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Prevalence of breast cancer

Breast cancer accounts for 30% of all cancers diagnosed 
in women with greater than 1,677,000 new cases and over 
520,000 deaths per year worldwide (1). Despite recent 
advancements in detection and treatment, mortality of 
the disease is expected to increase 20% by the year 2020 
with >95% of new cases occurring in women older than 
40 years of age (2,3). Approximately 40% of patients who 
are initially diagnosed with non-invasive breast cancer 
progress to malignancy and experience disease recurrence 

despite undergoing treatments such as chemotherapy 
and/or adjuvant care. Furthermore, 70% of these cases 
experience a metastatic relapse within 5 years (4). Due to 
the heterogeneous nature of this disease, the effectiveness of 
recent therapies has been limited (5). 

In this review, we provide a clinical discussion of 
metastatic breast cancer including a review of the breast 
cancer stem cell (CSC), its signaling pathways and 
immunological/pathological markers, and novel therapies 
designed for targeted treatment.
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Types of breast cancer

Clinical character

Breast cancer is a molecularly, pathologically, and 
epidemiologically heterogeneous disease. Clinically, invasive 
breast cancers can be classified into three groups: early 
breast cancer (stages I, IIa, and IIb), locally advanced breast 
cancer (stages IIIa, IIIb, and IIIc), and advanced breast 
cancer (stage IV) presenting with distant metastases beyond 
the regional lymph nodes (6,7). 

Immunological subtype

Markers in breast cancer have long been appreciated by 
researchers to define and identify options for targeted 
treatment. There are four immunological subtypes of breast 
cancer containing a combination of the three chief markers; 
estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal receptor 2 (HER2) which are routinely 
defined in the clinic in order to optimize patient outcomes (8). 

Gene expression profile

Global gene expression analyses have given us a closer 
look at this complex heterogeneous disease. Six intrinsic 
molecular subtypes (luminal A, luminal B, basal-like, 
HER2-overexpressing, Claudin-low, and normal breast-

like) of breast cancer have been identified and have 
provided a deeper understanding of the differences in gene 
expression between tumors presenting with these variable 
immunological markers (9,10). For example, there is clear 
evidence that “basal-like” and “luminal” subgroups differ 
with respect to outcome of disease in patients with locally 
advanced breast cancer (11) (Figure 1).

CSCs

Cancers are believed to arise from a series of genetic 
mutations that occur as a result of cellular instability and/or 
oncogene-induced plasticity (12). First discovered in acute 
myeloid leukemia (AML), CSCs have played a major role 
in the advancement of cancer research (13). CSCs have led 
to a remodeling of our cancer hypothesis and have been 
the subject of concentrated research as potential targets for 
cancer therapies (14-18). The majority of cells within solid 
tumors are more differentiated and have limited self-renewal 
abilities (19). CSCs, on the other hand, make up a small 
subpopulation of cells within a tumor and are responsible for 
tumor, initiation, formation and recurrence (14). CSCs have 
been shown to undergo symmetric self-renewal giving rise 
to two identical pluripotent daughter CSCs, as well as, an 
asymmetric division producing a more differentiated tumor 
progenitor cell (TPC) and an identical daughter CSC. This 
self-promoting mechanism results in an increased number of 
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Figure 1 Comparison of the current breast cancer subtypes according to expression of estrogen receptor (ER), progesterone receptor (PR), 
human epidermal receptor 2 (HER2). Based on positive expression of ER, PR and/or HER2 breast cancer subtypes are classified as ER/
PR positive, ER/PR negative and/or HER2 positive. Negative expression of ER, PR, and HER2 designates the subtype as “triple negative”, 
typically associated with a more aggressive tumor and a poorer prognosis.
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CSCs as the tumor grows as well as expansion of the overall 
tumor in size (20). Furthermore, CSCs have been shown 
to undergo epithelial-to-mesenchymal-transition (EMT), a 
known mechanism in metastasis (21) (Figure 2).

Breast CSCs (BCSCs)

BCSCs are derived from human breast tumors with 
a series of markers, including CD44, CD24, CD133, 
epithelial cell adhesion molecule (EpCAM), nestin, 
ganglioside GD2, CD49f, CD61, CXCR4, CXCL1, 
HMGCS,  CD166 ,  CD47,  ALDH1,  and  ABCG2  
(22-25). However, cell markers CD44+/CD24− have 
been established as minimum surface markers for 
BCSCs (14). CD44 is a transmembrane glycoprotein 
that binds to many extracellular matrix proteins, of 
which hyaluronic acid is the most common. Hyaluronic 
acid is a key component outside the cell that aids in 
the control and regulation of cell adhesion, migration, 
and invasive proliferation. Further, the interaction 
between hyaluronic acid and osteopontin is believed to 
lead to tumor progression (26,27). High levels of CD44 
mRNA and protein expression levels in breast cancer has 
been linked to significantly worse overall survival (28). 
Additionally, elevated levels of CD44 expression was 

found in tumor-forming cells in numerous cancers (29). 
Clearly, CD44 is believed to be a valid biomarker for 
CSCs (30). The absence of CD24, another extracellular 
glycoprotein, has been shown to increase tumor growth 
and promote metastasis (31). CD133 has been used in 
combination with the CD44+/CD24− phenotype to 
isolate BCSCs (32). Interestingly, expression of aldehyde 
dehydrogenase 1 (ALDH1), an intracellular enzyme 
that oxidizes aldehydes and retinol, is considered one 
of the top markers for CSCs in the breast and has been 
shown to illicit remarkable treatment resistance, a more 
aggressive phenotype, and ultimately poorer outcomes 
in patients (33). Despite differences among different 
subtypes of breast cancer, positive ALDH1 expression has 
been shown in significantly large proportions compared 
to other CSC-related markers (34). Although numerous 
studies have contributed to a better understanding of 
BCSC surface markers, the picture is still not fully 
understood. It is often observed that CSCs do not express 
the same surface markers, or that these markers are 
not exclusive to CSC and are also variably expressed in 
cells throughout the breast and body. As a consequence, 
isolation of BCSCs has been challenging. Currently, 
there exist no standardized criteria in place to identify 
BCSCs in human breast cancer (35).

Figure 2 Cancer stem cells (CSCs) divide asymmetrically and give rise to one copy of self and one differentiated tumor progenitor cell. 
Tumor progenitor cells are no longer able to self-renew, they undergo symmetric division and form the terminally differentiated cells of the 
bulk tumor mass. Under stress, CSCs may undergo symmetric self-renewal increasing tumor resistance to therapy.

Cancer stem cell (CSC)
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BCSC signaling

Signaling pathways are essential for the regulation of normal 
stem cells. Many of these pathways are deregulated in CSCs 
which induce tumor formation. Most notable among these 
pathways are the Notch, Wnt/Frizzled/β-catenin, Hippo, 
and Hedgehog signaling cascades which are responsible for 
the formation of CSCs (36-38).

Notch signaling plays an essential role in normal stem 
cell maintenance and differentiation. Dysfunction of the 
Notch pathway has been linked to the development of 
breast cancer and is believed to be upregulated in a variety 
of cancers (39-42). The Notch pathways are composed 
of transmembrane receptors (Notch 1–4) which undergo 
cleavage, nuclear translocation, and subsequent gene 
activation upon binding Notch ligands. Notch activation via 
a constitutively active Notch receptor in normal epithelial 
cells has been shown to induce hyper-proliferation and 
breast tumor formation (43,44). Therapeutic resistance in 
breast CSCs is also believed to be associated with Notch 
signaling and has been an area of strong interest in cancer 
research (45). 

Hippo signal ing is  a  well-establ ished in t issue 
homeostasis and tumorigenesis. Hippo signaling is 
modulated via two pairs of kinases, Mst1/2 and Lats1/2. 
Upon phosphorylation of downstream Yes-associated 
protein 1 (YAP1) or Lats1/2-induced TAZ transcription 
is inactivated and leads to cellular degradation, whereas, 
dephosphorylation leads to YAP/TAZ nuclear translocation 
and subsequent activation of transcription (46). Abnormal 
regulation of Hippo pathway leading to overexpression of 
YAP1 or TAZ has been shown to be elevated in numerous 
types of cancers and can directly promote tumorigenesis in 
mouse models (47). Further, metastatic breast tumors have 
been associated with BCSCs which express a remarkable 
TAZ abundance further suggesting the significance of YAP/
TAZ in CSCs (48,49). 

The Wnt/Frizzled/β-catenin pathway is an important 
regulator of normal breast development as well as abnormal 
tumorigenesis. The Wnt signaling proteins play an 
important role alongside the Frizzled family of cell surface 
receptors and the Dishevelled family of phosphoproteins to 
regulate the proteolytic degradation of β-catenin. β-catenin 
plays an unequivocal role in gene transcription that is 
involved in determining cell migration, cytoskeletal activity, 
cell polarity, and cellular differentiation and the inhibition 
of β-catenin signaling has been shown to prevent mammary 
development and cellular proliferation during pregnancy 

(50,51). Most notably, overexpression of Wnt signaling 
pathways led to breast tumor formation in transgenic mice 
and an increased number of progenitor cells in precancerous 
mammary glands (52,53).

Hedgehog signaling is another critical regulator of 
cell proliferation, stem cell maintenance, and cell fate, 
including cell self-renewal (54). The pathway is essential 
for the proper development of mammary epithelium and 
its disruption has been linked to human breast cancer (55). 
Previous studies have illustrated the interaction of hedgehog 
ligand with the patched (Ptch) receptor of a neighboring 
cell leading to the release of activated Gli which undergoes 
nuclear translocation to regulate gene expression. Gli-1 and 
Ptch-1 illicit regulatory negative feedback on hedgehog 
signaling which has been observed to be reduced or lost in 
a significant proportion of breast cancers (56-58). Further, 
components of hedgehog signaling have been correlated 
with activation of breast CSCs and high expression 
levels have also been linked to maintenance of the tumor 
microenvironment which results in autocrine activation of 
stroma via endogenous generation of Hedgehog ligands 
(59,60). Aberrant activation of the Hedgehog effector Gli-1 
is linked to increased tumor formation and the development 
of breast cancers in experimental models (61).

Therapy resistance

It is well established that CSCs utilize multiple lines 
of self-defense against chemotherapeutic drugs and 
ionization therapies (62). Despite intensive studies in the 
past, the mechanisms by which breast tumors become 
chemoresistant is not fully understood (63). Tumor 
heterogeneity is a key product of CSCs and a key feature 
of therapy resistance, especially when specifically targeting 
CSC surface markers (64). 

An overwhelming amount of chemotherapy drugs target 
cells undergoing proliferation. CSCs are predominantly 
in a resting G0 phase of the cell cycle. Thus, CSCs are 
inherently immune to the actions of drugs which rely on 
an overactive cell cycle (64). Further, CSCs under attack 
by radiation or chemotoxic agents upregulate IGF (insulin-
like growth factor) type 1 receptor and increase secretion 
of IGF1. In the resting G0 phase, this expression pattern 
inhibits PI3K-AKT signaling and activates Fox03a slowing 
the cell cycle and stimulating self-renewal (65).

CSCs utilize ALDH1, a member of the NADP+ 
dependent super family of enzymes known for the 
physiological and detoxification mechanism involved 
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in CSCs self-defense. ALDH1 functions by catalyzing 
the conversion of aldehyde to carboxylic acids, which 
accumulates as a result of chemotherapy, radiation, or other 
sources of oxidative stress (66). Downregulating ALDH1, 
by retinoic acid, has been shown to be an effective treatment 
in some cancers and a promising treatment sensitizing agent 
in solid mass breast tumors (67).

ABC transporter act ivat ion of  ATP-dependent 
chemotoxin efflux is another mechanism CSCs employ 
to establish resistance against chemotherapeutic agents 
and other molecularly targeted therapies (68). Thus, 
targeting ABC transporters poses a potential mechanism 
to re-sensitize CSCs and inhibit this pathway of therapy 
resistance. However, ABC transporters play an important 
role in normal tissue physiology and their inhibition could 
lead to severe side effects (67).

Current approaches 

Eradicating breast cancer is only possible if we overcome 
the challenges of effectively and specifically targeting 
breast CSCs. Despite their abundance, the majority of 
CSC markers are inadequate for targeting as they are also 
expressed on normal stem cells. CD44 is the most common 
CSC marker and is a major contributor to stemness (69). 
Despite numerous challenges associated with CD44 splicing 
and post-translational modification, anti-CD44 antibodies 
have been effective at inducing terminal differentiation of 
CSC resulting in reduced tumor growth and a significant 
decrease in metastasis (70,71). 

Another key CSC marker is CD133 and treatment with 
a cytotoxic anti-CD133 antibody has proven effective at 
eradicating numerous cancers in vivo (72). Despite the 
effectiveness of this approach, targeting CD133 is a rather 
controversial strategy as its function in normal tissues is not 
yet fully understood. However, bi-specific antibodies have 
recently been developed to initiate a T cell response against 
CD133 (73). 

Targeting CSC signaling pathways that play critical roles 
in self-renewal and defense has been an area of increasing 
research and clinical trials (74). The Notch pathway has 
been implicated particularly in breast CSCs and is thought 
to increase the rate of epithelial-mesenchymal transition 
ultimately contributing to an increase in metastasis of the 
CSCs (75). Numerous studies have shown inhibition of 
Notch signaling to resensitize BCSCs to chemotherapeutic 
agents and radiation therapy (76). In particular, Psoralidin, 
a plant-based inhibitor of Notch signaling has been shown 

to effectively decrease bulk tumor size, upregulate pro-
apoptotic genes, and inhibit CSC proliferation and self-
renewal (77).

Mediation of the Hippo signaling protein YAP/TAZ has 
been implicated as an important regulator and inhibitor 
of self-renewal in BCSCs (49). Overexpression of TAZ 
promoted tumor growth and an increase in the CSC 
phenotype, whereas, TAZ knockdown models reported a 
decrease in overall tumor size and significant decrease in 
CSC proliferation (78). These findings have indicated YAP/
TAZ as an important target for the development of cancer 
therapies.

Dysregulation of the Hedgehog signaling pathway is 
believed to play a critical role in the formation of CSCs. 
Cyclopamine, a well-known Hedgehog antagonist used heavily 
to study tumor behavior, has been shown to deplete CSC 
populations via inhibition of CSC proliferation, and ultimately 
result in a decrease of the overall tumor size in multiple cancers 
(79-82). Currently, the most direct and potent inhibitor of 
SMO, a Hedgehog ligand, is vismodegib (83). However, its 
efficacy in treating breast cancer is not yet clear.

Hedgehog abnormalities are linked to dysfunction of 
the Wnt pathway which plays a role in maintaining the 
self-renewal capabilities of CSCs. Wnt/Frizzled/β-catenin 
inhibitors include non-steroidal anti-inflammatories 
(NSAIDs), COX-2 inhibitors, and glitazone anti-diabetic 
agents which have all shown promise pre-clinically as 
therapy agents capable of reducing the ability of CSC to 
self-renew (83,84). Additionally, anti-Frizzled receptor 
antibodies have proven effective at reducing tumor growth 
and regressing CSC populations (85). However, their use 
is not believed to be safe considering the importance of the 
Wnt pathway in normal tissue homeostasis (86).

In addit ion to targeting CSC surface markers, 
transporters, and signaling pathways, many studies have 
demonstrated decreased tumor growth by targeting the 
tumor microenvironment resulting in an increase in the 
effectiveness of chemotherapy (87,88). In particular, 
repertaxin, a non-competitive inhibitor of IL-8 cytokine 
is one example of such a drug proven to effectively target 
human BCSCs (89). Lastly, recent studies have demonstrated 
the use of cannabinoid receptor agonist, ACEA, as an 
effective agent to decrease the invasiveness of BCSCs (90).  

Conclusions

There is compelling evidence that cancer is a disease 
manifested and maintained by stem cells. Breast cancer 
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remains a major cause of morbidity and mortality in women 
worldwide. While tremendous amounts of research have 
been done to understand breast cancer, there is still much 
we do not fully understand. We have learned that CSCs are 
responsible for tumor initiation, development, metastasis, 
and most importantly recurrence after treatment. We have 
attempted to provide a representative overview of breast 
cancer prevalence, the stem of its manifestation, and novel 
therapies currently being explored to treat patients with this 
relentless disease. 
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