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Introduction

CD44 is an adhesion molecule that plays essential roles 
in various cells and multiple organs through a number 
of signaling pathways (1). Although the precise function 
of CD44 in the central nervous system (CNS) remains 
unclear, previous studies demonstrate that CD44 plays an 
essential role in regulating the neural cell functions; such 
as axon guidance, synaptic transmission, oligodendrocyte 
and astrocyte differentiation, and brain protection and 
regeneration after injury (2,3). In the CNS, it is well-

documented that CD44 is expressed in various neural 
cell types, such as neurons (4), astrocytes (4-6), and 
oligodendrocytes (6,7). However, increasing evidence shows 
that CD44 is observable in neural stem/progenitor cells 
(NSPCs) (8,9). NSPCs reside in a perivascular niche (10)  
and produce all neural cell types, including neurons, 
astrocytes, and oligodendrocytes (11). In addition, Naruse 
and colleagues found that CD44 expression is dynamically 
altered from NSPCs to neurons and astrocytes in the 
developing brain (4), indicating that CD44 is first expressed 
in NSPCs rather than mature neural cells.
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In various organs outside the CNS, CD44 is expressed 
in multipotent stem cells, such as mesenchymal stem cells 
(MSCs) (12,13) and adipose-derived stem cells (ADSCs) 
(14,15), which localize at the perivascular niche of bone 
marrows and fat pads, respectively. Although the precious 
traits of multipotent vascular stem cells in the CNS remain 
unclear, increasing evidence indicates that brain pericytes 
are likely multipotent vascular stem cells (16) because of 
their perivascular localization and multipotency (17-19). 
In support of this viewpoint, we previously demonstrated 
that brain pericytes/perivascular cells following ischemia 
exhibit multipotency (20); thus, ischemia-induced stem 
cells (iSCs) have the potential to differentiate into neural 
and also mesoderm lineages (20-29), consistent with the 
traits of multipotent pericytes (17,30-34). Further, we 
recently demonstrated that iSCs express CD44 (21,35,36) 
and that iSCs can differentiate into various neural cell 
types, including microglia/macrophages lineages (22). As 
microglia/macrophages function in stem cell niches within 
the brain (37,38), this suggests that CD44 can be expressed 
stem cells and the niche cells surrounding them following 
ischemic strokes.

However, the precise traits of CD44+ cells in brain 
pathology brains remain unclear. In the present study, using 
a mouse model of cerebral infarction, we investigated the 
localization and phenotypes of CD44+ cells in the brain.

Methods

Induction of focal cerebral ischemia

All experimental procedures were approved by the Animal 
Care Committee of the Hyogo College of Medicine (License 
number: 17-051, 18-061). We used adult 6–10 week-old 
male mice (CB-17/Icr-+/+Jcl mice (CB-17 mice; Clea 
Japan Inc., Tokyo, Japan); B6.Cg-Tg(Nes-EGFP)1Yamm 
transgenic mice (Nestin-GFP mice) (39). Nestin-GFP mice 
were provided by the RIKEN BRC (Ibaraki, Japan) through 
the National Bio-Resource Project of the MEXT/AMED, 
Japan. Permanent focal cerebral ischemia was produced in 
the mice by ligation and interruption of the distal portion of 
the left middle cerebral artery (MCA) (22,24-26,40).

Preparation of samples from brains

CB-17 mice were anesthetized with sodium pentobarbital 
and transcardially perfused with 4% paraformaldehyde 
(PFA) as described previously (20,35,41). Next, whole 

brains were carefully removed, subjected to post-fixation 
with 4% PFA, and processed for paraffin embedding. 
Samples were then cut into 8-μm sections, followed by 
immunohistochemistry. In another experiment, fixed brains 
obtained from CB-17 mice or Nestin-GFP mice were 
cryoprotected in 30% sucrose, frozen at −80 ℃, and cut into 
16-μm sections using a cryostat for double-staining using 
immunohistochemistry.

Immunohistochemistry

Immunohistochemistry was performed as previously 
described (42). In brief, after deparaffinization, sections 
were subjected to heat treatment by microwave for epitope 
retrieval in a citrate buffer solution (pH 6.0) (Dako, 
Glostrup, Denmark) for 10 min. Then, samples were 
incubated with a primary antibody against CD44 (1:200; rat, 
Thermo Fisher Scientific, Waltham, MA, USA), followed 
by reaction with a secondary antibody harboring a universal 
immunoperoxidase (N-Histofine Simple Stain Mouse MAX 
PO, Nichirei Corporation, Japan). Sections were stained by 
3,3'-diaminobenzide tetrahydrochloride (DAB; Invitrogen, 
California, USA) and counterstained with hematoxylin. 
Images were captured using a microscope (Olympus, Tokyo, 
Japan).

In separate experiments, brain sections (16-μm thick) 
were subjected to double-stained immunohistochemistry 
as previously described (23-26,40-43). In brief, sections 
were stained using primary antibodies against CD44 (1:200; 
rat, Thermo Fisher Scientific, 1:200; sheep, R&D systems, 
Minneapolis, MN, USA), microtubule-associated protein 
2 (MAP2) (1:500; mouse, Sigma-Aldrich, St. Louis, MO, 
USA), MBP (1:100; mouse, R&D systems), glial fibrillary 
acidic protein (GFAP) (1:500; mouse, Millipore, Temecula, 
CA, USA), GFP (1:1,000; rabbit, Abcam), CD31 (1:100, 
rat, BD Pharmingen, San Diego, CA, USA), PDGFRβ 
(1:500, goat, R&D systems), CD45 (1:200; rat, R&D 
systems), Iba1 (1:500; rabbit, Wako, Osaka, Japan), CD86 
(1:100; rat, Thermo Fisher Scientific), and CD206 (1:50; 
goat, R&D systems). After washing in PBS, sections were 
stained using Alexa Fluor 488- or 555-conjugated secondary 
antibodies (1:500; Molecular Probes, Eugene, OR, USA). 
Cell nuclei were stained with 4',6-diamidino-2-phenylindole 
(1:500; DAPI, Kirkegaard & Perry Laboratories, Inc., 
Gaithersburg, MD, USA). Images were captured using 
a confocal laser microscope (LSM780; Carl Zeiss AG, 
Oberkochen, Germany).



Stem Cell Investigation, 2020 Page 3 of 12

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2020;7:4 | http://dx.doi.org/10.21037/sci.2020.02.02

Results

Expression patterns of CD44+ cells during the acute phase 
following ischemic stroke

We first examined the localization of CD44+ cells following 
ischemic stroke (Figure 1). In sham-operated mice  
(Figure 1A,B,C,D,E), we observed weak staining for CD44+ 
cells in the corpus callosum (Figure 1B,C). However, CD44+ 
cells were rarely observed in the cells of cortex, which is fed 
by the MCA (Figure 1B,D) and the anterior cerebral artery 
(ACA) (Figure 1B,E). However, on day 7 after ischemic 
stroke (Figure 1F,G,H,I), in addition to enhanced expression 
of CD44+ cells at the corpus callosum (Figure 1G,H), many 

CD44+ cells appeared in peri-ischemic areas (Figure 1G,H,K)  
and in ischemic cores (Figure 1G,I,K,L), while they were rarely 
observed in ipsilateral non-ischemic areas (Figure 1G,J).

CD44 expression by neural lineages including NSPCs 
following ischemic stroke

Thus far,  our data indicates that CD44+ cells  are 
dramatically increased within ischemic areas following 
stroke. Previous studies demonstrate that CD44 is expressed 
in various types of neural cells, including neurons (4),  
oligodendrocytes (6,7), and astrocytes (4-6). Thus, 
using brain sections at post-stroke day 7, we examined 
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Figure 1 CD44+ cells emerge within ischemic areas during acute phase following stroke. Immunohistochemistry at post-stroke day 7 (A-E)  
displays weak CD44 staining in the corpus callosum in sham-operated mice (B,C). CD44 was rarely observed in cells of MCA (B and D) and 
ACA regions (B and E). On day 7 after ischemic stroke (F-I), in addition to the increased expression of CD44+ cells in the corpus callosum (G 
and H), many CD44+ cells also emerged in peri-ischemic areas (G, H, and K) and ischemic cores (G, I, K, and L). In contrast, CD44+ cells 
were rarely observed in ipsilateral non-ischemic areas (G and J). Results displayed are representative of three replicates (N=3). Scale bars 
=200 μm (B and G), 20 μm (C, D, E, H, I, and J), and 50 μm (K and L). MCA, middle cerebral artery; ACA, anterior cerebral artery.
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whether CD44 is expressed in our cerebral infarctions. 
Immunohistochemistry showed that CD44+ cells within 
ischemic areas did not express the neuronal marker MAP2 
(Figure 2A,B,C,D) or then oligodendrocytic marker MBP 
(Figure 2E,F,G,H). In addition, CD44+ cells in peri-ischemic 

areas including the corpus callosum did not express MAP2 
or MBP (data not shown). However, some CD44+ cells in 
peri-ischemic areas expressed the astrocytic marker GFAP 
(Figure 2I,J,K,L).

NSPCs produce various types of neural cells, including 

Figure 2 CD44+ cells within ischemic areas are observed in neural lineage cells, including NSPCs. Immunohistochemistry at post-stroke day 
7 (A-H) displays CD44+ cells within ischemic areas do not express MAP2 [CD44 (B, C: green), MAP2 (B, D: red), and DAPI (B-D: blue)] 
or MBP [CD44 (F, G: green), MBP (F, H: red), and DAPI (F-H: blue)]. Immunohistochemistry at post-stroke day 7 (I-L) demonstrates 
that CD44 is expressed in GFAP+ astrocytes primarily localized in peri-ischemic areas [CD44 (J, K: green), GFAP (J, L: red), and DAPI (J-
L: blue)] (arrows). Immunohistochemistry at post-stroke day 7 (M-P) display CD44 expression in GFP+ NSPCs which localize in ischemic 
cores and peri-ischemic areas [GFP (N, O: green), CD44 (N, P: red), and DAPI (N-P: blue)] (arrows). Results displayed are representative 
of three replicates (N=3). Scale bars =50 μm (B, C, D, F, G, H, J, K, L, N, O, and P).
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neurons, astrocytes, and oligodendrocytes (11). In addition, 
previous studies showed that CD44 is expressed in NSPCs 
(8,9). Furthermore, we previously demonstrated that 
NSPCs develop in ischemic cores and in peri-ischemic areas 
following stroke (26,40). Thus, using nestin-GFP transgenic 
mice, we investigated whether GFP+ cells at the site of 
ischemic areas express CD44. Using immunohistochemistry, 
we observed that GFP, under the control of the nestin (a 
NSPC marker) promoter, was present in ischemic cores and 
peri-ischemic areas and that some GFP+ cells co-expressed 
CD44 (Figure 2M,N,O,P).

CD44 expression by ischemia-induced stem cells

The above findings demonstrate that CD44 is expressed in 
neural lineages, including NSPCs, after ischemic stroke. 

However, evidence exists for CD44 expression in various 
types of stem cells, including MSCs (12,13) and ADSCs 
(14,15), as well as NSPCs (8,9). Although the precise 
origin of MSCs and ADSCs is unclear, increasing evidence 
indicates that they have similar traits to those of pericytes 
(44-48). In addition, we demonstrated that brain pericytes 
following ischemia develop into iSCs (20,24,43) and that 
CD44 is expressed in iSCs that co-express nestin as well as 
PDGFRβ (21,35,36). Thus, we investigated whether CD44 
is expressed in iSCs. Immunohistochemistry identified 
CD44+ cells at the site of ischemic areas localizing around 
CD31+ endothelial cells (Figure 3A,B,C,D,E) and that they 
also expressed PDGFRβ (Figure 3F,G,H,I,J). Furthermore, 
some GFP+ cells in ischemic cores and peri-ischemic areas 
co-expressed PDGFRβ (Figure 3K,L,M,N,O). These results 
indicate that CD44 is, in part, expressed in iSCs; which 

Figure 3 Ischemia induces CD44 expression within some stem cells in stroke-affected areas. Immunohistochemistry at post-stroke day 7  
(A-O) demonstrates that CD44+ cells do not express CD31 [CD44 (B, C, and D: green), CD31 (B, C, and E: red), and DAPI (B-E: blue)] 
but do express PDGFRβ [CD44 (G, H, and I: green), PDGFRβ (G, H, and J: red), and DAPI (G-J: blue)] (arrows). Immunohistochemistry 
at post-stroke day 7 (K-O) displays that some GFP+ cells co-express PDGFRβ [GFP (L M, and N: green), PDGFRβ (L, M, and O: red), and 
DAPI (L-O: blue)] (arrows). Results displayed are representative of three replicates (N=3). Scale bars =100 μm (B, G, and L) and 50 μm (C, D, 
E, H, I, J, M, N, and O).
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likely originate from brain pericytes.

CD44 expression by hematopoietic lineages including 
microglia/macrophages

Given the variety of CD44 expression we observe in our 
infarctions, we investigated whether CD44 is expressed 
in stem cell niches (e.g., hematopoietic cells including 

inflammatory cells) surrounding NSPCs and/or iSCs. 
Immunohistochemistry at post-stroke day 7 demonstrated 
that many CD44+ cells, in particularly those with round 
shapes, expressed the hematopoietic marker CD45 
(Figure 4A,B,C,D,E). As CD45 is known to be expressed 
in microglial lineages during brain pathologies (5,49), we 
further examined whether CD44 is expressed in microglia/
marophages following ischemia. Immunohistochemistry 
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Figure 4 CD44 is expressed in hematopoietic cells including microglia/macrophages within ischemic areas. Immunohistochemistry at post-
stroke day 7 (A-L) demonstrates that some CD44+ cells within ischemic areas express CD45 [CD44 (B, C, and D: green), CD45 (B, C, and E: 
red), and DAPI (B-E: blue)] (arrows) and other various microglial/macrophage markers, including Iba1 [CD44 (G, H, and I: green), Iba1 (G, 
H, and J: red), and DAPI (G-J: blue)] (arrows), CD86 [CD44 (L, M, and N: green), CD86 (L, M, and O: red), and DAPI (L-O: blue)] (arrows), 
and CD206 [CD44 (Q, R, and S: green), CD206 (Q, R, and T: red), and DAPI (Q-T: blue)] (arrows). Results displayed are representative of 
three replicates (N=3). Scale bars =100 μm (B, G, L, and Q) and 50 μm (C, D, E, H, I, J, M, N, O, R, S, and T).
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at post-stroke day 7 indicated that some CD44+ cells in 
ischemic cores and peri-ischemic areas expressed the 
microglia/macrophage cell marker Iba1 (Figure 4F,G,H,I,J). 
These results indicate that, under ischemic stroke, CD44 is 
expressed in stem cell niches including activated microglia/
macrophages as well as stem cell populations.

As activated microglia/macrophages are known to 
polarize into two distinct subtypes (pro-inflammatory 
M1 and anti-inflammatory M2 types) (50-52), we next 
investigated whether CD44+ cells in ischemic areas 
expressing the M1 marker CD86 and/or M2 marker CD206. 
Immunohistochemistry demonstrated that some CD44+ 

cells at these areas co-expressed CD86 (Figure 4K,L,M,N,O)  
and CD206 (Figure 4P,Q,R,S,T).

Long-lasting expression of CD44 by microglia/
macrophages within and around peri-ischemic areas

Our final experiments in this study investigated the 
fate of CD44+ cells at later time points following 
ischemia. Immunohistochemistry was performed at 2  
(Figure 5A,B,C,D,E) and 4 weeks after ischemic stroke 
(Figure 5F,G,H,I,J,K,L). Immunohistochemistry displayed 
CD44+ cells in the corpus callosum (2 weeks after 
ischemic stroke, Figure 5C; 4 weeks after ischemic stroke,  
Figure 5H,K,L). In addition, the majority of the ischemic 
cores and the peri-ischemic areas contained CD44+ foam 
cells which were morphologically microglia/macrophages 
(2 weeks after ischemic stroke, Figure 5C,D; 4 weeks after 
ischemic stroke, Figure 5H,I,K,L). These findings indicate 

Figure 5 CD44 expression by microglia/macrophages within ischemic areas persists through chronic phases. Immunohistochemistry at post-
stroke 2 (A-E) and 4 weeks (F-L) demonstrates that CD44 expression by microglia/macrophages within ischemic areas lasts during subacute 
(B-E) and chronic periods post-stroke (G-L). Results displayed are representative of three replicates (N=3). Scale bars =200 μm (B, G),  
20 μm (C, D, E, H, I, J), and 50 μm (K, L).
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that CD44 in ischemic areas is primarily expressed in 
microglia/macrophages at later time points, including 
both subacute and chronic phases. These findings 
also demonstrate that CD44 expression by microglia/
macrophages at these areas is persistent, indicating that 
CD44 can be used as a marker of activated microglia/
macrophages following brain injuries, such as ischemic 
stroke.

Discussion

This study demonstrates that CD44 is expressed in not 
only stem cells but also stem cell niches such as microglia/
macrophages following stroke. We found that CD44 
is expressed in neural lineages, including astrocytes as 
well as NSPCs, in ischemic areas. Although the precise 
origin of CD44+ astrocytes remains unclear, we previously 
demonstrated that NSCPs isolated from ischemic areas 
differentiate into various neural cells, including glial cells (40). 
Thus, it is possible that CD44+ NSPCs are origin of CD44+ 
glial cells. However, the precise relationships between 
CD44+ NSPCs and CD44+ glia need clarification; this will 
be a focus of our future studies.

Under neuroinflammatory conditions, such as after 
ischemic stroke, it is well-documented that microglia/
macrophages accumulate in the brain (50,52). It has also been 
reported that brain microglia/macrophages originate from 
progenitors in the embryonic yolk sac and that they reside 
in the brain until adulthood under normal conditions (53). 
Although the precise origin of CD44+ microglia/macrophages 
under pathological conditions remains unclear, our previous 
studies (22) and those of others (54,55) demonstrate that 
activated microglia are, in part, derived from brain pericytes. 
However, contrary to these finding, it has also been reported 
that a subset of pericytes originate from hematopoietic 
lineages, including microglia (56,57). In this study, we 
found CD44 in ischemic areas was expressed in some 
CD45+ hematopoietic lineages. As CD44 is also expressed 
in hematopoietic cells during early CNS development (58), 
some CD44+ cells observed in ischemic areas may have the 
features of immature hematopoietic cells. However, the 
precise relationship between CD44+/CD45− pericytes and 
CD44+/CD45+ hematopoietic lineage cells in ischemic areas 
needs to be clarified in further studies.

In this study, we found that many CD44+ cells emerge in 
ischemic areas, while CD44+ cells are rarely observed in the 
MCA cells of sham-operated mice. The precise mechanism 
by which CD44 is selectively enhanced in cells at these areas 

remains unclear. However, previous studies demonstrate 
that CD44 expression is up-regulated in microglia/
macrophages after brain injuries, including ischemic 
stroke (3,59,60), and that CD44 expression is regulated by 
various cytokines and/or molecules (61,62). This suggests 
that CD44 can be induced in cells stimulated by several 
mechanisms, including hypoxia and cytokine production.

Although the precise role of CD44 under ischemic 
conditions remains unclear, a previous study indicates 
that CD44-deficiencient mice have lower levels of pro-
inflammatory cytokines after ischemic stroke, resulting in 
a reduction of ischemic areas, and improved neurological 
deficits when compared with wild-type control mice (3). 
These findings suggest that CD44 may function as a 
negative regulator during ischemic stroke; presumably 
through an increase of pro-inflammatory cytokines. In 
contrast to these findings, CD44 deficient mice displayed 
increased inflammatory responses during experimental 
autoimmune encephalomyelitis (EAE) when compared to 
wild-type control mice (63), suggesting that CD44 exerts 
anti-inflammatory effects. We do not understand the 
discrepancy of why CD44 displays diverse roles in CD44-
deficient mice under neuroinflammatory conditions (e.g., 
ischemic stroke and EAE). However, our current study 
indicates that CD44 is expressed in activated microglia/
macrophages with two different phenotypes, known as pro-
inflammatory M1 and anti-inflammatory M2 types. Thus, 
the different results obtained in previous studies regarding 
CD44-deficient mice may be attributable to the diverse 
effects of CD44 in microglia/macrophages.

In addition to CD44, the ligands of CD44, such as 
hyaluronic acid (HA) (64) and osteopontin (OPN) (65), 
play important roles in the reparative process after injury. 
Although the precise function of CD44 as a receptor for 
HA remains unclear, multiple reports demonstrate that 
implantation of HA scaffolds has various positive effects 
on CNS regeneration, in part through inhibition of glial 
scar formation (66-68). OPN is a glycoprotein that was 
originally purified from bone. However, OPN is expressed 
in various types of cells, including macrophages (69,70). 
Thus, it is possible that CD44+ microglia/macrophages 
also secrete OPN following ischemic stroke. Furthermore, 
it has been reported that CD44-OPN signaling promotes 
the proliferation of CNS stem cells, including NSPCs 
(71,72), neuronal differentiation (72), and axon growth (73).  
Although the precious roles of microglia/macrophages 
in during brain pathologies are still unclear, microglia/
macrophages are known to have important roles in stem cell 
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niches (37,38). Thus, CD44+ microglia/macrophages may 
alter the fates of CD44+ stem cells, such as NSPCs and/
or iSCs, following ischemic stroke; thereby regulating the 
neural reparative processes during brain injuries. However, 
the precise relationship between CD44+ stem cells and 
CD44+ microglia/macrophages in stem cell niches needs to 
be elucidated by future studies.

In conclusion, we demonstrated that CD44 is expressed, 
not only stem cells, but also in niche microglia/macrophages 
following ischemic stroke, suggesting that CD44 plays 
important roles during reparative processes under 
neuroinflammatory conditions. However, the precise traits 
and roles of CD44+ cells in during brain pathologies require 
further studies.
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