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The mechanistic links between patient genotype and the 
phenotypic changes associated with neuropsychiatric 
disease have been difficult to establish, owing in part to 
the lack of live brain tissue from clinical cases. In fact, for 
many brain disorders, it remains unclear whether disease 
progression reflects developmental aberrations during 
neural differentiation or activity-dependent perturbations 
in mature neurons. Fortunately, the ability to reprogram 
cells from patients and healthy controls into human induced 
pluripotent stem cells (hiPSCs) (1) has conferred the ability 
to generate a nearly limitless source of genetically matched 
human neural cells with which to model neuropsychiatric 
disease across a variety of neural cell fates. Already, hiPSC-
based models have provided molecular and cellular 
insights into disease mechanisms underlying far-ranging 
brain disorders from autism spectrum disorder (2) to 
schizophrenia (3), Alzheimer’s disease (4), Parkinson’s 
disease (5), and even zika-virus induced microcephaly (6).  
These models are being increasingly applied to drug 
screening, successfully identifying compounds to enhance 
neural proliferation (7), modulators of lithium signaling (8)  
and inhibitors of zika virus infection (9). While many of 
these early screens have been conducted on neural progenitor 
cells (NPCs), screening has recently been extended to stem 
cell-derived neurons and astrocytes (10-12).

Because work by ourselves and others demonstrate that 
current hiPSC differentiation strategies yield neurons that 

most resemble fetal brain cells (13-16), hiPSC-based models 
remain best suited for the study of disease predisposition. 
Consistent with this, hiPSC-based studies of late onset 
neurodegenerative diseases such as Parkinson’s disease (5), 
Alzheimer’s disease (4) and amyotrophic lateral sclerosis (17) 
have failed to recapitulate the severe neuronal loss observed 
in human disease. Simply put, neural cells generated from 
patient-specific hiPSCs capture the genetic risk factors, 
known and unknown, that a given individual was born with, 
but fall short of modeling the complex cellular interactions 
and circuit-based activity that contribute to disease initiation 
or progression. As a result, we and others have developed 
and validated models of autism spectrum disorder (18), 
schizophrenia (13,19,20), bipolar disorder (21), Parkinson’s 
disease (22) and Huntington’s disease (23) that focus on the 
molecular and cellular defects in immature NPCs, rather 
than post-mitotic neurons, consistently observing that at 
the level of gene pathways and networks, gene expression 
differences identified in patient neurons are frequently 
conserved in patient NPCs (13,24).

NPCs are a scalable cell type, amenable to parallel 
culture of dozens of cell lines and highly adaptable to 
automated methods. They are straightforward to maintain 
in vitro, requiring less frequent feeding and passaging than 
their source hiPSCs (25). NPCs proliferate robustly, are 
cryopreservable, and easily differentiated or induced to 
mature neurons (25,26) and astrocytes (27). Overall, NPCs 
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are an ideal cell type for mechanistic studies of disease 
biology as well as adaptation to high throughput drug 
screens. 

Current hiPSC models of neuropsychiatric disease 
have generally focused on those risk factors encoded 
in the nuclear DNA sequence, with little consideration 
of epigenetic regulation and no understanding of 
mitochondrial biology [reviewed in (28)]. While it is well 
established that highly penetrant nuclear genome mutations 
can recapitulate neuropsychiatric disease biology, it has 
been unclear, to date, to what extent hiPSC-based models 
also capture the effects of mitochondrial disease risk. In fact, 
although it was previously established that mitochondria 
undergo morphological and metabolic reconfigurations 
while donor cells are being reprogrammed to hiPSCs (29) 
and hypothesized that mitochondrial state was linked to 
cellular differentiation (30), it was unclear to what extent 
cell-type specific mitochondria activity patterns would be 
re-established during neuronal differentiation.

Now, Lorenz et al demonstrate that disease- and 
genotype-specific mitochondrial risk effects can also 
be modeled with hiPSCs. Over the course of neuronal 
differentiation from hiPSCs, mitochondria shift toward 
a neuronal-like oxidative metabolism. hiPSC-derived 
NPCs derived from three patients with homoplasmic 
mitochondrial mutations in MT-ATP6 not only retained 
the mutant genotype, but also exhibited disease relevant 
phenotypes such as decreased ATP production, abnormally 
high mitochondrial membrane potential, and altered 
calcium homeostasis (31). Moreover, as a proof-of-concept, 
they successfully screened 130 drugs on NPCs derived 
from one of these patients, identifying ten compounds that 
significantly reduced mitochondrial membrane potential (31). 
While it is premature to speculate whether these drugs 
represent novel therapeutics for mitochondrial disease, this 
is an exciting demonstration that hiPSC-based models can 
provide novel insights into mitochondrial disorders.

A critical limitation of hiPSC-based models is that 
the genotype in the donor somatic cells (typically skin or 
blood) accurately reflects what is observed in the tissue 
impacted by disease. At the level of nuclear DNA, hiPSC-
based models fail to accurately model the impact of somatic 
mosaicism, either because: (I) the genotype of the donor 
cells is different from the brain; (II) the hiPSC-derived 
neural cells spontaneously differ from that of the donor 
cells (32); or (III) the mosaic variants are selected for 
or against during the reprogramming or differentiation 
processes causing the hiPSC-derived neural composition to 

inaccurately reflect that found in the brain (33). Variation 
between mitochondrial populations in donor cells, disease 
cells and hiPSC-derived populations remains a similar 
concern for mitochondrial disorders. Although it is clear that 
a homoplasmic mitochondrial population can be accurately 
maintained and modeled using hiPSC-based models (31), the 
extent to which that is true for heteroplasmic mitochondrial 
disorders is unknown.

Since the first discovery that patient somatic cells can 
be reprogrammed to hiPSCs that are theoretically capable 
of generating all the cell types of the human body, our 
ability to model the impact of genetic risk on disease 
phenotypes continues to advance. Now, with the knowledge 
that mutations in either the nuclear or the mitochondrial 
genome can be modeled as well as screened against using 
hiPSCs, our ability to uncover novel disease mechanisms 
and therapeutics for neuropsychiatric disease continues to 
expand.
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