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Age-related macular degeneration (AMD) is the most 
common cause of legal blindness in the United States 
and is the leading cause of visual impairment in the aging 
population, especially in those over 55 years of age. By 2020, 
an anticipated 196 million individuals will be affected with 
AMD (1). Geographic atrophy is characterized by a slow 
progressive degeneration of the retinal pigment epithelium 
(RPE), resulting in the gradual loss of photoreceptors. The 
wet, or neovascular, form is characterized by the growth of 
abnormal new blood vessels from beneath the retina that 
can cause severe and rapid vision loss due to hemorrhage 
and exudation. Most current treatments are directed against 
neovascular AMD and are focused against stimulators of 
angiogenesis (such as vascular endothelial growth factor). 
These treatments are limited in their applicability, require 
invasive intravitreal injections, which are burdensome for 
both patient and physician, and are not capable of preventing 
or reversing vision loss over the long term. Currently, there 
are no effective treatments for atrophic AMD.

Significant work in AMD genetics has established 
CFH and ARMS2/HTRA1 as having large influences on 
AMD risk in populations of various ethnicities (2-8).  
Although more than 40 additional AMD-associated risk 
variants at other loci have been found through case-control 
association studies with candidate genes (9-12), genome-
wide association studies of large cohorts (13,14), systems 

biology (15,16), and studies of pathways shared by multiple 
disorders (17,18), CFH and ARMS2/HTRA1 genotypes, 
as well as advanced age, account for most of the known 
attributable risk for the disorder. Robust AMD associations 
with common and/or rare variants in CFH and other 
complement pathway genes including C2/CFB (19), C3 
(9,10), C9 (20), CFI (13,21), and VTN (14) suggested that 
complement inhibition might be a good therapeutic option. 
However, to date, results of clinical trials using complement 
inhibitors have not been promising. For example, 
eculizumab did not improve vision very effectively (22)  
and lampalizumab had a limited effect in reducing AMD 
progression (23,24). Recent results reported for the 
Spectri phase III clinical trial for patients treated with 
lampalizumab, to reduce lesion their size for geographic 
atrophy proved to be disappointing (https://www.roche.
com/media/store/releases/med-cor-2017-09-08b.htm). 
Clearly, there is a need to develop more appropriate and 
effective therapies for AMD, possibly considering the 
genotype(s) at specific risk loci of the individual when 
designing a clinical trial toward the goal of personalized 
medicine (25).

Progress in development of novel effective therapies for 
AMD based on genetic targets and specific variants could 
be expedited using rodent model systems, but these models 
have multiple limitations, most notably the fact that rodents 
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don’t have maculae to be able to measure pathophysiological 
endpoints. In a recent article, Saini and colleagues report 
findings from a series of experiments conducted in human 
RPE cells, a monolayer in the macula that is essential for 
photoreceptor support, survival and adversely affected by 
AMD. These cells were differentiated from human-induced 
pluripotent stem cells (hiPSCs) derived from eye tissue 
obtained from patients with documented AMD including 
two individuals homozygous for AMD risk alleles at the 
ARMS2/HTRA1 locus (ARMS2/HTRA1+) and from donors 
without evidence of AMD. Although expression of nine 
AMD and drusen associated transcripts was not significantly 
different in the hiPSCs from AMD and healthy control 
subjects, the authors observed significantly increased levels 
of transcripts from a set of complement and inflammatory 
proteins (including C3, CFI, and CFH) in hiPSCs from AMD 
subjects. These differences were greatest in comparisons of 
controls with AMD ARMS2/HTRA1+ subjects.

These experiments alone are noteworthy for at least 
two reasons. First, although several years have passed 
since retinal and RPE cells were first derived from human 
and mouse iPSCs (26,27) and successful submacular 
transplantation of RPE cells derived in this manner has 
been performed recently in two patients with neovascular 
AMD (28), use of transplanted of autologous iPSC-derived 
RPE cells as a treatment for AMD has many challenges and 
ultimately may not be effective (28,29). Second, Saini and 
co-workers provided evidence for the first time that the 
ARMS2/HTRA1 AMD risk genotype impacts expression 
of AMD-related proteins, particularly those in the 
complement system, and thereby provides some clues about 
how the role of this pathway may function in the disease. 
However, selection of risk variants from both ARMS2 and 
HTRA1 as the basis for the ARMS2/HTRA1+ genotype does 
not allow for the determination of which of these genes 
actually effects expression of the AMD-related proteins. 
Nonetheless, this is a solid starting point for future studies 
with a larger sample size.

The most remarkable aspect of this study was the use 
of the hiPSC lines to test the therapeutic potential of 
nicotinamide (NAM), a vitamin B3 derivative with anti-
inflammatory properties (30) and discover its connections 
to AMD pathways. Selection of NAM as a therapeutic agent 
was reasonable in light of evidence showing that elevated 
serum levels of factors in the vitamin B pathway (vitamin 
B12, homocysteine, and folate) reduce susceptibility to 
early and advanced AMD (31). In the current study, it 
was observed that expression of two AMD- and drusen-

associated proteins, clusterin and vascular endothelial 
growth factor A, was inhibited in hiPSC-RPE cultured 
cells treated with NAM regardless of the donor group, 
and this effect was most pronounced in ARMS2/HTRA1+ 
cells. Secretion of the drusen- and Alzheimer disease-
related protein Aβ42 was inhibited in the NAM-treated 
AMD but not control hiPSC lines. Next, Saina and co-
workers performed bioinformatics analysis to examine 
the global effects of NAM on the RPE transcriptome. 
Pathway enrichment analysis suggested that NAM 
primarily affects the PI3K-Akt signaling and pathway 
followed by six other pathways including complement and 
coagulation cascades. Perhaps not surprisingly (and proof 
of principle), the most significant disease associated gene 
ontology (GO) terms were macular degeneration and cone-
rod dystrophy. In-depth analysis of genes showing at least 
nominally significant changes revealed that NAM increased 
expression of ribosomal synthesis genes in the nucleus 
and mitochondria, DNA/RNA polymerase, histones, 
and the gene encoding the sirtuin 1 (SIRT1) protein. 
Decreased expression of these genes has been shown to 
be associated with aging (32,33). Further experiments in 
the hiPSC-RPE lines showed that NAM can effectively 
decrease inflammatory cytokine production and repress the 
complement pathway, including C3. 

These experiments underscore the importance of 
targeting more than one disease pathway or mechanism 
at a time, while taking into consideration genotype risk. 
This may be a way forward to obtain more effective AMD 
therapies as many biochemical pathways overlap and have 
more than one function.
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