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Gliomas are the most common primary intracranial 
neoplasms in adults and a leading cause of cancer-related 
morbidity and mortality in the United States (1). Grade I 
gliomas are considered the least malignant brain tumors, 
and grade IV or GBM the most aggressive and deadliest, 
which accounts for nearly 75% of all gliomas. Surgical 
resection of GBM remains the primary treatment modality 
with present adjuvant chemotherapy and radiation therapy 
only providing slight improvement in the disease course and 
outcome (2). The overall median time for GBM recurrence 
after surgery is 7 months, and its 5-year overall prognosis 
is dismal (<10% survival) and has remained unchanged for 
decades (1). Although gene expression profiles of GBM samples 
in The Cancer Genome Atlas (TCGA) database identified 
four general molecular subtypes (3), single cell analysis shows 
that multiple molecular subtypes exist within a GBM tumor 
and gene expression profiles can even vary dramatically across 
individual cells within the tumor (4), illustrating that individual 
GBM tumors are highly heterogenous. 

The highly aggressive nature of GBM as well as its 
heterogeneity at the cellular level have been attributed to a 
subpopulation of glioma stem-like cells (GSCs), also called 
glioma-initiating cells (GICs) or brain tumor-initiating cells 
(BTICs) (5). GSCs share several features of neural stem 
cells including the expression of nestin and Sox2 (6), the 
ability to migrate within the brain (7), and the capacity to 
self-renew and undergo differentiation (8). The high tumor-
initiating capacity of GSCs and therapeutic resistance is 

believed to drive tumorigenesis and tumor recurrence after 
therapy (9). GSCs reportedly reside in a hypoxic niche that 
supports their stem-like state (10), through the activation of 
the hypoxia-inducible factor (HIF) pathway that promotes 
expression of GSC maintenance factors by tumor and 
stromal cells (11). Notch pathway activation emerges as an 
essential molecular event to promote the GSC phenotype 
in the hypoxic microenvironment (11). However, the 
molecular mechanism underlying HIF-driven Notch 
activation in GSC is not fully delineated. 

Dysregulation of the epidermal growth factor receptor 
(EFGR) is found in ~50% of GBM patient samples  
analyzed (12). Various oncogenic signaling pathways, 
including the EGFR pathway, contribute to GBM 
progression by converging on the important STAT3 
molecu lar  hub .  STAT3 i s  ac t i va ted  through  i t s 
phosphorylation by a wide variety of cytokines and growth 
factors, and STAT3 regulates various cellular processes 
critical in GBM tumorigenesis, including proliferation, 
invasion, and migration (13). High STAT3 activation is 
found in GBM and actively participates in GBM tumor 
formation and progression (14). STAT3 serine and tyrosine 
phosphorylation, which is markedly upregulated in GSCs, 
has been shown to be critical for GSC proliferation in vitro 
and GBM tumor formation in immunocompromised mice 
(15,16). Moreover, STAT3 induced the expression of various 
genes in the Notch pathway (17). The Notch pathway plays 
an important role in stem cell fate determination, survival, 
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proliferation and maintenance (18). 
Notch signaling activation is initiated by the binding of 

the transmembrane ligands on one cell to Notch receptors 
present on an adjacent cell, resulting in the proteolytic 
release of the Notch intracellular domains (NICDs) that 
functions as transcription factors (19). In human, four 
Notch receptors (Notch 1-4), five ligands (Jag1, Jag2, 
DLL1, DLL3 and DLL4), and multiple effector molecules 
(Hes1-6, Hey1, Hey2 and HeyL) have been identified (19). 
In normal tissues, Notch ligands are generally produced 
by differentiated cells to modulate fate choice of adjacent 
Notch-expressing cells (20). Notch is abnormally activated in 
many cancers including GBM through multiple mechanisms, 
including increased secretion of Notch ligands by tumor 
and stromal cells (17,21), enhanced proteolytic cleavage of 
Notch intracellular domain by the ADAM (a disintegrin and 
metalloprotease) and γ-secretase families of proteases (22), 
and elevated expression of Notch proteins (17).

Following up on their previous finding that Vasorin was 
induced by hypoxia and overexpressed in GBM (23), Man 
and colleagues (24) show that Vasorin gene expression is 
induced in GSCs by a HIF/STAT3-dependent pathway. 
Most interestingly, Vasorin functions as a competitive 
inhibitor of Numb to inhibit Notch turnover, and thereby 
augmenting Notch signaling under hypoxic conditions. To 
initially assess the role of Vasorin in glioma, the TCGA 
glioma database was queried and it was found that Vasorin 
expression was elevated in GBM as compared to low-grade 
gliomas. An increase in Vasorin expression was detected 
by immunohistochemistry of higher-grade glioma tissue 
and compared to low-grade gliomas, which suggests that 
Vasorin is increased in more aggressive tumors. In addition, 
Vasorin was found to be co-expressed with various hypoxic 
and stem-cell markers, indicating that Vasorin is expressed 
in a putative stem-cell niche in GBM. Vasorin expression 
was also found to correlate with multiple hypoxia response 
genes in the TCGA glioma database. To further study the 
hypoxic regulation of Vasorin, GSCs that carried an EGFP 
reporter under the control of hypoxic responsive element 
were injected orthotopically in immunocompromised 
mice. In the orthotopic tumor xenografts, Vasorin staining 
co-localized with EGFP as well as stem cell and hypoxic 
markers, providing further support for Vasorin being 
expressed in the GSC population within the hypoxic niche. 
To assess the role of individual HIF proteins in regulating 
Vasorin, HIF1 and HIF2 were silenced using specific sh-
RNA sequences. Under hypoxic conditions silencing HIF1, 
but not HIF2, reduced Vasorin protein and mRNA levels. 

Moreover, knockdown of the STAT3 transcription factor, 
which is constitutively activated in GSCs, also decreased 
both Vasorin protein and mRNA levels. Furthermore, both 
STAT3 and HIF1 were found to bind to the Vasorin promoter 
as assessed by chromatin immunoprecipitation. These results 
are of particular interest because STAT3 was previously found 
to form a complex with HIF1, but not HIF2, to drive a unique 
set of target genes to drive tumorigenesis under hypoxic 
conditions in cancer cell lines (25). Therefore, constitutive 
STAT3 activation may be a prerequisite for Vasorin 
induction in GSCs.

To further characterize its function, Vasorin expression 
was silenced in GSC lines by shRNA. Vasorin silenced 
GSCs were found to have impaired tumorsphere formation, 
reduced GSC viability and proliferation in vitro, and 
reduced formation of orthotopic xenografts in animal 
models. Thus, these studies provide strong evidence that 
Vasorin is needed to maintain the GSC population and 
promote GBM tumorigenesis. To determine the mechanism 
that underlies the role of Vasorin in GSC, Notch proteins 
were identified as Vasorin binding partners after analysis 
of Vasorin immunoprecipitates by mass spectrometry. 
The interaction of Notch 1 with Vasorin was validated in 
several different GSC lines, and silencing Vasorin in GSCs 
was found to reduce Notch1 levels as well as the levels of 
a several Notch downstream targets (Hey-1 and Hes-1). 
Somewhat surprising was the finding that Vasorin stabilized 
membranous Notch1 by inhibiting its lysosomal degradation 
in part by competing with Numb (an inhibitor of Notch 
signaling that regulates membranous Notch expression) for 
Notch binding to suppress Notch1 degradation. In addition, 
expression of the Notch intracellular domain restored GSC 
self-renewal in Vasorin-silenced GSCs and enhances their 
tumorigenic potential. 

Taken together the findings of Ma and colleagues 
identify a novel HIF/STAT3 pathway to target Vasorin in 
GSCs that appears to play a critical role in GSC stemness. 
Furthermore, these studies suggest that inhibiting Vasorin 
in combination with Notch inhibitors such as γ-secretase 
inhibitors may be a novel strategy to treat GBM, which is a 
deadly cancer with few therapeutic options. 
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