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Introduction

Pulmonary fibrosis is common in different inflammatory 
lung diseases, such as interstitial pneumonia, chronic 
obstructive pulmonary disease (COPD), and silicosis. The 
lungs have a very limited ability to regenerate, compared to 
other organs (1), and there is currently no effective clinical 
drug treatment for pulmonary fibrosis. 

Idiopathic pulmonary fibrosis (IPF) is a life-threatening 
lung disease whose pathogenesis is associated with steady-

state imbalance in pulmonary epithelial cells (2,3). 
Currently, there is no effective treatment for this end-
stage lung fibrosis disease. However, some FDA-approved 
therapeutic agents, including pirfenidone and nintedanib, 
can clearly reduce the average decrease in the function of 
the lung in the IPF patients (3,4). 

Current studies  have invest igated whether the 
pathogenesis of IPF is related to chronic epithelial injury 
that leads to abnormalities of the wound healing process, 
and both fibroblast proliferation and activation, rather than 
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inflammation (2,3,5). The abnormal healing of wounds can 
cause a loss of the balance between the extracellular matrix 
formation and degradation (6,7). The IPF causes involve 
multiple mechanisms and factors, but the exact reason 
is still unknown. For example, smoking, environmental/
occupational contaminants, microbial agents, chronic 
aspiration of gastroesophageal reflux and genetic 
abnormalities, are key factors that are associated with IPF (8). 
In addition, both the genetic predisposition and genome 
mutations are linked to the IPF pathology. Thus, mutations 
in the SFTPC gene, which codes for surfactant protein C 
(SP-C), the adenosine triphosphate binding cassette A3 
gene, surfactant protein A2 (SP-A2) gene, telomerase gene 
or other genes, which play roles in host defense, adhesions 
between cells or repairing DNA, can contribute to the lung 
fibrosis (9,10). Other factors and enzymes are also important 
for the development of IPF. The telomerase activity, for 
instance, varies in different cell types and affects lung stem 
cells (11,12), while increased IPF telomerase activity in 
lung fibroblasts make these cells have certain anti-apoptotic 
functions (12). 

IPF is still an unexplained chronic and progressive 
pulmonary fibrosis disease, with a poor prognosis. IPF 
patients have an average survival time of 3 to 5 years 
(13,14). The main reason for the failure of traditional 
therapies is due to a lack of proper understanding of the 
IPF pathogenesis. Both managing and treating the medical 
conditions associated with IPF comorbidities, including the 
COPD, gastro-esophageal reflux, obstructive sleep apnea 
and inhibiting the pathways which trigger the fibrogenic 
process, are the emphasis of the conventional therapeutic 
approaches (15).

The American Thoracic Society (ATS) has updated 
the IPF Clinical Practice Guide to include some changes 
in 2011 (16). These changes include an objection against 
the IPF therapy with prednisone combined with both 
N-acetylcysteine and azathioprine, which were found 
to increase the death rate by almost ten times. They 
also involve an opposition against the use of warfarin, 
imatinib, and ambrisentan as well as sildenafil, macitentan 
and bosentan in the treatment of IPF patients (16). 
Meanwhile, the new ATS guideline has continued previous 
recommendation for N-acetylcysteine (conditional 
recommendation against monotherapy for IPF) and antacid 
therapy in patients without symptoms of gastro-esophageal 
reflux (conditional recommendation) (2,3,16). 

Lung transplantation is currently a feasible scheme 
and successful curative therapy for some IPF patients 

with limited comorbidity symptoms (7). However, the 
lack of donor organs and limited patient suitability for 
transplantation make lung transplantation less applicable 
and, therefore, other therapeutic approaches have been 
investigated and tested in last decades (2,3,5,17,18). Recent 
discoveries of IPF mechanisms have helped in designing 
new treatment regimens. For example, new potential IPF 
targets include angiotensin receptor inhibitors, which 
hinder the proliferation of fibrotic fibroblasts induced by 
ANG II (19), NOX-4 antagonists (NADPH oxidase 4) 
that downregulate the reduction of O2 to reactive oxygen 
species (ROS) (20), and galectin-3 inhibitors that block 
TGF-β induced β-catenin activation and attenuate lung 
injury (21). These targets also involve FoxO3, which is an 
important integrator of pro-fibrotic signaling pathways 
in fibrotic lungs and, therefore, reconstitution of FoxO3 
pharmacology is currently a novel therapeutic approach (22). 
In addition, the IPF-associated endothelial microparticles 
are other targets required for the fibrinolytic activity-
mediated fibroblast invasion in fibrotic lungs (23).  

More targets and therapeutic agents are under intensive 
investigation and/or development, including the FDA-
approved pirfenidone and nintedineb, which can treat IPF 
by decreasing the decline of IPF lung functions and disease 
progression (4,16,24). Other effects of pirfenidone include 
preventing the deposition of hydroxyproline, procollagen 
I and III, inflammatory cells and transforming growth 
factor β (TGF-β) in different lung tissues (24). Similarly, 
nintedanib, which is a CDK4 kinase inhibitor that acts 
against three tyrosine kinase receptors; PDGFRα, VEGFR 
and FGFR1, can inhibit the progression of IPF by slowing 
down the declining rate of the forced vital capacity (FVC) in 
the lung (25). However, the ultimate cure for IPF remains 
to be seen, and other targets are still being sought.

Types of cells used in the cell-based therapies 
of IPF

The cell-based strategies are extensively investigated to find 
treatments for IPF (26-30). Cell therapy for IPF is mainly 
achieved by replacing damaged cells with regenerated 
cells and/or the administered cell paracrine properties. In 
this section, we will discuss recent developments in the 
regenerative medicine field and its applications in the cell-
based therapy of IPF. In addition, recent clinical trials in for 
IPF will be reviewed.

A variety of cells are used in the IPF treatment studies, 
including lung epithelial cells type II (31), lung mixed lung 
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epithelial cells (32), and different stem cell types, including 
lung stem cells, induced pluripotent stem cells (iPSCs), 
embryonic stem cells (ESCs), mesenchymal stem cells 
(MSCs), and adipose stem cells (ADSCs) (33-36). Notably, 
both endogenous alveolar epithelial and bone marrow-
derived mesenchymal cells are most widely investigated for 
the IPF treatment (37). These different cell types will be 
discussed in the following subsections.

Alveolar epithelial cells (AECs)

In the alveolar epithelium of the peripheral lung, alveolar 
epithelial type I (AECI) cells enable gas exchange with 
lung blood capillaries, while alveolar epithelial type II 
(AECII) cells secrete pulmonary surfactants that reduce 
alveolar surface pressure (15,38,39). AECII cells can self-
replicate and serve as adult stem cells that differentiate into 
AECI cells during normal homeostatic turnover and when 
the AECI cell number is reduced by injury (40). AECII 
cells are, therefore, the “caretaker” cells of the alveolar 
compartment, since they can protect the epithelium, initiate 
repair processes and maintain alveolar structure, if an injury 
occurs. A study showed that lung fibrogenesis was reversed 
after transplanting AECII cells in the rodent model of 
bleomycin-induced (BLM) lung fibrosis (31). 

AECII cells used for transplantation could be isolated 
from the healthy lung (31) or produced in culture from 
differentiated adult stem cells (17). The use of freshly 
isolated AECII cells is more effective and safer since they 
do not have tumor forming potentials, while adult stem 
cells may undergo abnormalities in their chromosomes, 
leading to the formation of malignant tumors after 
transplantation in the lung (41). AECII cells-derived from 
human embryonic or bone marrow stem cells (BMSCs) 
could be also transplanted into a BLM induced IPF model 
(35,42). In addition, AECs can be produced from ESCs in 
culture. For example, the airway specific cells, including 
ciliated, Clara, basal and intermediate epithelial cells, can 
be formed when murine ECSs grow as embryonic bodies 
on surfaces coated with collagen. The culture medium of 
these cells is supplemented with specific growth factors 
before re-plating on an air liquid-interface culture (43,44). 
Despite their sources, transplantation of AECII cells into 
the lungs of BLM—induced IPF animal models can lead 
to a remarkable reduction of collagen contents, supporting 
the potential function of AECII cells in healing lung  
injuries (33). Remarkably, recent infusions of allogeneic 
adult lung spheroid cells (LSCs) into fibrosis animal models 

can inhibit the inflammation progression and fibrosis 
manifestation, suggesting intrinsic adult LSCs for lung 
therapy (45). A summary of key preclinical and clinical 
studies exploring the applications of AECII, LSCs and 
ESCs in IPF therapy is shown in Tables 1,2.

Mixed lung epithelial cells

Since the isolation of AEC cells from the lung or generation 
from differentiated stem cells is a complicated process, it 
was proposed that the use of mixed lung epithelial cells is 
easier, faster and efficient for the lung cell-based therapy 
than AEC alone (32). The lung epithelial cell mixture 
expresses surfactant protein C in culture and in vivo. The 
intra-tracheal delivery of lung epithelial cell mixture into 
a BLM-induced animal model of fibrosis was shown to 
improve lung fibrosis (32).

Stem cells

Stem cells have been studied for many years as a potential 
treatment for the chronic diseases. Stem cells, including 
ESCs, ADSCs, MSCs, bone marrow stem cell (BMSCs) and 
endogenous lung stem/progenitor cells, have two essential 
properties; a controlled and unlimited self-renewal capacity, 
and a differentiation ability into different specific cell lines. 
Adult stem cells from the bone marrow, umbilical cord, 
and adipose tissue are commonly used for the study and 
potential treatment of the chronic lung diseases such as IPF 
(37,49). Remarkably, stem cell-based tissue engineering 
aims to mimic the native stem cell niche and maintain stem 
cell function within the graft by providing appropriate 
microenvironmental cues in a controlled and reproducible 
fashion that will facilitate the application of stem cell 
therapy in human diseases, including IPF (50).    

Mesenchymal stromal/stem cells
Adult mesenchymal stromal/stem cells (MSCs) are originally 
isolated from adult bone marrow stroma and exist in other 
tissues, such as the umbilical cord, amniotic fluid, epidermis 
and cord blood (51). MSCs are multipotent and, therefore, 
can differentiate into a wide range of cell lines (51,52). 
MSCs tend to target damaged tissues when systemically 
administrated via intravenous (IV) or intraperitoneal (IP) 
injection (53,54). Thus, intraperitoneally (IP) injected 
amniotic fluid stem cells, including MSCs, can migrate and 
be detected in different body organs such as the lung (55).

MSCs have potent anti-proliferative, anti-apoptotic, 
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immune-modulatory and anti-inflammatory properties, 
besides their multilineage capacity, which make them have a 
great therapeutic potential for different diseases (37,51,52). 
In addition, MSCs can modify the micro-environmental 
factors at the engraftment site that can enhance their 
therapeutic potential (37). Interestingly, the better 
understanding of the effect of extracellular environment 
on MSC paracrine activity, together with recent progress 
in bioengineering, can enhance the success of the clinical 
application of MSC therapy (56). Indeed, MSC therapy 
is a good candidate for different autoimmune diseases 
because of their immunomodulatory and anti-inflammatory 
competence (57,58). A summary of key preclinical and 
clinical studies exploring the applications of MSCs (from 
different sources) in IPF therapy is shown in Tables 3-6.

MSCs derived from the bone marrow (BM-MSCs)
The bone marrow is the major source of MSCs, and BM-

MSCs have been intensively investigated in IPF treatment 
(34,81). Remarkably, the granulocyte colony-stimulating 
factor (G-CSF)-augmented BM-MSCs can result in an 
improvement of lung healing in the animal model of lung 
injury (82). Similarly, BM-MSC infusion can reverse the 
BLM-induced lung fibrosis (69). Therefore, BM-MSCs 
play a key role in the healing of different lung injuries and, 
consequently, can alleviate the fibrosis symptoms (83). 
However, IPF patient-isolated BM-MSCs were recently 
shown to be senescent with alterations in mitochondrial 
functions and DNA damages (84). A summary of key 
preclinical/clinical studies on IPF therapy using BM-MSCs 
is shown in Tables 3,4.

MSCs derived from the umbilical cord and placenta
MScs derived from the aborted fetuses, umbilical cord, 
or discarded test-tube human embryos have high stem 
cell plasticity/phenotype, with low immunogenicity in 

Table 1 Summary of key IPF preclinical study results using AECII, LSCs, ASCs & ESCs cells

Type/source of MSCs Delivery route/dose Efficacy results References

AECII cells A dose of 2.5×106 per rat Treated rats after BLM instillation can restore the levels 
of lung surfactant proteins 

(46)

AECII cells Intratracheal route. A dose of 
2.5×106 cells per rat

Treated rats after BLM instillation show a decreased 
lung fibrosis severity, associated with an inhibited 
collagen deposition 

(31)

AECII, (and AECI and club cells) 
derived from human ESCs

Intratracheal route. A dose of 105 
human-ESC cells

Treated mice after BLM instillation show increased ATI 
and ATII levels, and decreased collagen deposition 

(33)

AECII (and, AECI and club 
cells)-derived LSCs

IV route. A dose of 5×106 LSC cells 
per rat

LSC administration (at the same time of BLM in rats) 
decreases the progression and severity of lung fibrosis, 
maintains alveolar structures, decreases apoptosis but 
increases angiogenesis 

(45)

ASCs (amnion stem cells) IV route. 5×106 cells per mouse Treated mice after BLM instillation show a preserved 
lung function, a decreased collagen deposition, and 
inhibited CCL2 expression

(47)

ADSCs, adipose-derived MSCs; ADSCs-SVF, autologous adipose derived stromal cells-stromal vascular fraction; AECII, alveolar epithelial 
type II cells; AECI, alveolar epithelial type I cells; ASCs, amnion stem cells; BLM, bleomycin; BM-hMSCs, human bone marrow-derived 
mesenchymal stem cells; EMT, epithelial- mesenchymal transition; IPF, Idiopathic pulmonary fibrosis; LSCs, lung spheroid cells; PD-
MSCs, placenta-derived mesenchymal stem cells; IV, intravenous; IP, intraperitoneal; PAH, pulmonary arterial hypertension.

Table 2 Summary of key IPF clinical human study results using AECII cells

Type/source of ADSCs Delivery route/dose Efficacy results Safety results References

AECII cells 
(heterologous)

Intratracheal route. A dose of 1,000 
to 1,200×106 cells per patient

A halt of IPF diseases 
progression in treated patients

Administrated AECII cells are 
both safe and well tolerated

(48)

IPF, Idiopathic pulmonary fibrosis; AECII, alveolar epithelial type II cells; ADSCs, adipose-derived MSCs.
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Table 3 Summary of key IPF preclinical study results using MSCs cells

Type/source of MSCs Delivery route/dose Efficacy results References

Human placental MSCs IV route. A dose of 1×105 cells per 
mouse

Activation of MyD88 and TGF-β signalling decreased 
collagen deposition, pro-fibrotic cytokines production

(59)

Murine placenta-MSCs, 
human placenta-MSCs

IV or Intratracheal route, with a dose 
of 1×106 cells/mouse, Or IP route 
with a dose of 4×106 cells/mouse

 A decreased level of BLM-induced lung fibrosis and 
reduced neutrophil infiltration

(60)

Human umbilical-MSCs IV route. A dose of 1×106 cells per 
mouse

Treated mice show reduced fibrosis and inflammation, 
and decreased TIMP expression and lung cytokine 
production, and increased MMP expression

(61)

Lung resident-MSCs IV route. A dose of 0.15×106 or 
0.25×106 cells per mouse

Treated animals have a decreased infiltration of 
lymphocyte and granulocyte, and display a reduced 
pulmonary damage and mitigation of the PAH 
development

(62)

BM-MSCs. Amnion-MSCs, 
or human amniotic epithelial 
cells (hAECs)

IV. A dose of 1×106 cells per mouse. 
2 repeated doses at 0 and 7 days of 
treatments

All types of cells used in the treatments show a wide 
range of anti-inflammatory effects. Compared to the 
other used cell types, amnion-MSC treatments are more 
effective and decrease both fibrosis and TGF-β, but 
cause enhanced MMP-9 activity, GM-CSF secretion and 
IL-1RA induction

(63)

Human BM-MSCs 
(overexpressing microRNAs 
let-7d or miR-154) 

IV route. A dose of 5×104 cells per 
mouse

B-MSCs (overexpressing let-7d) administration leads to a 
decrease in both collagen deposition and CD45-positive 
cells, and a shift in animal weight loss as well as

(64)

BM-MSCs (transfected with 
HGF)

Intratracheal. A dose of 3×106 cells 
per rat

Treated rats show downregulated collagen deposition 
and decreased fibrosis in Ashcroft score 

(65)

BM-MSCs IV route. A dose of 5×106 cells per 
mouse

Treated mice after BLM instillation show decreased 
collagen deposition and inflammation

(66)

BM-MSCs IV route. A dose of 5×105 cells per 
mouse

Protection of treated lung tissue after BLM instillation, 
with inhibiting the pro-inflammatory cytokines IL-1 and 
TNF-α 

(67)

BM-MSCs IV route. A dose of 2.5×106 cells  
per rat

Treated rats after BLM instillation show decreased 
oxidative stress and collagen deposition 

(68)

BM-MSCs IV route. A dose of 5×106 cells per 
mouse

Treated mice after BLM instillation have suppressed 
inflammation and reduced reparative growth factor 
production 

(69)

BM-MSCs IV route. A dose of 106 cells per rat Treated rats after BLM instillation show a decrease of 
pulmonary inflammation and some fibrosis factors (e.g., 
TGF-β, IL-1β, VEGF, TNF-α, IL-6, and NOS)

(70)

BM-MSCs (human) IV route. A dose of 5×105 per mouse Treated mice after BLM instillation have a reduced 
endoplasmic reticulum stress and oxidative stress, and 
downregulated TGF-β1 production by alveolar cells

(71)

BM-MSCs (human) IV route. A dose of 5×106 per mouse Low levels of BM-MSCs engraft in BLM-induced fibrosis 
in immunodeficient NOD/SCID and NOD/SCID/β2 
microglobulin (β2M) null mice

(72)

Hypoxia-preconditioned 
BM-MSCs 

Intratracheal route. A dose of 5×105 
cells per mouse

Treated mice after BLM instillation show decreased 
fibrosis and inflammation and improvement of lung 
function 

(73)

knockdown BM-MSCs IV route. A dose of 5×104 cells/g 
body weight

Treated mice after BLM instillation show low levels of 
interleukin-1b and apoptosis, decreased fibrosis, and 
upregulated HGF levels

(74)

IPF, Idiopathic pulmonary fibrosis; MSCs, mesenchymal stem cells; BM, human bone; PAH, pulmonary arterial hypertension.
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culture and in vivo (85). The umbilical cord-derived MSCs 
(uMSCs) are less readily available compared to ESCs, 
while the placenta-derived MSCs can engraft in the lung 
and other solid organs after xenotransplantation. Moodley 
and colleagues studied the therapeutic effects of uMSCs in 
BLM-induced lung injury and found that these cells can 
inhibit lung inflammation and fibrosis by up-regulating 

anti-inflammatory modulators but downregulating the 
cytokine expression (61). The systemically administered 
uMSCs are present in the injured lung after 2 weeks and 
may not exactly match with the recipient phenotype to 
avoid the graft-versus host reaction (61).

The effect of transplanted placenta-derived MSCs 
on lung fibrosis was also studies using murine models. 

Table 4 Summary of key IPF clinical human study results using MSC cells

Type/source of MSCs Delivery route/dose Efficacy results Safety results References

Placental MSCs 
(allogeneic)

IV route. A dose of 1 &  
2×106 cells/kg. One dose

No worsening of IPF and no 
deterioration in lung function that is 
stable in treated patients

Transient, but minor, 
acute adverse events

(75)

BM-MSCs (allogenic) IV route. A dose of 20×106 (n=3) 
100×106 (n=3) & 200×106 cells 
(n=3). One dose

Exploratory results with: 5.4% mean 
decline in % predicted DLCO and 
3.0% mean decline in % predicted 
FVC in treated patients

No serious adverse 
events, but IPF 
progression has 2 non-
treatment related deaths 

(76)

IPF, Idiopathic pulmonary fibrosis; MSCs, mesenchymal stem cells; BM, human bone.

Table 5 Summary of key IPF preclinical study results using ADSCs

Type/source of ADSCs Delivery route/dose Efficacy results References

ADSCs IV route. A dose of 2.5×104 or 2.5×105 
cells per mouse

Treated mice show a decreased lung fibrosis and 
inflammation in a dose-dependent manner

(77)

ADSCs (human) IP route. A dose of 3×105 cells per 
mouse

Treated mice show a decreased lung fibrosis, inflammatory 
cell infiltration and epithelial cell hyperplasia, associated 
with inhibited TGF-β expression and epithelial cell 
apoptosis

(36)

ADSCs (young vs. old 
donor)

IV route. A dose of 5×105 cells per 
mouse

Treated old mice (>22 weeks old) with young ADSCs 
display a greater reduction in fibrosis, oxidative stress, 
MMP-2 activity, and apoptosis markers than mice treated 
with old ADSCs 

(78)

IPF, Idiopathic pulmonary fibrosis; ADSCs, adipose-derived MSCs.

Table 6 Summary of key IPF clinical human study results using ADSCs

Type/source of ADSCs Delivery route/dose Efficacy results Safety results References

ADSCs-SVF Endobronchial route. A dose of 
0.5×106 cells/kg of body weight 
in 10 cc. Three dosages for  
3 months

All patients are alive (at least for  
2 years after treatments, with median 
overall survival of 32 months, and 
median overall progression-free 
survival of 26 months

No formation of ectopic 
tissues and no difference in 
adverse events compared 
to the placebo effect

(79)

ADSCs-SVF Endobronchial route. A dose of 
0.5×106 cells/kg of body weight 
in 10 cc. Three dosages  
(for 3 months)

No deterioration in the functional 
parameters and life quality indicators 
in the treated patients

No formation of ectopic 
tissues and no difference in 
adverse events compared 
to the placebo effect

(80)

IPF, Idiopathic pulmonary fibrosis; ADSCs, adipose-derived MSCs.
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Transplantation of allogeneic and xenogeneic placenta-
derived MSCs notably reduces BLM-induced lung fibrosis 
by suppression the infiltration of neutrophils, and act 
as a potential treatment for lung fibrosis (60). Placenta-
derived MSCs are plastic and have immunomodulation 
properties and are, therefore, important for lung repair 
and regeneration like other MSCs (86). A summary of key 
studies on IPF therapy using placental/umbilical cord MSCs 
is shown in Tables 3,4.

Adipose tissue-derived mesenchymal stromal/stem cells 
(ADSCs)
The adipose tissue contains pluripotent cells that can act 
as alternative sources of stem cells to BM-MSCs since 
they can give rise to many cell lineages (87). ADSCs can 
be isolated easily from patients through liposuction, show 
good results in cell therapy, and produce many bioactive 
factors, including the hepatocyte growth factor (HGF) 
and interleukin (IL-1, IL-6, IL-8) receptor antagonists 
(88,89). ADSC therapy can improve the detrimental 
effect of repeating the intra-tracheal instillations of  
BLM (36). Mechanistically, the ADSC therapy results in a 
decreased AEC and Clara cell hyperplasia, and a reduction 
of the thickening of septum, enlargement of alveoli and 
inflammatory cell infiltrations (36). The elevation of 
both apoptosis and TGF-β levels is also suppressed (36). 
Furthermore, ADSCs administration can ameliorate the 
renal function in the acute pyelonephritis animal model (89).

A contradictory effect of ADSCs on lung fibrosis is found 
when administrating intravenously in rat model of fibrosis 
since they could not decrease the BLM-induced lung 
injury (90). In contrast to many other studies, Uji and co-
workers infused the isolated ADSCs to rats after long time 
(14 days) of the BLM instillation that probably leads to the 
inefficiency of administrated ADSCs in the BLM-induced 
lung injury (90). Other reasons that are proposed for the 
treatment failure include the animal age, stage of fibrotic 
disease and lack of homing capacity of the intravenously 
administered ADSCs (90). The homing capacity of 
administrated ADSCS could be improved by modulating 
these cells with a cocktail of chemokines or growth factors 
prior to administration (91). The chemotactic response to 
chemokines and growth factors probably stimulates the 
migration of the intravenously administrated ADSCs toward 
injured areas in vivo (91). A summary of key preclinical and 
clinical studies on IPF therapy using ADSCs is shown in 
Tables 5,6.

The iPSCs

A new approach to investigate the applications of iPSCs in 
IPF treatment is using IPF-specific cells isolated from IPF 
patients (37,92). Deriving lung tissue-specific stem cells 
from patients is a key step for establishing human disease 
models and transplanting lung epithelial cells. The iPSCs 
are successfully produced from many lung disease patients. 
However, the use of iPSCs in developing human lung 
disease models effectively faces many challenges, including 
the development of effective research techniques that allow 
converting iPSCs into lung progenitor cells and then into 
different differentiated lung epithelial cells. However, some 
studies have shown progress in generating multipotent 
airway and lung progenitor cells from human patient-
specific cystic fibrosis iPSCs. For example, lung progenitor 
cells are generated by mimicking the developmental 
environment in which the signaling interactions and events 
occur in the developing murine lungs (92). The generated 
human disease-specific lung progenitor cells can form 
respiratory epithelial cells when engrafting into immune-
deficient mice subcutaneously (92). Generating iPSCs from 
diseased human lungs is, therefore, particularly important, 
and can create a remarkable platform for the treatment 
of different lung diseases in humans. A summary of key 
preclinical and clinical studies on IPF therapy using iPSCs 
is shown in Table 7.

Endogenous lung tissue-specific stem cells

Several studies have identified adult stem cell types in 
anatomic locations of the lung (95,96). Moreover, resident 
multipotent lung stem cells were isolated and well-
characterized from adult mouse lung (97,98). Lung resident 
stem cells can produce different types of cytokines, growth 
factors and surfactant proteins, which are specific biomarker 
of the lung (35,38,39,96,99-101). 

Resident MSCs can regulate tissue repair and/or 
regeneration, and different pathophysiological processes, 
including inflammation, fibrogenesis, angiogenesis and 
tumorigenesis in different tissue types. Lung mesenchymal 
stem cells (L-MSCs) are functionally distinct from other 
MSCs and are specifically equipped for the pulmonary 
environment and may play roles in treating chronic lung 
diseases (102,103). In contrast to the well-investigated 
effects of exogenously administered MSCs, little is known 
about the healing effects of endogenous L-MSCs. However, 
some studies suggest that endogenous stem/progenitor 
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cells in the lung, including L-MSCs, contribute to both 
the maintenance of epithelium and repair/regeneration of 
injured lungs in vitro and in vivo (103). 

L-MSCs have several characteristics such mesenchymal 
signature, and multi-lineage differentiation capacity to 
other tissue such as to myo-fibroblasts bone, fat, bone 
and cartilage (95,102), and Clara, AECI and AECII 
cells (104), as well as endothelial cells (105) in culture. 
However, L-MSC differentiation into these different types 
of cells in vivo is still under question, and the emphasis 
in L-MSC research has largely shifted to their paracrine 
effects (106). This probably explains the relatively limited 
studies that attempted to investigate the use of L-MSCs 
in the treatment of chronic lung disease (107,108). More 
research is, therefore, still needed to validate the potential 
of L-MSC—based therapies for fibrosis and other lung 
diseases. 

Circulating endothelial progenitors (EPCs)

EPCs have some vascular remodeling and lung tissue-
specific repairing properties (109). The association 
between IPF and the abnormal vascular remodeling is well-
established (110). 

The development of lung vasculature is closely related 
to the release of some specific factors, including the 
endothelial-derived angiogenic factors, that promote 
the alveolization by stimulating the proliferation of 
lung specific epithelial stem/progenitor cells. Restoring 
the endothelial cell function and maintenance of lung 
homeostasis, therefore, make EPCs important cell types in 
lung development, morphogenesis and repair/regeneration 
after injury. In addition, defects in lung EPCs can lead to 

loss of their capacity for repairing the damaged endothelial 
cells and maintaining the vascular integrity that can lead 
to several lung diseases. For example, EPC defects may 
contribute to the lung injury, leading to developing many 
profibrogenic events and, therefore, EPC transplantation 
may inhibit lung fibrosis (111). Indeed, in the clinical 
context of IPF, the EPCs defects can be overcome by 
increasing the expression levels of the vascular endothelial 
growth factor (VEGF) (111). Furthermore, EPCs were 
suggested to contribute directly to angiogenesis, probably 
by secreting specific angiogenesis-promoting growth  
factors (112).

Cell delivery routes

The cell-based therapy for IPF and lung injuries holds 
great promise. However, the route of administration is still 
one of the major challenges for this cell-based therapy. In 
experimental and preclinical studies, cells are administered 
into the injured lung through different routes, including 
the intravenous (57,94), intraperitoneal (36,57), and 
intratracheal (113,114) instillations. Interestingly, the route 
of cell delivery most likely influences the cell trafficking 
to the targeted sites in the organ (115) and, therefore, it is 
an important factor for the success of cell-based therapy of 
different diseases.

The intra tracheal delivery is normally administered 
either by an injection of a cell bolus into the lung or by 
an aerosolizing of droplets with nebulizers (116,117). In 
addition, the intratracheal delivery of cells is considered 
as the optimal delivery method since it enables a local cell 
delivery into the injured sites that can reduce the systemic 
cell distribution. It may also enhance tissue regeneration by 

Table 7 Summary of key IPF preclinical study results using iPSCs 

Types/source of iPSCs Delivery route/dose Efficacy results References

iPSCs IV route. A dose of 2×105 cells 
per mouse

Treated mice after BLM instillation show an inhibition of EMT, 
inflammatory responses, and TGF-b1/Smad2/3 signaling 
pathway 

(93)

iPSC conditioned medium IV route. A dose of 2×106 cells 
per mouse

Treated mice after BLM instillation show an inhibition 
of collagen deposition, neutrophil infiltration and 
myeloperoxidase activity, as well as rescued pulmonary 
function

(94)

iPSCs derived to AECII cells Intratracheal route. A dose of 
5×105 cells per mouse

Treated mice after BLM instillation have decreased collagen 
deposition and lung inflammation 

(35)

IPSCs, induced pluripotent stem cells; IPF, Idiopathic pulmonary fibrosis; TGF, transforming growth factor; AECII, alveolar epithelial type II 
cells; BLM, bleomycin; EMT, epithelial-mesenchymal transition.



Stem Cell Investigation, 2019 Page 9 of 16

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2019;6:22 | http://dx.doi.org/10.21037/sci.2019.06.09

increasing the delivered cell number at the injured sites and 
reducing the pulmonary first-pass effect (116,117).

The effective dose for cell therapy

Enough cell number reaching the target organ/sties 
is required for the success of cell-based therapy. The 
most efficient cell dose for a successful cell therapy is 
the minimum number of cells that is required to achieve 
significantly successful and safe outcomes, which varies 
between different studies. Several attempts have been 
made to quantitatively evaluate the safety and efficiency 
of different doses of stem cell types such as MSCs. For 
example, the IV dose of allogeneic BM-MSCs administered 
in patients with the first acute myocardial infarction is safe 
and efficient at the range of 0.5, 1.6 and 5 million cells per 
kilogram (kg) (118). Notably, among different parameters 
analyzed for the dose-dependent effect in this study, the 
premature ventricular contraction exhibited a clear dose-
responsiveness (118). 

Some preclinical studies used stem cells at doses in a 
range of 5×105 to 5×106 cells/kg for IPF therapy (69,119). In 
murine studies, the effective dose for cell-based therapy is 
normally 1×106 cells per 30 g mouse, which is equivalent to 
2.3×109 cells per average human. Deciding the effective cell 
dose for cell-based therapy is critical for both the success 
and safety of clinical trials in humans. 

Timing of the delivery

The timing of stem cell delivery is a major influencing 
factor for the success of the cell-based therapy of different 
human diseases, including IPF (120). For example, in 
different IPF-inducing strategies and experiments, cells 
have been transplanted in the IPF model at different time 
courses; either immediately (66), 15 min (60), 6 hr (69),  
8 hr (81), 24 hr (61), 3 days (121), 4 days (65), or even 1 
to 2 months (50) after IPF inductions. However, the early 
administration of cells within 24 hr of lung injury shows 
the most promising results in healing fibrotic lesions (53). 
This is probably due to the immunomodulatory ability of 
the transplanted cells that can reduce the inflammation and 
lung epithelial damage, leading to the amelioration of the 
IPF (53).

Transplanted cells, however, do not show a significant 
effect on the subsequent collagen deposition and fibrosis 
prevention, but have some aberrant actions when 
transplanting few days after the injury (53). In contrast, 

transplanting AECII cells into the damaged lungs 3, 7, 
or 15 days after BLM instillation can result in a reduced 
disposition of collagen in the cell matrix, and lead to a 
reduction in the IPF severity (31). The findings of this 
study indicate that AEC II cell therapy can reverse the IPF 
even after the formation of fibrotic lesions. However, when 
MSCs are administered at later time points of the fibrosis 
development, the engrafted cells apparently differentiate 
into the interstitial tissue cells (the tissue and space 
around the alveoli), and probably contribute to the fibrosis 
development (113).

Current IPF clinical trials

There is currently no effective cure for IPF, but there are 
some promising preclinical and in vitro data. Stem cell-
based therapeutic approaches for human diseases, including 
IPF, are generally at early experimental phases, and far from 
mature clinical practices. Several clinical trials on the stem 
cell-based therapy of IPF are still ongoing (3,122). The 
major objectives in these clinical trials are the efficacy, safety 
and tolerability of cell-based therapies in humans. The 
risk profile in these trials includes the teratoma risk (tumor 
formation), and risks associated with cell handling methods 
and the culture/storage protocols, as well as other risks 
related to the surgical procedures, immunosuppression, co-
morbidities and allergic immune responses. 

Since stem cells are potential candidates for the 
malignant transformation, the risk of tumor formation for 
stem cells used in these clinical trials could be high. For 
example, a patient who received transplanted stem cells has 
developed a donor-derived multifocal brain tumor 4 years 
after transplantation, highlighting the potential risk of 
tumor formation in transplanted stem cells in humans (123).

A major objective of current clinical trials is the efficacy 
of stem cell therapeutic approaches. Some important 
questions should be addressed to evaluate the efficacy of a 
stem cell-based therapeutic approach, including deciding 
the most appropriate delivery route that enables an efficient 
recruitment of stem cells to the lung and the appropriate 
method to induce the functional differentiation of recruited 
stem cells into lung epithelium to achieve successful 
therapeutic effects. These questions also include both the 
ideal dose and time for administration and addressing them 
properly can lead to an efficient cell-based therapy. 

MSCs are the most commonly used stem cells in current 
clinical trials, because of their low immunogenicity and risk 
of teratoma, and lack of potential ethical problems (124,125). 
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Human placenta- and BM-derived MSCs are, particularly, 
popular in IPF clinical trials (126,127). However, most IPF 
clinical trials have not been completed yet, and are still in 
Phase I and II.

Other treatment methods used in clinical trials have 
revolutionized the IPF management since 2014 when two 
new anti-fibrotic agents, Nintedanib and Pirfenidone, 
have emerged. Both Nintedanib and Pirfenidone have 
shown an ability for delivering a significate reduction 
in the progression of chronic IPF and approved for the 
IPF treatment (128,129). The tyrosine kinase inhibitor 
Nintedanib can slow the IPF progress by both decreasing 
the declining rate of the FVC and moderating the 
impairment of lung functions in IPF patients subjected to 
clinical trials (129). However, there are still many difficulties 
that surround the clinical end-point selections in IPF 
clinical trials (128).

Conclusions, current challenges and future 
prospects

Few cell-based therapies have been used in clinics, 
including BMSC transplantation, which shows a success 
in replacing the diseased blood system of patients (130), 
and skin-derived stem cells used for treating patients with 
severe burns (131). These cell-based therapy also include 
cord blood stem cells that are used for both cancerous 
blood disorders such as leukemia (132), and genetic blood 
diseases like Fanconi anemia in children (133). Interestingly, 
cell-based therapy can potentially be used to treat various 
chronic human diseases. Identifying more efficient and safe 
cell therapy methods is currently underway, but there are 
also many issues that need to be addressed.

There have been remarkable advances in the lung cell-
based therapy and regeneration field most recently when the 
first stem cell transplantation to regenerate human lung was 
published by Ma and co-workers (134,135). In a remarkable 
study, Ma and colleagues have discovered and characterized 
a new adult stem cell population in humans. Further, they 
successfully used this novel stem cell population to generate 
functional air exchange units when transplanting these cells 
to a murine lung model and in human clinical trials (135).

Furthermore, there are many recent tremendous 
achievements in the repair, regeneration and engineering 
of lung tissues with the development of 3D lung culture 
models, the use of decellularized whole lungs, and the 
applications of bioengineering approaches to generate 

functional lung tissue (38,39,136,137). In addition, the 
use of the decellularized whole lung as a scaffold for 
recellularization and subsequently lung implantation was 
intensively investigated (138,139). Indeed, the whole 
lung model for IPF patients is a promising strategy if 
the challenges to develop a complex three-dimensional 
(3D) lung can be overcome. The main challenge for this 
development is making a successful and well-integrated 
3D network of different lung cell types, including 
the mesenchymal, epithelial, fibroblast, endothelial, 
inflammatory, and neuronal cell types, in an appropriate 
and well-established environment where they can effectively 
function. 

The susceptibility to the development of IPF is 
associated with the genetic polymorphism of certain genes 
(140-142). Hence, combining cell-based therapy and gene 
therapy may offer a new strategy for IPF intervention. 
This has been proposed by developing genetically modified 
stem cells using viral vectors targeting IPF disease (81). 
Lung fibrosis such as cystic fibrosis, is indeed an ideal 
gene therapy target, compared to other lung diseases for 
several reasons, including the ease of access to the lung, 
and both CFTR gene cloning and characterization (143). 
However, this kind of therapy still have several barriers and  
challenges (143).

Genetically modified stem cells can be delivered 
specifically to the injured lung sites and, therefore, can 
deliver certain genes to be expressed in these lung sites. 
Progress toward identifying the appropriate specific stem 
cell population for gene therapy in the airway, and the 
appropriate gene vector that provides a sustained expression 
is still an ongoing challenge. One major challenge is 
the generation of vector-specific tolerance in human 
patients through the modification of the response of the 
host immune system to the gene therapy vector that will 
facilitate the administration of the gene therapy vector. 
Other major factors for the success of the gene therapy 
are their safety and effectiveness that are currently under 
intensive investigation.

Another future direction is utilizing the cytokine effects 
on targeted cells to improve the cell-based therapy. This 
will be largely based on our understanding of the functional 
roles of cytokines and signaling molecules in enhancing 
the efficacy of both immune cells and cells responsible for 
healing the damaged lung, which are well investigated (144). 
The efficient cell-based therapy approach is, therefore, 
largely dependent on identifying the appropriate cytokines 
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for cell treatments. 
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