or bone marrow transplant (BMT) (84).  
Recurrent somatic mutations in U2AF1 (also known as 
U2AF35) have been identified in 3–4% of AML cases. There 
were 369 splicing alterations significantly associated with 
U2AF1 mutation (84).

DEAD-box polypeptide 41 (DDX41) (also known as 
ABS) is an evolutionarily conserved germ cell marker in a 
wide range of animals. DDX41 belongs to an RNA helicase 
family, characterized by the conserved motif Asp-Glu-Ala-
Asp (DEAD) (85). DDX4 plays an important role in RNA 
spliceosome assembly, and many other processes including 

translation initiation, pre-ribosomal RNA processing, 
small RNA biogenesis and chromosome condensation (85).  
DDX41 mutations have been identified in about 3% in 
inherited hematologic malignancies (HM) (86). MDS and 
AML are the most common malignancies with lower-
age onset (87). Defection of DDX41 sizably impair  
pre-mRNA splicing on the evidence of more avid exon 
skipping and more exon retention in 61 and 95 genes, 
respectively, observed in mutant cases than controls (87). 
Recently, resurgence of AML in donor cells in a patient 
after allogeneic BMT in a family with a germline DDX41 
mutation (88). Taken together, these studies strongly 
support DDX41 as a tumor suppressor gene and defective 
DDX41 contributes to AML development. 

PRE-mRNA processing factor 8 (PRPF8) shares high 
identity (61%) in amino acid sequences from yeast to 
human and plays a central position in the catalytic core of 
the spliceosome (89). Keightley and colleagues first reported 
that mutant PRPF8 carrying an early premature STOP 
codon instigate aberrantly spliced transcripts retaining 
both U2- and U12-type introns in zebrafish model (90). 
These authors also observed that myeloid differentiation 
was impaired within early haematopoiesis (90). It is worthy 
of pointing out that blocked differentiation of myeloid 
cells is one of the characteristic feature of AML. Combing 
these evidences, we could imply that PRPF8 is required for 
haematopoietic development and defective PRPF8 could 
be conducive to myeloid malignancies. Indeed, Kurtovic-
Kozaric and coworkers identified either recurrent somatic 
PRPF8 mutations or hemizygous deletions in 3.3% (15 
out of 447 cases) and 5.3% (24 out of 450 cases) of myeloid 
neoplasms, respectively (91). Notably, 50% of PRPF8 
mutant and deletion of chromosome 17p cases were found 
in AML. Survival analysis confirmed that PRPF8 was 
associated with poor prognosis (91). 

Splicing factor proline and glutamine rich (SFPQ) is 
one of the three member Drosophila behavior/human 
splicing (DBHS) family in human (92). The DBHS family 
shares highly conserved tandem N-terminal RRMs, a 
NonA/paraspeckle domain (NOPS) and a C-terminal  
coiled-coil (93). SFPQ binds wide range of nucleic acids and 
can be found in the pre-assembled spliceosome complex. 
However, SFPQ is not an essential member of spliceosome, 
but rather act as a molecular scaffold and involve co-
translational and alternative splicing (93). Mutations in 
SFPQ and in the nonclassic regulators of mRNA processing 
CTCF and RAD21 have been discovered in 10% of AML 
patients in a mutually exclusive manner (94). However, the 
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clinical importance of this mutation has not been confirmed. 
In addition to mutations occurring the spliceosome and 

related factors, the expression levels of some splicing factor 
SR protein family are also downregulated in AML samples 
relative to healthy controls (95). Moreover, abnormal 
caspase-8 pre-mRNA splicing is observed only in AML 
patients, has significant correlation with several splicing 
factors (95). These data imply that aberrant expression of 
splicing factors may potentially rewire apoptosis pathway in 
AML.

Distinct deregulation of RNA splicing in sAML 
and LSC 

sAML or therapy-related AML refers to this disease arises 
from patients who previously received chemotherapy and/
or radiation therapy (96). These patients often have featured 
genetic changes, including complex karyotype, chromosome 
11q abnormalities (MLL gene arrangements), and monosomy 
of chromosome 5 or 7, p53 mutations (97). Clinically, 
patients with sAML often are resistant to chemotherapy 
and have extremely dismal outcome with average survival of  
7 months in 40% of patients (97).  Thus, a better 
apprehension of the molecular pathology of sAML and 
finding novel treatment option are the areas of unmet need. 

A recent study by Crews et al. sparks substantial 
excitement surrounding the pivotal role of spliceosome in 
sAML and the therapeutic potential of targeting LSCs in this 
subtype of AML often unresponsive to current therapy (98).  
In this report, whole-transcriptome sequencing was 
performed from purified progenitors isolated from sAML, 
de novo AML and MDS patients. Although mutation 
in U2 splicing factor SF3B1 was only identified in one 
sAML sample, increased expression of wild-type SF3B1 
was confirmed in a subset of sAML LSCs (98). A splice 
isoform signature of sAML LSCs was created, which 
was represented by several alternatively spliced signal 
transduction and cell adhesion gene products. Pro-
survival long isoforms of BCL2 family was elevated in 
sAML compared to young and aged normal hematopoietic 
progenitor cells (HPCs), indicating existence of pro-survival 
splice isoform switching in LSC transformation (98). Over 
the past 10 years, a list of natural products, including FD-
895, pladienolide B, herboxidiene, and spliceostatin A, 
have been identified as spliceosome modulators (99). They 
have been shown to have anti-cancer effect in vitro and in 
vivo models. However, these compounds demonstrate poor 
metabolic stability and short half-lives in vivo, excluding 

them from entering clinical evaluation (99,100). 17S-FD-
895, an analog of FD-895, was synthesized through the 
combination of total synthesis and synthetic methods, 
demonstrating improved stability and on-target effect (101).  
This new spliceosome targeting compound was evaluated 
in different sAML models and showed potent efficacy 
in inhibition of AML LSC and disruption of AML 
maintenance in vitro and in mouse xenograft models (98). 
Importantly, 17S-FD-895 minimal impacted normal BM 
HSPCs. To validate its on-target effect, comparative RNA-
seq analysis revealed that the splice isoform signature 
of sAML LSCs has been reversed to a normal BM 
transcriptome profile in treated mice (11). In sum, these 
evidence underscore that eradication of LSC by targeting 
spliceosome could represent a novel therapeutic strategy for 
sAML and further support the development of 17S-FD-895 
in clinic. 

Outlook

With the aid of rapid progress in NGS technology 
and bioinformatics, novel recurrent mutations and 
expression level changes in the spliceosome and splicing 
regulating factors have been uncovered. A flurry of studies 
characterizing spliceosomal abnormalities in various 
hematological malignancies and solid tumors have been 
published since 2011. Also, the promise of the spliceosome 
as novel anticancer target has drawn substantial funding 
and focus from both academic and pharma-industrial. We 
would anticipate a line of such novel therapeutic agents 
will be tested in clinical trials in near future. However, 
cautions must be highlighted as we still don’t understand 
well how these aberrant RNA splicing exactly contribute 
the development of cancers. Importantly, as proper splicing 
is required for normal hematopoiesis, the potential side 
effect of manipulating spliceosome has not been addressed 
in human in a long term. 

In addition to the improvement of current compounds 
in terms of better pharmacokinetics (PK), distribution 
and pharmacodynamics (PD) in human, substantial 
efforts have been devoted into additional small molecular 
inhibitor library screening to discover new class of 
spliceosome inhibitors with much favorable therapeutic 
index. Furthermore, another therapeutic approach by 
gene-silencing molecules with antisense oligonucleotide 
derivatives or small interfering RNA (siRNA) for targeting 
aberrant splicing activity has attracted considerable 
attention. As compared to small molecular inhibitors, 



Stem Cell Investigation, 2017

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2017;4:6sci.amegroups.com

Page 7 of 10

oligonucleotide-based therapeutics offer the promise 
of precise targeting any mutant splicing factors without 
impeding any gene sharing sequencing similarity. Although 
currently no case of such gene-silencing molecules has 
been approved by government regulators, the difficulty of, 
with the aid of rapid progress in in vivo delivery field, we 
would anticipate a line of such oligonucleotide-based novel 
therapeutic agents will be tested in anti-AML trials in near 
future. 
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