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Acute myeloid leukemia (AML), an aggressive malignant 
disease of hematopoietic system and the most common 
type of acute leukemia, remains high mortality. AML 
characterized with the accumulation of granulocytopoiesis 
in the bone marrow (1). The most commonly used therapy 
was chemotherapy and stem cell transplantation. However, 
the majority of the patients died of AML relapse (2,3). 
DNA alkylators, topoisomerase inhibitors, antibiotics, 
steroids were approved by FDA for treating AML patients 
recent years (4). However, AML had a very poor prognosis 
especially to elder patients (5). More and more evidence 
has suggested that the small population of leukemia 
initiating cells or leukemia stem cells (LSCs) is supposed 
to be the major reason of leukemia initiation, progression, 
chemotherapeutic drugs resistance and disease relapse (6,7). 
The mechanisms for LSCs leading to AML relapse were 
required to be identified (8-10). The targeting of LSCs 
was considered to be a potential strategy to improve the 

long-term survival of AML patients (11). Therefore, the 
biological features for identification of LSCs were important 
for the drug discovery, targeting therapy and contributed 
to a better understanding of the molecular mechanism of 
disease (12,13). Meanwhile, the identification of LSCs in 
AML is especially significant in disease diagnosis, prognosis, 
monitoring and drug screening of AML. The identification 
and targeting of LSCs were depending on the membrane 
markers, the transcription factor and other specific 
mechanisms to selectively eliminate LSCs while sparing 
normal hematopoietic stem cells (HSCs) (Figure 1).

Membrane markers of LSCs in AML

Bonnet and Dick in 1997 reported that the population 
of cells characterized by the phenotype of CD34+CD38– 
was able to reconstitute human AML in NOD/SCID 
mice, which was the first report of LSCs (14,15). This 
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work identified that the subpopulation with the surface 
antigens CD34+CD38– could be regarded as the specific 
feature of LSCs in AML. Hematopoietic tissues of AML 
patients included both LSCs and residual normal HSCs. 
However, normal HSC shared the same surface markers 
of CD34+CD38–. Therefore, the identification of LSCs 
from normal HSCs was important for scientific research 
and clinical investigation. As reported, the antigen 
expression level of CD123, interleukin-3 receptor 
alpha chain, was negatively related to the outcome 
of chemotherapy and prognosis in AML patients (16). 
Meanwhile, CD123 has been reported to prominently 
express on CD34+CD38– cells in leukemia while not normal 
CD34+CD38– hematopoietic cells (17,18). Therefore, 
CD123 is an important marker for the identification 
and targeting of LSCs (19). TIM3 (T-cell Ig mucin3), a 
negative regulator of Th1-T-cell immunity (20,21), was 
found to be an important marker used for LSCs and HSCs 
discrimination (22). Jan reported that TIM3 was highly 
expressed on the surface of multiple specimens of LSCs, 
not on normal bone marrow HSCs (23). TIM3 has been 
identified as a unique AML stem cell surface marker. Saito’ 
study demonstrated that CD32 and CD25 were highly 
expressed on the surface of primary human LSCs (24). 
Meanwhile, elimination of CD32 and CD25 expression on 
normal human HSCs did not damage the function of normal 
hematopoietic development. Furthermore, the expression 

of CD32 and CD25 on human LSCs were sustained after 
chemotherapy, which suggested that targeting these two 
surface markers may be effective therapeutic strategies 
for treatment of AML (24-26). CD96, a trans-membrane 
glycoprotein, has been reported to express merely on 
T and NK cells. AML LSCs could be distinguished 
from normal HSC by the expression of CD96 (27,28). 
These findings suggested that CD96 was a LSC-specific 
marker in human AML and excellent candidate target for 
targeting LSCs (29,30). Targeting IL3R (CD123) with 
diphtheria toxin (DT)-IL3 fusion proteins was in phase 
II clinical trial (31). Targeting specific surface markers 
of LSCs is considered to be a great potential strategy for 
selectively eliminating LSCs.

The transcription factors of LSCs in AML

Recently, several transcription factors were identified 
to affect the activity and function of LSCs in AML. As 
reported, LSCs were greatly associated with refractory 
AML, multi-drug resistance and relapse. The alternative 
p53-inactivating is the main mechanism for survival 
and continued evolution of LSCs during and after  
chemotherapy (32). Furthermore, the activity of p53 
could be regulated by histone deacetylases (HDACs) (33). 
Therefore, the HDACs protein modulators could be 
exploited to control the activity of p53 and enhanced the 

Leukemia stem cell

Membrane marker

CD34

CD38

CD123

TIM3

CD96

HDAC

NF-κB

HIF-1α
β-catenin

ROS

Telomerase

micRNAs

Transcription factor Other biomarkers
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response to chemotherapy and targeting of LSCs. Hypoxia-
inducible factor-1α (HIF-1α) is an important regulator 
for low oxygen level in AML. Meanwhile, HIF-1α played 
important roles in the self-renew of HSCs and LSCs in 
AML (34). Bonnet and his colleagues suggested that HIF-
1α or HIF-2α was necessary for the survival of LSCs and 
may be potential therapeutic targets for eradicating LSCs in 
AML (35).

NF-κB is an important transcription factor in cell 
survival, proliferation and differentiation. The expression 
of NF-κB in HSCs is low, while it is significantly over 
expressed in LSCs (36). Therefore, NF-κB could distinguish 
HSCs and LSCs, and may serve as a potential therapeutic 
target for the selective elimination of LSCs sparing HSCs 
(37,38). Dimethylaminoparthenolide (DMAPT), a NF-
κB inhibitor, could selectively eradicate LSCs, which 
prompted it to be in clinical trials for the treatment of 
AML, acute lymphoblastic leukemia (ALL), and chronic 
lymphocytic leukemia (CLL) in the United Kingdom 
(38,39). DMAMCL (ACT001) was able to eliminate LSCs 
by inhibiting the activity of NF-κB. ACT001 was in clinical 
trial in Australia (36,40). 

β-catenin is a key molecule of Wnt/β-catenin signaling 
pathway which is crucial for LSC self-renewal, tumor 
occurrence, development, recurrence, and drug resistance 
(41,42). The Wnt/β-catenin was active in human LSCs and 
in HSCs while β-catenin was unnecessary for the self-
renew of adult HSCs (43-45). Meanwhile, pharmacological 
inhibition of β-catenin impaired LSC function and 
significantly reduced the growth of human MLL leukemic 
cells (46,47). Therefore, all these transcription factors 
might be considered to be potential targets for selectively 
ablating LSCs.

Other biomarkers and genes

Membrane markers and transcription factors are the main 
characteristics of LSCs in AML. There are some other 
types of biomarkers which were reported to be related with 
the maintenance and survival of LSCs. Intracellular reactive 
oxygen species (ROS), reactive metabolites containing 
oxygen, played important roles in stem cell sustaining 
and function. Meanwhile, ROS had effect on leukemia 
initiation and progression in a certain degree (48). The 
level of intracellular ROS in LSCs was relatively lower 
than that of in HSCs. With this result, agents, inducing 
overproduction of ROS, can selectively eradicate AML 
stem cells via modulating ROS production. ROS could be 

an optimal therapeutic target of LSCs in AML (49). LSCs 
depended on telomerase to sustain the self-renew and 
extensive proliferation. Targeting the telomerase might be a 
perfect therapeutic strategy to eliminate LSCs in AML (50). 
Moreover, microRNAs like miR-34a, miR-126, miR-21, 
miR-196b and miR-17-92 played key roles in the regulation 
of LSCs, which would be developed as novel therapeutic 
agents against LSCs (51-54).

Conclusions

LSCs in AML were considered to be the root of 
chemotherapeutic drug resistance and disease relapse. 
LSCs are the subpopulation cells featured with membrane 
markers like CD34, CD38, CD123, TIM3, CD25, CD32 
and CD96. In addition, the transcription factors were also 
therapeutic targets in eradicating LSCs, such as HDAC, 
NF-κB, HIF-1α and β-catenin. Besides membrane markers 
and transcription factors, intracellular ROS, telomerase and 
microRNAs were identified to be new targets for ablating 
LSCs in AML. Identification of the specific features 
of LSCs will greatly prompt the discovery of potential 
agents that can selectively eradicate LSCs in AML, which 
would greatly improve the response to drug resistant and 
refractory/relapsed AML.
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