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The endothelial cells that coat the inner wall of blood 
vessels are essential for the maintenance of the vascular 
network, metabolic homeostasis and stem cell populations 
in tissue or tumor microenvironments (1-3). Angiogenesis 
is defined as neovascular formation through the sprouting 
and proliferation of endothelial cells from preexisting 
blood vessels. VEGF (VEGFA) and FGFs that transduce 
signals through VEGFR2 and FGFRs, respectively, are 
representative proangiogenic factors (4,5). In contrast, 
hematopoietic  stem cel ls  (HSCs) generated from 
hemangiogenic endothelial cells in the aorta-gonad-
mesonephros (AGM) region of the developing embryo 
ultimately reside in the perivascular niche of postnatal bone 
marrow (6). HSC-derived myeloid progenitor cells give rise 
to macrophages, myeloid-derived suppressor cells (MDSCs) 
and endothelial progenitor cells (EPCs, also called myeloid 
angiogenic cells or MACs) that regulate angiogenesis and 
immunity (7). M2-like macrophages and MDSCs produce 
VEGF and FGF2 to promote angiogenesis (8), whereas 
EPCs integrate into the endothelial network of blood 
vessels to support vascular regeneration (9). Endothelial and 
immune cells work together in a variety of processes during 
fetal development, tissue repair and tumor formation.

Recently, Wakabayashi et al. found upregulation of 
the expression of Abcg2, Abcb1a, Cd34, Cd157 (Bst1), 
Cd200 (Ox2), Cxcl12, Dusp2, Igfbp3, Il6, Mycn, Sema3g 
and Tnfrsf10b in the stem cell-enriched “side population” 
of liver endothelial cells in comparison with the main 
population of liver endothelial cells (10). The authors 
focused on the surface markers CD157 and CD200 and 
found that CD157/CD200 double-positive liver endothelial 

cells formed more CD31 (PECAM1)-positive colonies than 
CD200 single-positive or CD157/CD200 double-negative 
liver endothelial cells in vitro. The expression levels of Atf3, 
Fosl2, Myc and Sox7 were significantly upregulated in the 
CD157/CD200 double-positive cells compared with the 
CD200 single-positive or CD157/CD200 double-negative 
cells; however, the functions of these transcription factors 
in CD157/CD200 double-positive endothelial cells remain 
unclear. CD157/CD200 double-positive endothelial cells 
derived from other organs or tissues, including the brain, 
heart, limb muscle, lungs, retina and skin, possess enhanced 
endothelial colony-forming potential. Wakabayashi et al. 
transplanted endothelial cells into the splenic parenchyma 
of adult mice after inducing endothelial damages with 
genotoxic pyrrolizidine alkaloid and subsequent whole-body 
irradiation and found that CD157/CD200 double-positive 
endothelial cells were incorporated into the damaged liver 
vasculature; gave rise to CD157/CD200 double-positive, 
CD200 single-positive and CD157/CD200 double-negative 
endothelial cells; and reconstituted the portal vein, sinusoids 
and central vein in the repaired liver.

CD200 and CD200R1 are dual markers of mammary 
stem cells with mammosphere-forming potential and 
mammary gland-repopulating capacity, and the expression 
levels of Cd157, Cdh3, Fzd7, Lgr4, Lgr6 and Wnt10a 
are upregulated in the CD200/CD200R1 double-high 
population of mammary epithelial cells (11). CD200 is a 
marker of the limbal stem cells that maintain the corneal 
tissue, and ABCB5, CDH3, PAX6 and WNT7A expression 
levels are upregulated in the CD200-positive population of 
corneal epithelial cells (12). In contrast, CD157 is a marker 

Editorial Commentary

CD157 and CD200 at the crossroads of endothelial remodeling 
and immune regulation

Masuko Katoh1, Masaru Katoh2

1M & M PrecMed, Tokyo, Japan; 2Department of Omics Network, National Cancer Center, Tokyo, Japan

Correspondence to: Masaru Katoh. Department of Omics Network, National Cancer Center, 5-1-1 Tsukiji, Chuo-ward, Tokyo 104-0045, Japan. 

Email: mkatoh-kkr@umin.ac.jp.

Comment on: Wakabayashi T, Naito H, Suehiro JI, et al. CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative 

Properties. Cell Stem Cell 2018;22:384-97.e6.

Received: 11 March 2019; Accepted: 08 April 2019; Published: 19 April 2019.

doi: 10.21037/sci.2019.04.01

View this article at: http://dx.doi.org/10.21037/sci.2019.04.01

 

mailto:mkatoh-kkr@umin.ac.jp
https://crossmark.crossref.org/dialog/?doi=10.21037/sci.2019.04.01


Stem Cell Investigation, 2019

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2019;6:10sci.amegroups.com

Page 2 of 7

of Paneth cells in intestinal crypts that support the self-
renewal and proliferation of intestinal stem cells (13), as 
well as fibroblastic reticular cells at the interface of germinal 
centers and the T cell zone that support the affinity 
maturation of plasma cells (14). These facts indicate that 
CD157 and CD200 are surface markers of stem or niche 
cells in several tissue microenvironments.

CD157, a glycosylphosphatidylinositol (GPI)-anchored 
protein, functions as a component of integrin adhesion 
receptor complexes that activate SRC, ERK and AKT 
signaling cascades and as an ectoenzyme catalyzing 
nicotinamide adenine dinucleotide into cyclic ADP-ribose, 
which increases the intracellular Ca2+ concentration through 
mobilization from the intracellular pool (15). CD157 
expression is found on neutrophils and upregulated by the 
chemokine CCL2 (MCP1) in circulating monocytes, and 
these expression patterns regulates the transendothelial 
migration of neutrophils and monocytes, respectively 
(16,17). CD157 is involved in the integrin-mediated 
migration of UE7T-13 cells derived from bone barrow 
mesenchymal stem cells (MSCs) (18). Because CD157 
overexpression induces epithelial-to-mesenchymal transition 
(EMT) and enhances the motility and invasiveness of 
tumor cells, the upregulation of CD157 expression is 
associated with a poor prognosis in patients with epithelial 
ovarian cancer or biphasic malignant pleural mesothelioma 
(19,20). In addition, CD157 is expressed by hematological 
malignancies, such as the M4 and M5 subtypes of acute 
myeloid leukemia (AML) and B-cell precursor acute 
lymphoblastic leukemia (BCP-ALL) (21,22).

The CD157 gene and paralogous CD33 gene are clustered 
in a head-to-tail manner at human chromosome 4p15.32 (15). 
The single-nucleotide polymorphism rs11724635 of the human 
CD157 gene is associated with the risk of Parkinson’s disease 
in Asian, European and United States populations [odds ratio 
per minor allele dose =0.87 (P=2.43×10-9)], with a population-
attributable risk of 7.82% (95% CI: 5.30–9.47) (23). Parkinson’s 
disease is a neurodegenerative disease that is characterized 
by motor symptoms, such as bradykinesia and resting tremor 
(24,25), and nonmotor symptoms, including anxiety, cognitive 
dysfunction, depression, hyposmia and sleep disorder (26,27). 
Cd157 knockout mice manifested anxiety- and depression-like 
symptoms (28); however, the causal link between the CD157 
SNP and Parkinson’s disease remains unclear.

CD200 i s  a  t ransmembrane  prote in  wi th  two 
extracellular immunoglobulin-like domains and a short 
cytoplasmic tail that is expressed on a variety of cells, 
such as B and T lymphocytes, endothelial cells, neurons 

and pancreatic islet cells (29,30), and whose expression 
is upregulated by IL4 (31). CD200 transduces signals 
through CD200R (CD200R1), a transmembrane protein 
with two extracellular immunoglobulin-like domains and 
a cytoplasmic NPxY motif (32,33). CD200R is expressed 
on myeloid-lineage immune cells (MDSCs, macrophages, 
monocytes, dendritic cells, basophils and eosinophils) and 
lymphocytic-lineage immune cells [T-helper type 2 (Th2) 
lymphocytes and innate lymphoid type 2 (ILC2) cells], and 
CD200R expression is upregulated in M2 macrophages and 
Th2 lymphocytes by IL4 and mediates immunosuppressive 
effects (32,34-36). Interaction between CD200 and 
CD200R leads to the phosphorylation of tyrosine 302 in 
the NPxY motif of CD200R, which recruits the Dok2-
RasGAP complex to repress Ras-ERK signaling in myeloid  
cells (33). Cd200 knockout mice are prone to collagen-
induced ar thr i t i s  and exper imenta l  autoimmune 
encephalomyelitis owing to the activation and expansion 
of macrophages and microglial cells, respectively (37). 
Cd200 knockout mice are also resistant to chemically 
induced skin tumorigenesis owing to decreased immune  
tolerance (38), whereas compared with CD200- B16 
melanoma cells, CD200+ B16 melanoma cells exhibit 
enhanced tumorigenesis owing to the expansion of myeloid-
lineage cells and increased tumor angiogenesis in Cd200r 
knockout mice (39). CD200-CD200R signaling plays a 
critical role in cancers and noncancerous diseases through 
the regulation of immunity and angiogenesis.

In a clinical study, cell-surface CD200 expression 
on B lymphocytes was upregulated in 100% (n=87) 
of patients with B-cell chronic lymphocytic leukemia 
(B-CLL) compared with healthy donors (40), whereas 
cell-surface CD200 expression on blast cells was detected 
in 56% (136/244) of patients with AML (41). CD200 
immunostaining is frequently detected in B-CLL (100%, 
n=21), hairy cell leukemia (100%, n=12), mediastinal 
large B-cell leukemia (100%, n=8), classical Hodgkin 
lymphoma (92%, 12/13) and multiple myeloma (77%, 
10/13) among B-cell lymphoproliferative disorders (42). 
CD200 immunostaining is also detected in solid tumors, 
such as basal cell carcinoma (100%, n=9), papillary thyroid 
carcinoma (100%, n=10), gastrointestinal carcinoid tumors 
(95%, 78/82), pancreatic neuroendocrine tumors (93%, 
56/60), Merkel cell carcinoma (84%, 125/149), small 
cell lung carcinoma (83%, 60/72), renal cell carcinoma  
(71%, 5/7) and ovarian cancer (67%, 6/9) (43). In addition, 
CD200 expression is upregulated in cancer-associated 
fibroblasts (44) and infiltrating CD4+ T lymphocytes (45) in 
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patients with lung cancer or classical Hodgkin lymphoma, 
respectively. Because CD200 transduces immunosuppressive 
signals through CD200R on myeloid-lineage cells and T 
lymphocytes, CD200 expression on tumor cells, cancer-

associated fibroblasts and CD4+ T lymphocytes can 
induce immune evasion through the expansion of M2-like 
macrophages and regulatory T (Treg) cells (46) and reduced 
infiltration of CD4+ and CD8+ T lymphocytes and natural 
killer cells (39) into the tumor microenvironment. 

Anti-CD200 monoclonal antibodies (mAbs) (47) and 
engineered CD8+ T lymphocytes expressing CD200R-
CD28 chimeric proteins (CD200R-IFP T cells) (48) have 
been developed as investigational therapeutics targeting the 
immunosuppressive CD200-CD200R signaling cascade. 
Antagonistic anti-CD200 mAbs show antitumor effects in 
a mouse model of B-CLL, whereas engineered chimeric 
CD200R-CD28 T lymphocytes showed antitumor effects 
in a mouse model of erythroleukemia. However, because 
inflammation and immune tolerance are both involved in 
tumorigenesis (49,50), preclinical mouse-model experiments 
have revealed context-dependent functions of CD200-
CD200R signaling in tumor progression (39,51) and tumor 
suppression (52,53). The exploration of biomarkers predicting 
antitumor effects without severe adverse effects related to 
autoimmunity is necessary for the clinical application of 
CD200-CD200R signaling-targeted therapeutics.

Neuronal CD200 immunostaining in the central nervous 
system (CNS) is downregulated in the postmortem brain of 
patients with Alzheimer’s disease (54), multiple sclerosis (55) 
or Parkinson’s disease (56), which are characterized by 
CNS destruction mediated in part through inflammation 
triggered by β-amyloid, β-synuclein and α-synuclein, 
respectively (57-59). The defect in Cd200 expression 
in Cd200 knockout mice leads to enhanced microglia/
macrophage activation in the CNS and accelerated 
neurodegeneration (37), whereas the upregulation of 
neuronal Cd200 expression in Wlds mice leads to decreased 
microglia/macrophage accumulation in the CNS and 
decelerated neurodegeneration (60). CD200 can protect the 
CNS from neurodegeneration through the maintenance 
of the blood-brain barrier (61), suppression of microglia/
macrophage-mediated inflammation (37) and promotion 
of FGFR-dependent neuronal survival (62). A CD200-Fc 
fusion protein (63), an adeno-associated virus expressing 
CD200 (AAV-CD200) (64) and an agonistic anti-CD200R 
mAb (63) have been developed as investigational drugs that 
stimulate CD200 signaling for neuroprotection; however, 
these drugs still remain in preclinical stages.

CD157 and CD200 are surface markers of stem/niche 
cell populations in tissue or tumor microenvironments 
(Figure 1). CD157 is a GPI-anchored ectoenzyme that 
generates cyclic ADP-ribose and functions as an integrin-
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Figure 1  CD157 and CD200 in vascular regeneration, 
tumorigenesis and neurodegeneration. CD157 (BST1) is a 
glycosylphosphatidylinositol-anchored ectoenzyme that produces 
cyclic ADP-ribose (cADPR). CD200 (OX-2) is expressed on 
endothelial cells, lymphocytes, pancreatic islet cells, neurons and 
cancer-associated fibroblasts and is a transmembrane-type ligand 
for the CD200R receptor, which is expressed on myeloid- and 
lymphoid-lineage cells. CD157 and CD200 are coexpressed on 
endothelial stem cells. CD200 and CD200R are coexpressed on 
mammary gland stem cells. CD157 is expressed on Paneth cells, 
which support intestinal stem cells. CD157 is expressed in acute 
myeloid leukemia, B-cell precursor acute lymphoblastic leukemia, 
mesothelioma and ovarian cancer, whereas CD200 is expressed in 
B-cell lymphoproliferative disorders, such as chronic lymphocytic 
leukemia and classical Hodgkin lymphoma, and solid tumors, 
including basal cell carcinoma, papillary thyroid carcinoma, 
pancreatic neuroendocrine tumors, Merkel cell carcinoma, small 
cell lung carcinoma and ovarian cancer. The CD157 single-
nucleotide polymorphism rs11724635 is associated with the risk of 
Parkinson’s disease. Neuronal CD200 expression is downregulated 
in the postmortem brain of patients with Alzheimer’s disease, 
multiple sclerosis or Parkinson’s disease. CD157 and CD200 are 
involved in a variety of physiological and pathological processes at 
the crossroads of vascular remodeling and immune regulation.
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interacting protein, whereas CD200 is a transmembrane-
type ligand that transduces immunosuppressive signals 
through CD200R. CD157 and CD200 are involved in a 
variety of pathophysiological processes, such as vascular 
regeneration, tumor progression and inflammation-related 
neurodegeneration (Figure 1). Anti-CD200 mAbs and 
CD200R-IFP T cells are investigational drugs that inhibit 
CD200 signaling for the treatment of cancer patients 
with immune evasion (Figure 2A), whereas an agonistic 
anti-CD200R mAb, AAV-CD200 and CD200-Fc are 
investigational drugs that activate CD200 signaling for 
the treatment of patients with neurodegenerative diseases 
(Figure 2B). The context-dependent functions of CD200-
CD200R signaling in tumor and neuroinflammatory 
microenvironments should be further investigated before 
CD200-CD200R signaling-targeted therapeutics are 
applied in the clinic in the future.
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