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Introduction

Bone marrow failure (BMF) disorders are rare diseases, 
which can occur in children and adults, as a consequence of 
idiopathic [aplastic anemia (AA)] or inherited disorders [such 
as Fanconi anemia (FA), Diamond-Blackfan anemia (DBA), 
dyskeratosis congenita (DC), and others]. Hematopoietic 
stem cell transplantation (HSCT) from a human leukocyte 
antigen (HLA)-matched sibling donor (MSD) using bone 
marrow (BM) as stem cell source, represents the first-
line treatment option for all patients aged less than 40 
with either inherited or acquired BMF (1-4). Appropriate 
classification and diagnosis of patients is mandatory, because 
of its impact on clinical management, choice of stem cell 
source and preparative regimen in case of HSCT, estimated 
risk for complications, including future cancers, genetic 
and medical counselling as well as follow-up of patients and 

family members (5).
Immunosuppressive therapy (IST) is the treatment of 

choice in case of lack of a sibling donor and for patients 
diagnosed with idiopathic BMF over 40 years of age (2,6). 
Growth factors, corticosteroids, and androgens represent 
the main alternative, non-transplant therapies for inherited 
BMF but results are often heterogeneous (5,7-12). 

In historical cohorts, the use of alternative donors 
increased the risk of poor outcomes (4,13,14). However, 
more recently, with advances in HLA typing and a better 
choice of conditioning regimens as well as the improvement 
in supportive care, long-term survival after an HSCT 
from unrelated donors, has significantly improved (15,16). 
Therefore, in case of a lack of a suitable BM donor or 
failure of first-line IST, other alternative stem cell sources 
and donors can be considered. In this setting, cord blood 

Review Article

Cord blood transplantation for bone marrow failure syndromes: 
state of art

Simona Pagliuca1, Annalisa Ruggeri2,3,4, Régis Peffault de Latour1

1Hematology and Transplantation Unit, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; 2Department of Pediatric 

Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy; 3Eurocord-Monacord, Hôpital Saint Louis, Paris, France; 
4Cellular Therapy and Immunobiology Working Party of EBMT, Leiden, The Netherlands

Contributions: (I) Conception and design: S Pagliuca, RP de Latour; (II) Administrative support: None; (III) Provision of study materials or patients: 

None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: Simona Pagliuca, MD. Service d’Hématologie Greffe, Hôpital Saint Louis, Paris, France. Email: smnpag@gmail.com. 

Abstract: Hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) 
represent the milestones of the treatment algorithm for idiopathic and inherited bone marrow failure (BMF) 
disorders. However, patients lacking a suitable donor or failing IST still have a poor prognosis. Cord blood 
transplantation (CBT) has extended the possibility of HSCT for many patients in case of the absence of an 
eligible donor, and although in the last years, this procedure is less used in several hematological diseases, 
it remains an option for the treatment of patients with BMF syndromes. Nevertheless, optimization of 
conditioning regimen and cord blood unit selection is warranted to reduce the risk of graft failure and 
transplant-related mortality. This review summarizes the state of art of CBT in the field of BMF diseases, 
focusing on historical and recent issues in idiopathic aplastic anemia and inherited disorders.

Keywords: Cord blood transplantation (CBT); bone marrow failure (BMF); severe aplastic anemia (SAA); Fanconi 

anemia (FA)

Received: 19 September 2019; Accepted: 16 October 2019; Published: 05 December 2019.

doi: 10.21037/sci.2019.10.04

View this article at: http://dx.doi.org/10.21037/sci.2019.10.04

 

https://crossmark.crossref.org/dialog/?doi=10.21037/sci.2019.10.04


Stem Cell Investigation, 2019Page 2 of 13

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2019;6:39 | http://dx.doi.org/10.21037/sci.2019.10.04

(CB) offers an alternative, rapidly available, source of 
hematopoietic stem cells (HSC). 

In this special issue, we have reviewed outcomes and results 
of principal studies concerning cord blood transplantation 
(CBT) in the setting of both idiopathic and inherited BMF 
disorders, addressing particular attention to FA. 

First proof of concept 

The first data on the infusion of CB cells in humans (17) 
arose from a partnership among three teams: E Gluckman 
from Hospital Saint Louis in Paris (France) who was 
working on the importance of attenuated dose conditioning 
regimens for FA patients (18); AD Auerbach from the 
Rockefeller University in New York (USA), who designed 
a method for prenatal diagnosis in FA (19); HE Broxmeyer 
from Indiana University in Indianapolis (USA), who studied 
hematopoietic progenitors in CB (20). Thus, the first CBT 
was performed at Saint Louis Hospital of Paris on a 5-year-
old boy diagnosed with a BMF secondary to FA (17). Graft 
consisted of cryopreserved CB cells from the unaffected 
HLA-identical sister. The patient, conditioned with low-
dose cyclophosphamide (Cy) and limited-field thoraco-
abdominal irradiation, developed no major complication 
after CBT and reconstituted a month later with complete 
donor chimerism, maintaining a full immunological and 
hematological reconstitution 30 years after CBT (21,22). 
This was the first proof of concept that the CB of a single 
newborn is sufficient to reconstitute the host lympho-
hematopoietic compartment definitely. After this first 
success, CB banks (CBB) arose all around the world for 
the gathering and cryopreservation of CB for allogeneic 
purposes (23). 

The principal pragmatic advantages of using CB as 
stem cells source are the absence of risks for donors (and 
mothers), the reduced risk of transmitting infections, the 
relative prompt availability for immediate use (due to 
the ability to preserve fully tested and HLA-typed stem 
cell grafts in the frozen state). The Eurocord experience 
reported several studies focusing on outcomes of CBT in 
BMF since the late 1990s (24,25). 

CBT in acquired severe AA (SAA) 

Significant progress on the management of SAA has 
largely improved outcomes of patients who failed or 
relapsed after IST.

In young patients without MSD, current recommendations 

are to perform HSCT after the failure of one course of IST, 
if a fully matched unrelated donor (MUD) is available (26-29). 
In adults, an alternative donor HSCT is a considerable 
option as second-line therapy, for patients who fail one or 
two courses of IST (24,28).

Unlikely, for many patients, especially those from 
minority ethnic groups or more heterogeneous populations, 
it is impossible to identify a suitable BM unrelated donor. 
The possibility of an unrelated CBT (UCBT), as alternative 
graft option, has been thrivingly explored in patients with 
hematologic malignancies (30-35). However, only a few 
series are reported for SAA and other BMF. In primary 
reports incidence of graft failure was incredibly high and 
survival outcomes extremely poor (25), whereas since 2000 
successful UCBTs for SAA have been reported only by few 
small series and case reports (36-38). 

In 2008 the Japanese group reported on a cohort of  
31 patients with a 2-year overall survival (OS) of 41% (39). 

In a retrospective analysis from Eurocord on 71 patients  
diagnosed with SAA [9 with paroxysmal nocturnal 
hemoglobinuria (PNH)] who received a single UCBT 
(n=57, 80%) or double UCBT (n=14, 20%) the 3-year OS 
was 37% and 43% after double UCBT (40). In multivariate 
analysis, the only factor influencing engraftment and 
survival was pre-freezing total nucleated cell (TNC) dose 
(>3.9×107/kg, P=0.05). 

A more recent survey of  the Japan Society for 
Hematopoietic Cell Transplantation compared results of 
UCBT (n=69) to 8/8 (n=101), 7/8 (n=65) or 6/8 (n=37) 
-matched unrelated bone marrow transplantation (UBMT) 
from 2002 to 2012 (41). This study showed similar survival 
rates for adults less than 40 years of age in each of four 
groups and worst results for UCBT in patients older than 
40 (47%, 64%, 64%and 75% of 3-year OS for UCBT, 8/8, 
7/8 and 6/8 UBMT respectively), suggesting that the choice 
of UCBT for older adults should cautiously be considered 
in case of lacking an 8/8, or 7/8 matched adult donor. 
Those studies justify the use of double UCBT if necessary 
in the setting of SAA. However, graft failure remains a 
major concern in this particularly high-risk population and 
it is highly recommended to achieve the adequate cell dose 
threshold when considering CB units.

Results of a prospective phase II study (NCT01343953, 
APCORD Trial), evaluating the efficacy and safety of UCBT 
in refractory SAA patients, have been recently published 
on behalf of Francophone Society of Bone Marrow 
Transplantation and Cellular Therapy (SFGM-TC) (42).  
Twenty-six patients were analyzed (out of 29 included). 
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The conditioning regimen consisted of fludarabine (Flu)  
30 mg/m2 from day −6 to day −3, Cy 30 mg/kg from day −6 
to day −3, anti-thymocyte globulin (ATG) 2.5 mg/kg from 
day −3 to day −2, 2-Gray total body irradiation (TBI) on 
day −2. An injection of anti-CD20 at the dose of 150 mg/m2 was 
given at day +5 for prophylaxis of Epstein Barr virus (EBV) 
reactivation. Graft versus host disease (GVHD) prophylaxis 
was performed with cyclosporine A (CsA) alone. The 
median age at CBT was 16 years [interquartile range (IQR), 
9.3–23.4 years]. All patients received at least 1 course of IST 
before transplantation (2 courses, n=5–11) with a median 
time between diagnosis and transplantation of (12 months; 
IQR, 8.7–17.8 months). Median follow-up was 38.8 months 
(IQR, 29.9–53.8 months). One-year survival rate was 
88.5% [95% confidence interval (CI), 69.8–97.6%]. One-
year treatment-related mortality was 11.5% (95% CI, 2.4–
30.2%). Three patients died before 1 year due to infections 
arising from non-engraftment (n=2) and GVHD (n=1), 
and a further patient died of severe chronic GVHD at  
13.9 months, leading to a 2-year survival rate of 84.6%  
(95% CI, 71–100%). 

The graft failure and the unacceptable risk of severe 
infections have been major pitfalls of UCBT in refractory SAA 
patients (39,40). The key role of TNC doses (>3.9×107/kg)  
in umbilical transplants as well as the use of a Flu/low-dose 
TBI-based conditioning regimen to improve engraftment 
and survival outcomes, was suggested by retrospective 
studies (40), The APCORD study prospectively confirmed 
the importance of controlling these factors (42).

For patients with SAA, CBT from an unrelated donor 
should be considered only in the setting of clinical trials, 
when a suitable BM donor is not available and after the 
failure of IST. To avoid the risk of graft failure due to 
an allogeneic immunization, donor-specific antibodies 
should be screened before transplantation (43-45). One 
or two CB units may be used in SAA to reach at least 
4×107 cryopreserved nucleated cells/kg with less than 2 
of 6 HLA mismatches between the unit and the patient. 
Furthermore, particular attention should be paid to patient 
cytomegalovirus (CMV) status since CMV seronegativity is 
generally easier to manage. The importance of preventing 
infections and the availability of high-quality supportive 
care platforms are key elements for the success of this 
type of procedure, which should only be carried out in 
experienced centers.

CBT in inherited BMF syndromes

FA

FA is a rare inherited disorder characterized by congenital 
abnormalities and genomic instability responsible for 
progressive BMF, predisposition to solid and hematological 
malignancies, including acute myeloid leukemia (AML), 
myelodysplastic syndrome (MDS) and squamous cell 
carcinoma (SCC) (46,47). Although phenotypically 
di f ferent ,  most  FA patients  develop hematologic 
abnormalities within the natural history of their disease. 
Those abnormalities may range from mild hematologic 
changes not requiring therapeutic intervention, to the 
development of severe BMF or myeloid neoplasia, needing 
HSCT to restore the normal hematopoiesis (46). During 
the last decades, improvements of FA-HSCT conditioning 
regimens and advances in transplant procedures (e.g., 
more accurate HLA typing, graft manipulation, better 
supportive care, etc.) have drastically ameliorated the 
prognosis of FA patients (48,49). Reduction of radiation 
and chemotherapy doses, with the ideation of new reduced-
intensity conditioning regimens (46,48), incorporation of 
Flu to preparative regimens (49,50), in vivo and/or ex vivo 
T cell depletion of allografts (51), were able to decrease the 
treatment-related mortality enhancing the engraftment and 
improving survival (48). 

European Group for Blood and Marrow Transplantation 
(EBMT) retrospectively analyzed results of UCBT in 
93 FA patients transplanted worldwide between 1994 
and 2005 (14). The median age at transplantation was 
8.6 years. The majority of patients received an HLA 
mismatched CBT (one mismatch in 35 cases and more 
than two mismatches in 45 cases). Sixty-one percent of 
patients received Flu within the conditioning regimen. 
The cumulative incidence function (CIF) neutrophil 
recovery was 60%±5% at day +60. The CIF of acute and 
chronic GVHD was 32.5% and 16%, respectively. The 
2-year OS was 40%±5%. In the multivariate analysis Flu, 
a high number of TNC and negative recipient CMV 
serology were associated with favorable outcomes (14). 

More recent reports, principally on small single-center 
experiences, show dismal results, namely high risk of graft 
failure, especially due to an incomplete HLA matching 
(52-54). 

MacMillan et al. analyzed outcomes of 130 FA patients 



Stem Cell Investigation, 2019Page 4 of 13

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2019;6:39 | http://dx.doi.org/10.21037/sci.2019.10.04

undergoing alternative donor HSCT (99 receiving BM 
and 31 receiving CB as graft source) (55). In this study 
conditioning regimens changed over the time, but since 
2006, irrespective of graft source, all patients (48 out of 130) 
received TBI (300 cGy), Cy (10 mg/kg/day for 4 days), Flu 
(35 mg/m2/day for 4 days) horse ATG (30 mg/kg/day for 
5 days), with CsA and mycophenolate mofetil (MMF) for 
GVHD prophylaxis. For the entire cohort, the probability 
of OS was 63% (95% CI, 54–71%) at 1 year and 58% (95% 
CI, 49–59%) at 5 years. The CIF of neutrophil recovery 
was 90% (95% CI, 84–95%) at day +30 and the use of CB 
was associated with a lower probability of engraftment 
compared with BM MUD, however, this outcome 
was strongly influenced by the type of conditioning 
regimen. For 46 recipients of the Flu/TBI 300 cGy-based 
conditioning regimen, neutrophil recovery was similar in 
recipients of BM and CB. The CIF of grade II–IV and 
grade III–IV acute GVHD was 20% (95% CI, 13–27%) and 
9% (95% CI, 4–14%), with a similar likelihood for patients 
receiving a mismatched unrelated BM donor 7/8 HLA-
matched T-cell-depleted BM and 4–6/6 HLA-matched CB. 

To date, the outcomes of FA patients undergoing CBT 
versus BMT have not formally compared yet. However, 
the evidence is that the use of Flu is associated with better 
survival in spite of stem cell source (14,49), suggesting 
that this molecule acts as an immune suppressive agent, 
and enhances the engraftment without increasing extra-
medullary toxicity.

In most reports, the use of CB unit with two or more 
HLA disparities in FA is associated with a lower probability 
of neutrophil recovery, decreased survival, or unacceptable 
rate of GVHD (14,52). For this reason, in this context, 
only one CB unit with no more than one mismatch is 
recommended (28).

Thus, UCBT, using a specific conditioning regimen 
disease-adapted, is indicated in FA patients who lack an 
HLA-matched unrelated BM donor. However, CB unit 
should be carefully selected, basing on HLA matching 
and TNC.

Inherited BMF other than FA

Until recently, outcomes of HSCT in other type of 
inherited BMF syndromes, such as in the context of DC, 
Shwachman-Diamond syndrome (SDS), DBA, etc. have 
been discouraging because of the high risk of transplant-
related morbidity, including graft failure, GVHD, infectious 
complications and the propensity to develop organ toxicity 

(26,56-58). 
In 2011, Eurocord reported on an analysis of 64 patients 

diagnosed with inherited BMF disorders other than FA 
receiving related (n=20) CBT and non-related (n=44) 
CBT (59). Diagnoses were DBA (21 patients), congenital 
amegakaryocytic thrombocytopenia (16 patients), DC (8 
patients), SDS (2 patients), severe congenital neutropenia 
(16 patients) and unclassified (1 patient). The group who 
received the related CBT engrafted at day 60 in 95% of 
cases. The median number of TNC infused was 5×107/kg. 
Only two patients had grade II–IV acute GVHD, while the 
2-year CIF of chronic GVHD was 11%, and the 3-year OS 
rate was 95%. In contrast, among patients who received 
grafts from unrelated donors, the CIF of neutrophil 
recovery was 55% at day 60 although the median number 
of infused TNC was 6.1×107/kg. Also, the 100-day CIF of 
grade II–IV acute GVHD was 24%, and the 2-year CIF 
of chronic GVHD was 53%, for a 3-year OS rate of 61%. 
In this group age less than 5 years (P=0.01) and more than 
6.1×107/kg TNC (P=0.05) were factors associated with a 
better OS.

Generally speaking, HSCT from MSD remained the 
preferred choice, and very sporadic series are reported for 
each disease category to make any general recommendation. 
However, although retrospective, Eurocord studies provide 
evidence that in these particularly high-risk patients, related 
CBT can be associated with excellent results, while UCBT 
outcomes may be improved by an increasing of TNC dose 
and better HLA matching.

Specific situations: CBT from a matched related 
donor for children with BMF

Eurocord analysed, in partnership with Severe Aplastic 
Anemia Working Party (SAAWP) of the EBMT, the 
outcomes of 117 children and young adults diagnosed with 
acquired and inherited BMF, receiving a related HLA-
identical CBT (60). 

In this series, 82 patients received a single CB unit and 
35 received a mixed graft (CB and BM cells from the same 
donor). The median age at transplantation was 6.7 years. 

The CIF of neutrophil recovery (day 60) was 88.8% 
(95% CI, 83.1–94.9%) with a median time to engraftment 
of 21 days (range, 7–105 days). The 100-day CIF of acute 
grade II–IV GVHD was 15.2% (95% CI, 9.8–23.6%) and 
the 7-year CIF of chronic GVHD was 14.5% (95% CI, 
8.6–24.2%).

With a median follow up of 7.2 years (1.5 months to  
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27.1 years), 7-year OS for the whole population was 87.9% 
(95% CI, 80.8–92.6%), 89% for inherited and 81% for 
acquired (P=0.66). 

This study confirmed that CBT from an HLA-identical 
sibling donor could be a good option for patients with 
BMF since it is associated with excellent survival outcomes 
and low risk of GVHD and graft failure. In this setting 
collecting CB unit at the birth of a new sibling, especially in 
case of inherited BMF, should be strongly recommended.

Table 1  summarizes the main retrospective and 
prospective studies on CBT in BMF whereas figure 1 shows 
principal survival outcomes.

Emerging strategies and ongoing trials

The last EBMT activity survey, based on 2017 data and 
describing the status of HSCT in Europe and affiliated 
countries, reported on general decreasing use of CBT, 
mainly because of a growing number of haploidentical 
HSCT (61). 

Of interest, in BMF, the whole number of patients 
receiving an allogeneic HSCT is slightly decreasing, 
and the number of CBT performed is very low (14 in 14 
transplant centers). Such a change may be explained by 
the use of thrombopoietin (TPO) analogs in refractory AA 
patients. In spite of these changing trends in transplant 
activities a number of clinical trials, concerning the use 
of CB in patients diagnosed with BMF are ongoing and 
still recruiting patients, particularly in the setting of 
SAA (NCT02838992, NCT02745717, NCT00604201, 

NCT03173937, NCT01553461, NCT01586455).
Improving engraftment and promoting immune 

reconstitution are the main goals of new promising 
techniques, which are now entering clinical trials. Several 
strategies are in fact, object of study in order to increase the 
HSC dose of CB grafts. 

Methods to enhance the homing to stem cell niches 
in the marrow have been variously investigated and still 
require extensive studies (62,63). In this setting, intra-bone 
infusion of CB cells may be beneficial in some contexts 
(64,65), even if this technique is far to be recommended. 

Another evolving concept to promote CB engraftment is 
the expansion of HSCs by ex vivo or in vivo manipulations, 
concerning, for instance, the use of cytokines and growth 
factors in order to increase the progenitor compartment 
present in CB (66-68).

Earlier approaches concerned the use of culture media 
enriched with several cytokine combinations including 
TPO, granulocyte colony-stimulating factor (G-CSF), stem 
cell factor (SCF), erythropoietin (EPO), interleukin (IL)-3, 
IL-6, Fms-related tyrosine kinase 3 ligand (Flt-3L) (69-74). 
New strategies including insulin-like growth factor binding 
proteins, pleiotrophin, angiopoietin-like proteins, or novel 
combinations of mitogens are in the preclinical phase of 
study and need further refining before the development of 
clinical trials (75-77). Of interest, recently, a computerized 
modelling approach has been developed to select the 
optimal cytokine mix for the ex vivo expansion of CB stem 
cells (78). 

The use of several molecules such as nicotinamide 

Figure 1 Survival outcomes of BMF patients receiving CBT. (A) OS of patients with inherited BMF other than Fanconi anemia receiving 
a related or an unrelated CBT (29); (B) OS of patients with Fanconi anemia receiving an unrelated CBT (23); (C) OS of patients with 
inherited (dotted line) and acquired (solid line) BMF receiving a related CBT (60). HLA, human leukocyte antigen; OS, overall survival; 
BMF, bone marrow failure; CBT, cord blood transplantation.
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(Nicord), copper chelator tetraethylenepentamine (TEPA), 
UM729 (a pyrimidoindole derivative), StemRegenin-1 
(SR1), Notch ligand, valproic acid or even carbon nanotubes 
are under development and demonstrated to inhibit HSC 
differentiation or promote their self-renewal (79-86). 

The co-culture of CB cells with mesenchymal stem cells 
(MSCs) is a strategy whose basic principle is to simulate the 
physiological microenvironment of the BM (87,88), and co-
transplantation of those two constituents has demonstrated 
to promote hematopoietic engraftment in patients 
undergoing UCBT transplantation (87,89).

Other approaches using genetically modified feeder cells 
are also under development (90).

Conclusions

In conclusion, in the absence of a suitable BM donor, CBT 
is an option for the treatment of patients with idiopathic 
and inherited BMF syndromes, especially if a sibling CB 
donor is used. 

A better selection of the CB units (privileging units with 
more than 4×107 nucleated cells/kg) and an adaptation of 
the conditioning regimens can be able to overcome the risk 
of rejection. 

In case of idiopathic context 1 or 2 CB units may be 
used with no more than 2 of 6 HLA mismatches between 
the unit and the recipient. In patients with inherited 
BMF, particularly in the setting of FA, the current 
recommendation is to choose a donor with no more than 
one HLA mismatch because of the risk of unacceptable 
toxicity,

For patients with FA and other inherited BMF only 1 CB 
is recommended with no more than one mismatch.

Donor specific antibody screening should be performed 
in every patient to minimize the risk of rejection. Ex-vivo 
CB expanding strategies aiming to better engraftment are 
under investigation. 

When the cryopreserved CB unit from the HLA 
identical sibling does not contain enough cell dose, add-
back of BM cells at the time of transplant, could be feasible 
with excellent results and no increase in GVHD (60,91). 

A Flu-Cy-TBI-ATG conditioning regimen (APCORD 
trial) can be effective and safe in refractory SAA patients 
receiving a single or double UCBT (42), whereas 
limited data are available in inherited context, although 
retrospective evidence suggests to reduce chemotherapy and 
radiation doses, integrating Flu and T-depletion, especially 
in FA patients. 
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Organ toxicity remains problematic for most inherited 
BMF, and prospective international clinical trials are 
urgently needed to improve engraftment and GVHD-free 
survival.
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