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Abstract: Immune checkpoint blockade has revolutionized the treatment of cancer, with impressive

responses seen in a broad variety of tumor types. Blockade of immune checkpoints and immune signaling

antibodies has shown promise in multiple types of hematologic malignancies (HMs), with dramatic single

agent responses for pembrolizumab and nivolumab in Hodgkin lymphoma (HL). In this review, we outline

the current state of immune checkpoint blockade drug development in HMs, and discuss mechanisms of

activity and resistance, and highlight potential targets in the immune tumor microenvironment (TME).
Blockade of T-cell checkpoint molecules PD-1/PD-L1 and CTLA-4 are the most clinically mature of

the immune checkpoint strategies. Novel and upcoming strategies for immune checkpoint blockade

drug development in HMs using innovative combinations to modulate immunologic targets shows

significant promise as a way to expand the number of patients with blood cancers who could benefit from

immunotherapy.
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Introduction

Immune evasion is a hallmark of cancer (1). This process
can be reversed via drugs that block immune checkpoints
and bolster endogenous antitumor immune responses as
evidenced by the success of CTLA-4 and PD-1 pathway
blocking antibodies in melanoma, lung cancer, renal cell
carcinoma, and other solid tumors (2). In this review,
we discuss the current state of immunotherapeutic drug
development in hematologic malignancies (HM) focused
on targeting of immune checkpoints and the tumor
microenvironment (TME), potential mechanisms of
resistance to checkpoint blockade, and possible strategies
for expanding the number of patients with HM who benefit
from immune checkpoint directed therapies.
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Biology of the immune checkpoints: focus on
PD-1 and CTLA-4

Humans have evolved to maintain immune homeostasis
through the use of multiple overlapping mechanisms aimed
at preventing autoimmunity. In the adaptive immune system
this requires a balance between recognition of non-self-
antigen epitopes by naive T cell clones and the avoidance
of recognition of self, a process that begins through
positive and negative selection of developing T-cells in the
thymus. Naive T-cell activation initiates in the lymphatic
system and hinges on T-cell receptor (TCR) recognition
of antigen in the context of major histocompatibility
molecules (MHC) and effective co-stimulation of CD28 by
CD80/86 on antigen presenting cells (APCs). This in turn
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results in CTLA-4 upregulation on the T cell, and through
competitive binding to the co-stimulatory molecules CD80/
CD86, negatively modulates activated T cells (3).

In the tissues, the interaction of the programmed cell
death 1 receptor (PD-1, CD279) on activated T-cells with
its ligands PD-L1 (B7-H1 or CD274) and PD-L2 (B7-
DC or CD273) maintains immunologic tolerance through
the suppression of auto-reactive T-cells. The clinical
activity observed with PD-1 pathway blockade highlights
its importance in tumor immune evasion and has led
to clinical development of numerous antibodies that
block the PD-1/PD-L1 pathway. APCs and tumor cells
expressing PD-L1 can engage PD-1 on T cells resulting
in T cell dysfunction and protection of PD-L1-expressing
cells from T-cell mediated lysis (4,5) and in HMs tumor
cell expression of PD ligands may be an inherent feature
of disease biology (6). Although, identification of tumor
types with PD-L1 expression in the TME identifies
subsets of patients who benefit from checkpoint blockade,
PD-1 ligand expression does not guarantee a response
nor does its absence exclude the possibility of response to
checkpoint blockade (7).

Clinical trials of immune checkpoint blockade
in HM

CTLA-4 blockade

Ipilimumab and tremelimumab are two anti-CTLA-4
humanized IgG blocking antibodies currently in various
stages of clinical development in solid tumor and HM
(8,9). Ipilimumab led to clinical responses in metastatic
melanoma leading to its FDA approval (10) and showed
proof of concept for immune checkpoint blockade as
a relevant strategy for drug development in oncology,
which has subsequently been explored in solid tumors and
multiple HM.

PD-1 blockade

PD-1 pathway blockade with nivolumab (11-15),
pembrolizumab (16,17), atezolizumab (18), and durvalumab
(MEDI4736) (19,20) has demonstrated activity in multiple
solid tumor malignancies. Nivolumab and pembrolizumab
are the two anti-PD1 agents in the most advanced stages of
clinical development in HM. There are multiple additional
agents designed to block PD-1 or PD-L1, which are in
various earlier phases of clinical development.
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PD-1 blockade in classical Hodgkin lymphoma (cHL)
TME in HL is composed of a dense-but-ineffective
inflammatory infiltrate that is recruited to the tumor site
by small numbers of Hodgkin Reed-Sternberg (HRS)
cells (21). Near-universal genetic changes in chromosome
locus 9p24.1 with corresponding PD-1 ligand upregulation
through JAK-STAT signaling not only suggested a rationale
for testing anti-PD-1 therapy, but appear to be a biologic
determinant of presentation and survival in cHL (6). In a
series of 108 biopsy specimens from patients with newly
diagnosed cHL, 105 (97%) had increased expression
of PD-1 ligands detected using immunohistochemistry
(IHC) (6). In another 246 patient series with HL, PD-L1
expression by IHC was noted on >5% of tumor cells in 71%
of cHL (166/233) and in 54% (7/13) of NLPHL (22). In
patients with cHL and normal 9p24.1 copy number, PD-L1
could still be overexpressed due to Epstein-Barr virus (EBV)
infection (23). These data strongly suggest a potential
genetic dependence upon PD-1 signaling in cHL.

PD-1 antibody monotherapy in HL has demonstrated
high and durable response rates in early clinical studies
(Table I1). The phase I study of nivolumab in HL
(NCT01592370) showed an 87% objective response
rate, with 17% reaching CR and 70% achieving PR (28).
The phase II CheckMate 205 study (NCT02181738) of
nivolumab in patients with relapsed/refractory (R/R) cHL
after failed autologous stem cell transplant (ASCT) and
brentuximab vedotin demonstrated an objective response
rate of 66% % (53/80 patients, 95% CI: 54.8-76.4%),
with 7 patients achieving a complete remission (9%)
and 46 patients reaching a partial remission (58%) (30).
The median duration of response was 8.7 months,
with a median time to response of 2.1 months (range:
0.7-5.7 months) (28,30). High-level alterations of 9p24.1
and increased PD-L1 expression, although previously
shown to be linked with chemoresistance and inferior
outcomes in cHL, appear to be associated with more
favorable responses to treatment with nivolumab (6,30).

Pembrolizumab has also shown significant efficacy in R/R
cHL patients as well. Updated results from KEYNOTE-013
(n=31) with a median follow-up of 24.9 months showed ORR
58% (18/31), CR 19% (6/31), and 12% achieving PR (12/31),
with median duration of response not yet reached (25). In
the phase Il KEYNOTE-087 study (n=205), pembrolizumab
was evaluated in 3 cohorts of cHL patients defined by history
of exposure to brentuximab vedotin and ASCT. Pooled
preliminary data from the three groups showed an ORR of
65.4-68.3%, CRR of 21.7-29%, and 93.7% had reduced
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tumor burden. The most common treatment related AEs
were pyrexia (11%), hypothyroidism (10.5%), diarrhea
(6.7%), fatigue (6.7%), headache (6.2%) rash (6.2%) and
nausea (5.7%). This preliminary study shows significant
clinical activity of pembrolizumab in all three cohorts,
including chemo-refractory patients with cHL.

Long term follow-up safety data showing acute GVHD
in 82% (14/17) of cHL patients treated with nivolumab
who went on to allogeneic hematopoietic stem cell
transplant (allo-HSCT) after participation in CheckMate
039 (n=5) and CheckMate 205 (n=12) suggest anti-PD-1
exposure prior to allo-HSCT may amplify risk of immune
related complications after allogeneic transplantation.
Grade 2-4 GVHD was seen in 10/17 (59%) and grade
3—4 in 5/17 29%), with median time to onset of GVHD
of 22 days. Two patients had hyperacute GVHD <14 days
after transplant, and one patient with hepatic veno-occlusive
disease died from multi-organ GVHD. Although numbers
are small, these findings warrant studies of larger cohorts
of patients with longer follow-up periods to understand
risk and etiology of GVHD in patients who go on to allo-
HSCT after PD-1 blockade (33).

In sum, these results led to accelerated FDA approval for
nivolumab in cHL refractory to ASCT and brentuximab in
May 2016 contingent upon a confirmatory phase III study.
Results from a regulatory agency review of pembrolizumab
data in cHL are expected soon. Practitioners are cautioned
about allogeneic transplant following PD-1 pathway
blockade due possible signal of increased risk of GVHD in
this setting.

Other phase I and II clinical trials are currently underway
in cHL comparing regimens with combinations of nivolumab
with brentuximab (NCT02572167), nivolumab, ipilimumab,
and brentuximab (NCT01896999) and nivolumab with
ibrutinib (NCT02940301). Preliminary results from the
CheckMate039 study of nivolumab plus ipilimumab were
presented at ASH 2016, with an ORR in HL of 74%
(n=23/31), with 6/31 reaching CR (19%), and 17 achieving
PR (55%) (34). Preliminary response data from the
ECOG-ACRIN E4412 study of combination therapy with
brentuximab, ipilimumab, and nivolumab was also presented
at ASH 2016, with an observed ORR of 100% in evaluable
patients receiving brentuximab plus nivolumab, with CR
rate of 62.5% (5/8), with 2 patients with prior brentuximab
exposure achieving CR (35). There are also data exploring
novel combinations of PD-1 agents with epigenetic
modifiers in patients with refractory cHL (36). Clinical
development of anti-PD-1 therapy in cHL continues, with
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a planned phase III of nivolumab monotherapy for cHL,
and a phase III trial comparing pembrolizumab head-to-
head with brentuximab (KEYNOTE-204, NCT02684292)
as well as studies evaluating treatment with PD-1 blockade
earlier in the natural history of cHL.

PD-1 blockade in non-Hodgkin lymphoma (NHL)
PD-L1 expression was found to be abundant in aggressive
B-cell lymphoma, viral-associated lymphomas, and
immunodeficiency-related lymphomas (37). Similar to
cHL, primary mediastinal B cell lymphoma (PMBL),
T-cell/histiocyte rich large B cell lymphoma, EBV+
DLBCLs such as DLBCL of the elderly and EBV+
immunodeficiency-associated lymphomas had 90-100%
PD-L1/L2 expression driven by 9p24.1 gene amplification
(38,39). Other subtypes of lymphoma noted to have PD-
L1 expression include extranodal NK/T-cell lymphoma
(83%), primary effusion lymphoma (75%), EBV(+) post-
transplant lymphoproliferative disorder (PTLD, 70%),
EBV(-) PTLD (57%), plasmablastic lymphoma (44%), and
DLBCL-NOS (14%) (38). Primary testicular lymphoma,
primary CNS lymphoma, mediastinal gray zone lymphoma
and some T-cell lymphomas also have been reported to
have 9p24.1 gene amplification and related PD-L1/PD-L2
overexpression (38). In addition to 9p24.1 amplification,
there have also been translocations identified involving
PD-L1 and PD-L2 in primary testicular lymphoma and
primary CNS lymphoma (40).

In follicular lymphoma (FL), PD-1 expression in CD4"
tumor infiltrating lymphocytes (TILs) is associated with
unresponsiveness to cytokines, a state consistent with
T cell exhaustion (41). However, peripheral T cells and
PD1™ T cells exhibited normal activation upon exposure
to cytokines (41). Although FL cells do not express PD1
ligands, histiocytes in the TME in FL do express PDLI, and
suggest a potential rationale for use of anti-PD1 antibody in
FL (41). Although PD1 is typically used to define exhausted
T cells, it is highly expressed in T follicular helper cells, and
has differential expression among exhausted T cells (42).
Additional markers of T-cell exhaustion such as TIM-3 and
LAG-3 are co-expressed with PD-1 in exhausted T cells, and
represent potential targets for combination immunotherapy
that can reverse T cell exhaustion, and as proof of concept
that may be explored in future clinical trials, reversal of T
cell exhaustion signaling has been demonstrated i vitro with
anti-PD-1 and anti-LAG-3 (42,43).

Clinical evaluation of PD-1/PD-L1 blockade in NHL
has been limited to phase I studies inclusive of multiple
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types of HM and some phase II studies demonstrating
activity in DLBCL and FL (7able 2).

Pidilizumab, a humanized IgG1 monoclonal antibody
intended to block PD-1, was evaluated in a phase II study
of 66 patients with DLBCL after ASCT. This study had
an ORR of 51%, with 70% of patients without PD at
16 months (46). A study of pidilizumab plus rituximab in
32 patients with relapsed FL demonstrated an ORR of
66% (19/29 evaluable patients) and 15 CRs were noted
(52%) (47). Pidilizumab’s clinical development has been
delayed by doubts about its target, as it does not bind
PD-1 (49). Nivolumab monotherapy in FL. showed a 40%
ORR (4/10), with 1 CR (n=1, 10%), 3 PR (n=3, 30%), and
6 with stable disease (n=6, 60%), with median PFS not
reached (NCT01592370) (44). The KEYNOTE-013 study
included 19 patients with PMBL where pembrolizumab
showed a response rate of 41%, with 2 patients
achieving CR and 5 achieving PR (50). A phase II study
(KEYNOTE-170) is planned based on these results.

In T cell NHL (T-NHL), pembrolizumab has shown
clinical activity in advanced stage R/R mycosis fungoides
(MF) and Sézary syndrome (SS), with ORR of 38% with
1 CR and 8 PRs (48). The CheckMate 039 study included
23 patients with T-NHL treated with nivolumab
monotherapy in which there were 4 PRs, 2/13 in MF
and 2/5 in peripheral T cell lymphoma (PTCL) (44).
A recent series demonstrated a high rate of response to
pembrolizumab in NK/T cell lymphoma (51). Multiple
studies of immune checkpoint blockade are ongoing in
several subtypes of NHL (Table 3).

Varying levels of PD-1/PD-L1 expression in the TME
are noted in NHL (37). Evaluation of PD-L1 expression
in a small series of patients with aggressive B-cell NHL
found that 3/7 responders (2 CRs, 1 PR) had high PD-L1
expression (30-100%) (52). Thus, in these preliminary
analyses, PD-L1 IHC does not appear to consistently
predict for responses.

Blockade of immune checkpoints in plasma cell myeloma
The myeloma TME

Multiple myeloma (MM) is a complex malignancy arising
from plasma cells located within the bone marrow with
known humoral and cellular immunodeficiency. MM
is characterized by clonally heterogeneous malignant
plasma cell populations that proliferate and persist in
the bone marrow TME. The MM TME is comprised of
osteoblasts, osteoclasts, bone marrow stromal cells (53), an
immunosuppressive milieu of cytokines (54-58), myeloid-
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derived suppressor cells (MDSC) (59,60), regulatory T cells
(61-63), and active PD-1/PD-L1 signaling, all of which
contribute to local immune dysfunction and dysregulation.

In addition to the role played by other immune cells, MM
cells directly contribute to cellular immune dysfunction.
MM cells express HLA class II and may participate in
cross-presentation of antigens and induction of immune
tolerance to tumor antigens (64). MM cells can also
express PD-L1, whereas normal plasma cells do not (65).
PD-L1 expression on MM cells is associated with reduced
susceptibility to cytotoxic effector T cell killing (65).
PD-L1/PD-L2 expression in MM cells is driven by IFN-y,
toll-like receptor (TLR), Akt, and Ras signaling (65,66).
Global defects in innate and adaptive immunity in myeloma
include B cell dysfunction (hypogammaglobulinemia),
abnormal dendritic cell (DC) number and function (67),
natural killer (NK) (68-70), natural killer T-cell (NKT) (71),
and T cell dysfunction (71,72). T cells in MM patients
have been shown to have reduced cytotoxicity (73) and
responsiveness to interleukin 2 (IL-2) (74), with alteration
of the quantity and distribution of T cell subsets (63,75,76).
APC in MM are also abnormal; DC isolated from myeloma
patients have been shown to be functionally impaired (67).
Plasmacytoid dendritic cells (pDC) are increased in the MM
BM TME compared with healthy controls, and these cells
are less able to trigger T cell proliferation (77). Despite
multifactorial local immunosuppression in the MM TME,
marrow-infiltrating T cells isolated from the MM TME
retain the capacity to develop specific anti-MM immunity,
demonstrated through ex vivo priming of T cells by DC that
have processed tumor cell antigen outside the confines of
the local MM TME (78).

In preclinical studies, syngeneic mice lacking PD-1
completely suppress growth of a MM tumor cell line
(J558L), whereas mice expressing PD-1 rapidly develop
tumor (79), suggesting a potential role for PD-1 blockade
in treatment of myeloma. In the 5T33 model of myeloma,
use of an anti-PD-L1 antibody in combination with
lymphodepletion with radiation and a vaccine led to
anti-myeloma activity (80). This effect was abrogated by
depletion of CD4 or CD8 T cells, indicating that presence
and function of both T cell subsets are necessary for this
effect (80,81).

Although preclinical data supports a rationale for
PD-1 blockade, nivolumab monotherapy did not show
clinical efficacy (44) (1able 4). However, given that T cells
are indeed capable of recognizing and killing MM cells,
exploration of potential combinations with drug partners
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that might synergize with immune checkpoint blockade
through modulation of the TME is an area of active drug
development in MM. Several classes of anti-myeloma drugs
exert immunomodulatory effects upon the TME and may
synergize with immune checkpoint blockade and represent
rational partners for immunotherapy drug development
in MM. Immunomodulatory drugs (IMiDs) such as
lenalidomide, pomalidomide, and thalidomide enhance
anti-myeloma cellular immunity by augmenting T cell
responsiveness to APCs, polarizing T cells towards a Thl
phenotype (85), inhibiting proliferation and function of
Tregs (86), down-regulating PD-L1, and augmenting NK
cell function. Lenalidomide has been shown to synergize
with PD-1/PD-L1 blockade to inhibit immune suppression
mediated by MDSC and enhance NK cell cytotoxicity in
MM (60,87), and these agents through their action on the
immune system are rational partners for use with immune
checkpoint inhibition in MM.

Monoclonal antibodies against CD38 have entered
clinical use for myeloma with the FDA approval of
daratumumab for relapsed MM and its role in the TME
may provide rationale for use of anti-CD38 antibodies in
combination with immune checkpoint blockade. CD38
has pleiotropic expression and effects, mediating T cell
anergy and exhaustion, and drives immunosuppressive
activity of MDSC and Tregs (88-90). Use of daratumumab
depletes CD38+ MDSC and Tregs in the TME and leads to
expansion and skewing of T cell repertoire in patients with
MM (91), suggesting that daratumumab partnered with
immune checkpoint blockade might further activate T cells
and drive anti-myeloma immune responses.

NK cells play an important role in the immune defense
against myeloma (92), and blockade of inhibitory KIR
receptors on NK cells is under evaluation as a therapeutic
strategy in myeloma. KIRs are cell surface receptors present
on both NK cells and some T cell subsets that recognize
MHC class I molecules and modulate cell-mediated
cytotoxicity (93). MM cells express surface ligands that bind
to inhibitory KIRs and drive NK cell dysfunction (94), and
there are studies underway to evaluate the potential to block
inhibitory KIR signaling and restore MM-directed NK
cell cytotoxicity. IPH2101, a human IgG4 against KIR2D
inhibitory receptor, showed no objective responses and
stable disease in 34% of RRMM patients, with no significant
toxicity (95), and showed no single-agent activity in a phase
IT study of patients with smoldering MM (96). IPH2101
was also evaluated in combination with lenalidomide in
15 patients with R/R MM, and led to 5 objective responses

© Stem Cell Investigation. All rights reserved.
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(= MR): 2 VGPRs, 3 PRs, 1 MR, and 6 patients had SD
(NCT01217203) (97). Lirilumab is a second-generation
anti-KIR monoclonal antibody now in development in
combination with elotuzumab (NCT02252263) and in
combination with nivolumab (NCT01592370) in patients
with R/R MM and lymphomas.

Ongoing and future drug combinations in MM
Ongoing clinical trials of IMiDs combined with PD-1
pathway blockade have shown promising preliminary results.
The phase I KEYNOTE-023 (NCT02036502) study of
pembrolizumab plus lenalidomide and dexamethasone in
relapsed MM showed an overall response rate of 76% in
17 evaluable patients, with 5 patients achieving a PR or
better (56%) (82). A phase II study (NCT02289222)
combining pembrolizumab, pomalidomide, and
dexamethasone had an ORR of 56% (27/48), ORR 55%
among patients double-refractory to both proteasome
inhibitors and IMiDs, and ORR 33% among patients with
high-risk cytogenetics (98). Pembrolizumab, pomalidomide,
and dexamethasone evaluated in a phase II study enrolling
48 patients with R/R MM, among which the overall
response rate was >PR in 27 of 48 patients (55%), including
sCR (n=4, 8%), nCR (n=3, 6%), VGPR (n=6, 13%), PR
(n=14, 29%), and 7 minimal responses (15%), stable disease
(n=9, 19%), 2 with progressive disease and 3 patients were
not evaluable for response (83). Interestingly, responses
correlated with presence of bone marrow infiltrating
CD8" effector T cells [ASH 2016 oral presentation (83)].
A retrospective series also supports the activity of this
combination in a heavily pretreated and pomalidomide-
exposed population, with an ORR of 33%, with 89% of
patients achieving clinical benefit (3 PR, 2 MR, 3 SD) (84).
Building on the preliminary results of studies showing
efficacy of approaches combining anti-myeloma drugs with
immune checkpoint inhibitors discussed above (Table 4),
several phase II and III clinical trials are planned and
ongoing (Tuable 5). The phase III KEYNOTE-185 study
of lenalidomide plus dexamethasone with or without
pembrolizumab is planned (NCT02579863), and the phase
III KEYNOTE-183 study (NCT02576977) is accruing
R/R MM patients to evaluate pembrolizumab with or
without pomalidomide and dexamethasone. A cohort in
the CheckMate 039 study (NCT01592370) is currently
enrolling patients to evaluate nivolumab plus daratumumab
vs. nivolumab plus daratumumab, pomalidomide, and
dexamethasone in R/R MM. Nivolumab, elotuzumab,
pomalidomide, and dexamethasone will be evaluated

Stem Cell Investig 2017;4:32



Stem Cell Investigation, 2017

Page 10 of 21

*a|qeoljdde 1ou

‘W/N ‘pauodal 10U ‘YN ‘[BAIMNS |[BISAO ‘SO ‘{[eAIANS 984} uoissalboid ‘S4d ‘esuodsal eiped poob Aan ‘Yo ‘esuodsal [elued ‘Y ‘o1el asuodsal |[eIano ‘YYO ‘9sessIp a|gels
‘as ‘ueidsuedy |90 wals onslodolewsy snobojoine ‘| DSH-o01ne ‘Aiojoeiial/pasdelal ‘Yyy ‘uejdsuely (|90 wals dldlodolewsay dlvuabole | DSH-Oje ‘fewojeAw ajdiynw ‘NN

ewolfoewse|d o1 Adesay}

HN 4N uado p®> 10N uoljeipel sAljlullep + qewnjeAlnp jualinduo) 10]jid gewn|eAing mEogomem_Q auoq \Cmu__om mc_Ucmn_
gewnuwniejep
8102/80 6102/80  Buminioal ‘uedo Jo qewnwniesep/QIN| F qewnzijozeyy | qewnzijozeyy NN 8021£¥2010N
ewopAw aidijinw
6102/90 810z/¢lL  Bumnioal ‘usdQ VN | qewnzijozeyy  Buueplows/NIN oewoldwAsy  £8¥¥8/2010N
aplwopleus| F (suiooea
1202/60 6102/60 uedo oA joN  Jeoued apided-inw) 0Ly-XAd PUe qewnjeaing | qewnjenng ewoeAw oidiynw Buueplows  §909882010N
auoseylawexap F aplwopljewod yum
2102/L1L 9102/¢k  Bumnioas ‘usdQ uolreuIquiod ul Jo Adessyjouow qewneang | gewnjeang NIN H/d  0¥991920LON
auoseylawexap
¥202/80 220z/¥0  Buminioss ‘uedQ INOUHM JO UlM Spiwopljeus|/qewnieang | qewnfenng ININ pesoubelp AmeN  92858920.LON
0202/.0 0202/20 uedo 184 10N gewnjeanp + qewnwniereq || qewnfenng NN H/d  2S7000€0.LON
11-ad
4N 2102/90  Bumnioal ‘uedQ qewnz|jipid + aplwopiieus ||/ qewnzi|ipid NN H/d  65622020LON
0202/10 6102/.0  Bumnioal ‘uedo Adessyjouow qewnzijoiquisd || qewnzijoiquad aseas|p [enpisal Yum NN 0109€92010ON
Sjuswieal} 8Jed Jo (€20-3LONATM)
6102/01L 6102/0L  Bumnioal ‘uedo PJEPUEIS YHM UOIFRUIqUIOD Ul qewnzijoiquied | gewnzijoiquiad NN 20S9€020.10N
gewnzijoiquiad (S81-3LONATIM)
6102/€0 8102/0L  Bumnioai ‘uedo F 9UOSBYISWEXOP/OPILOPIEUST ||| gewnzijoiquad ININ pesouBelp AimeN  £986/520L0N
(e1qibije-ueldsuesy)
4N 1202/cL  Bumnioss ‘uedQ  euoseBYlBWEXSP/EPIWLOPIEUS|/qEWNZI0IqWSd || gewnzijoiquiad ININ pesouBelp AimMeN  822088201ON
qewnzijoiquiad (€81-3LONAIM)
8102/20 8102/.0  Bumnioal ‘uedQ ¥ SUOSEBYISWEXSP 8SOP MO| + 8plwopllewod |||  gewnzijoiquad NN H/"d  22692G2010N
HN 6+02/.0 mc_“_._?_ow; .chO >Qm‘_®£OCOE gewnzijoigwasd 10|id gewnzijoiquied NEO_®>E m_Q_F_DE mc_‘_va_OEm /88€09¢01ON
6102/20 8102/.0  Bumniosi 1A JON 1 OSH-0INE }s0d SpIWOopIeUS| + qewnzijoiqued || qewnzijoiquad (1su ubIY) NN 98€1E€20LON
suoneuIquiod
auoseylswexsp ‘eplwopliewod ‘gewnwnielep gewnuwi|idi
0202/€0 8102/0L  Bumnioai ‘uedo ‘qewn|u| ‘qewnuwijidi ‘GEWNIOAIN | 10 qewn|oAIN NN 0/£26G+01ON
1-ad
1202/90 6102/90  Bumnioal ‘uedo LOSH-0INe yum gqewnwijpwall ‘qewnjeaing | I-ad ‘P-v110 asdeyal 4oy ys1 ybly 18 NN S089122010N
1OSH-OJ[e Joye
4N 9l02/2l  Bumnioal ‘uedo Vv/N al/l I-dd ‘v-v11D  seueubiiew swey pesdejpy 605228 0LON
aalke}
uone|dwods  uonsdwod (s)sonqiyul
Apms 183 Asewnd 13 sneis AdeJiay} uoneuiquio) aseyd JuiodboaUn uolre|ndod/aseasiq (ewreu) DN

s1opIOSIp [[o0 euuse[d pue WA ul spern Jurodydayo sunurwr Surnmoodn pue uado 109795 § Iqe],

Stem Cell Investig 2017;4:32

sci. amegroups.com

© Stem Cell Investigation. All rights reserved.



Stem Cell Investigation, 2017

in CheckMate 602 (NCT02726581). There are also
trials underway in smoldering MM (pembrolizumab,
NCTO02603887; nivolumab plus lenalidomide and
dexamethasone, NCT02903381). Studies are enrolling
patients for treatment with ipilimumab plus nivolumab
after ASCT (NCT02681302) and after allo-HSCT (NCT
01822509). A study evaluating durvalumab (anti-PD-L1)
plus tremelimumab (anti-CTLA-4) after ASCT is also
underway (NCT02716805).

In summary, combination approaches using immune
checkpoint inhibitors and anti-myeloma drugs has shown
activity in preliminary results from several clinical trials,
and studies of multiple combinations of anti-myeloma
agents and immune active compounds are planned or
underway.

Checkpoint blockade in chronic lymphocytic
leukemia (CLL), acute myeloid leukemia (AML),
and myelodysplasia

Although the vast majority of clinical data using checkpoint
blockade in HM thus far has been in lymphoid cancers, a
significant body of preclinical work supports exploration
of the value of immune checkpoint inhibition in myeloid
disorders. CTLA-4 is expressed on the malignant cell surface
and in the cytoplasm in most patients with AML (99),
chronic myeloid leukemia (CML), and CLL (100). Patients
with AML with the CTLA-4 CT60 AA genotype have worse
outcomes and higher rates of relapse after induction therapy
in the first complete remission, suggesting potential impaired
immune control of minimal residual disease after induction
therapy (99). The PD-1 pathway plays a role in immune
escape in CML (101). PD-1 is expressed on CLL cells in
higher levels than in healthy controls, but PD-1 expression
levels did not carry prognostic value in CLL (102). PD-L1
expression on CLL cells has been associated with impaired
function of the immune synapse with T cells (103).

In the myelodysplastic syndrome (MDS), there is evidence
that PD-1 pathway blockade may be a promising avenue for
treatment. PD-L1 is expressed at higher levels on blasts in
patients with high risk MDS and more refractory disease.
Additionally, there are data that azacitidine upregulates
PD-1 and PD-L1 in MDS and that this is associated with
emergence of resistance to azacitidine (104).

Thus far, clinical experience using immune checkpoint
blockade in patients with leukemia is limited to early phase
clinical trials (Z7able 6). In a phase I study of pidilizumab,

© Stem Cell Investigation. All rights reserved.
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8 patients with AML were included, of which 7 of 8 had
no change in average percentage of blasts in peripheral
blood at 21 days, and one of 8 patients had a response, with
peripheral blasts percentage dropping to 5% from 50%,
and who ultimately had disease progression 61 weeks after
receiving pidilizumab (45). In patients with previously
treated or untreated MDS, a phase II study is ongoing
evaluating the combination of nivolumab or ipilimumab
with 5-azacitidine study (105). Preliminary results showed
that single agent ipilimumab is capable of inducing responses
in previously treated MDS patients (ORR 22 %), however,
single agent nivolumab showed no clinical activity (105).
Azacitidine plus nivolumab had an ORR of 69% (9/13)
in those patients who previously failed azacitidine
treatment (105). Early phase studies evaluating ipilimumab
in pan-HM with relapse after allo-HSCT have shown a low
rate of response in lymphoma, with some responses seen
in patients with myeloid disorders. Bashey et /. carried out
a phase I study of ipilimumab in patients with recurrent
or progressive HM after allogeneic stem cell transplant,
enrolling 29 patients and evaluating for safety and efficacy
as the primary outcome (31). Patients were treated with
ipilimumab 10 mg/kg every 3 weeks, and notably 4 of
5 patients with extramedullary AML involving the skin
(leukemia cutis) achieved a durable CR lasting more than
1 year (31). In the post-allo-HSCT setting, there has not
been significant evidence of induction or worsening of graft
versus host disease (GVHD) (31,32). Six patients in this
study patients (21%) had immune-related adverse events
(irAE), 4 patients (14%) had GVHD precluding further
use of ipilimumab, and there was one death attributable to
therapy (32). Based on these early results, CTLA-4 blockade
after allogeneic stem cell transplant is undergoing additional
study. Secondary endpoint data analysis showed CTLA-4
blockade by a single infusion of ipilimumab increased CD4"
and CD4/HLA-DR" T lymphocyte counts and augmented
intracellular CTLA-4 expression at the highest dose level.
There was no significant change in Treg cell numbers after
ipilimumab infusion (106).

Current ongoing studies target relapsed leukemia patient
population and evaluate safety and effect of single immune
checkpoint inhibitor use (nivolumab and ipilimumab),
single versus combined immune checkpoint inhibitor
use, novel combinations using checkpoint antibodies
with other immunotherapeutic approaches such as the
engineered bi-specific antibody (BiTE) against CD3 and
CD19 (blinatumomab), and combined use of epigenetic

Stem Cell Investig 2017;4:32
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Table 6 (continued)
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Est. study

Est. primary
completion date completion date

Status

Phase Combination therapy

Checkpoint
inhibitor(s)

Diseases

NCT (name)

01/2017 01/2020

Not yet recruiting

Avelumab + azacitidine

Avelumab

R/R AML

NCT02953561

04/2019

02/2018

Azacitidine (subcutaneous) + durvalumab  Open, recruiting

Durvalumab

NCT02775903 Untreated high risk MDS or

AML (elderly)

NCT02281084 MDS

07/2018 01/2019

Open, recruiting

CC-486 (oral Azacitidine) + durvalumab

N/A

Durvalumab

11/2018 NR

Open, recruiting

Durvalumab

NCT02871323 Primary or secondary

myelofibrosis

Others

NR
NR
01/2018

07/2018

Indoximod plus idarubicin and cytarabine  Open, recruiting

I/

Indoximod (IDO1)

NCT02835729 Newly diagnosed AML

NCT02399917 R/R AML

04/2020

Open, recruiting

Lirilumab + 5-azacitidine
N/A

Lirilumab
Hu5F9-G4 (anti-

03/2017

Open, recruiting

NCT02678338 R/R AML

CD47)
TTI-621 (anti-

06/2019 06/2019

Open, recruiting

N/A

NCT02663518 R/R Heme malignancies

SIRPa)
MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; allo-HSCT, allogeneic hematopoietic stem cell transplant; B-ALL, B acute lymphoblastic leukemia; CLL,

Chronic lymphocytic leukemia; CMML, chronic myelomonocytic leukemia; R/R, relapsed refractory; N/A, not applicable..
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therapies with immune checkpoint inhibitors (decitabine
and ipilimumab) (Table 6).

Immune-related adverse events and the
checkpoint inhibitors

The phase I studies of nivolumab, pembrolizumab and
pidilizumab demonstrate a favorable safety profile of these
agents, with rates of drug related grade 3 adverse events
ranging from 18-20% (28,44,45,107). IrAE were common
and typically lower grade. There were 13/134 (9.7%) cases
of pneumonitis, with three severe (grade 4) and one fatal
case of pneumonitis observed (25,44-46,107). Although
pulmonary toxicity is a known complication associated
with treatment with PD-1 inhibitors (108), it is important
to note in a patient population treated with agents with
known potential for pulmonary toxicity such as radiation,
carmustine, lenalidomide, pomalidomide, and bleomycin,
there was not an excessive rate of pneumonitis noted in the
phase I studies of PD-1 agents (109). Early data in melanoma
suggests gut microbiota may play a role in development of
colitis, however for the most part predictors of toxicity from
immune checkpoint inhibitors are lacking (110).

Mechanisms of resistance to immune
checkpoint blockade

Although a subset of patients with HM obtain benefit
from treatment with immune checkpoints, mechanisms of
resistance to these therapies remain poorly understood.
Emerging data suggest alterations in MHC class I in the
TME may limit tumors’ responsiveness to immune-based
approaches. Of note, a recent cohort study found that 75%
(40/53) patients with DLBCL commonly fails to express
HILA class I (111), and p2M mutations and deletions, and
abnormalities in CD58 (a molecule involved in T cell
and NK cell signaling), led to a lack of membrane HLA-I
expression (111). Effector T-cells require intact MHC to
bind the T'CR in order to exert cellular cytotoxicity against
tumor cells. It is logical to consider mutations causing
reduced MHC expression on the tumor cell surface may
affect response to immune checkpoint blockade. Beta-
2 microglobulin (B2M) is a required component for
assembly and surface expression of MHC class I, and a
retrospective series evaluated B2M, MHC I, and MHC II
expression, and found decreased or absent expression of
B2M and MHC I in 80% and decreased or absent MHC
class IT in 70% of cHL patients. Reduced p2M and MHC
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myeloid cancers. Ongoing attention to toxicity from
immune-based approaches such as increased rates of
GVHD in patients who go on to receive allogeneic stem
cell transplantation after checkpoint blockade remains
quite important. Clinical trials and detailed correlative
studies evaluating T cell response, TME, and host factors
will hopefully facilitate an understanding of how to gain
durable disease control from immunotherapy while
minimizing the risk of immune-related toxicities.
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