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Introduction

Breast cancer (BC) is one of the leading causes of death 
among females globally (1). Although increased rates of 
early diagnosis of BC led to a significant reduction in 
mortality in recent years, many patients have recurrent 
BC (2,3). Thus, there is an urgent need to improve our 
understanding of the mechanisms of BC progression.

In recent years, experimental data indicate that BC is 
composed of heterogeneous cell populations with different 
biological properties (4-6). The tumorigenic process is 
preserved by a minor subset of cells in the tumor called 
cancer stem cells (CSCs) (7,8). CSCs are defined by their 
ability by their ability for self-renewal and multipotency 
(9-11). These features displayed by CSCs are important for 
a better understanding of the BC initiation and progression. 
Accumulating evidence suggests the presence of CSCs 
in BC, which may contribute to the failure of existing 
therapies to consistently eradicate malignant tumors (12,13). 
Therefore, therapeutic targeting of CSCs may provide a 
novel strategy that is more effective than the current drugs 
targeting the bulk mature cancer cells in treatment of BC. 

This review will discuss the evidence for the existence 

of CSCs, novel molecular biomarkers and self-renewal 
pathways related to CSCs, as well as the possibility of 
targeting CSCs as a potential therapeutic strategy for BC.

The CSCs hypothesis

To fully appreciate the theory of CSCs, it is essential to 
understand the basic concepts of the biology of normal 
stem cells. Stem cells from normal tissues are characterized 
by the following essential properties: self-renew, giving rise 
to daughter cells that have limited proliferative potential 
and intended to differentiate, and the number of stem 
cells in normal tissues must be under strict genetic control 
in order to prevent uncontrolled expansion (14-16). 
Understanding of the basic biology of stem cells is crucial 
for the development of CSCs hypothesis. The emerging 
and controversial CSCs theory proposes that there is a 
small fraction of cancer cells which constitute a reservoir of 
self-sustaining cells with the exclusive ability to self-renew 
and maintain the tumor (10,17,18). These cells with the 
properties resembling stem cells are called CSCs (9,18,19). 
Currently, the widely accepted definition of a CSC is a cell 
within a tumor that possesses the capacity to self-renew 
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and to cause the heterogeneous lineages of cancer cells that 
comprise the tumor (10). 

The CSCs hypothesis has gained wide attention in 
recent years after the identification of subpopulations of 
tumor-initiating cells in hematological malignancies and 
solid cancers such as breast, colon, pancreas, lung, prostate 
and brain cancers (20-26). Serial xenotransplantation of a 
putative CSCs-enriched population in immunodeficient 
mice is the primary assay used in demonstrating CSCs (10). 
Tumorigenic capacity of stem cells can also be characterized 
based on the expression of defined cell surface makers and 
intracellular enzymes such as aldehyde dehydrogenase 
(ALDH) (10,27). 

In BC, CSCs are identified by the presence of cell 
surface marker protein CD44, with low levels of CD24 
(6,28,29). Breast stem cells can be easily identified by their 
ability to grow in serum-free suspension cultures which 
called mammospheres, an in vitro alternative test for self-
renewal (30,31). Besides, they could also be identified by the 
ability of retaining bromodeoxyuridine or H3-thymidine 
(32,33). In BC, the CSCs hypothesis could have profound 
implications in the prevention, detection and treatment 
of the disease (34). In addition, the heterogeneity of BC 
is attributed by some researchers as a function of CSCs (35). 
It is also suggested that the CSCs hypothesis could be 
incorporated into the molecular staging of BC (36,37). 
Growing evidence suggests that CSCs may be responsible 
for therapy resistance and relapse of BC. For instance, 
a higher proportion of CD44+ CD24–/low cells of BC are 
associated with shorter relapse-free and overall survival with 
increased distant metastases (38-41). 

Biomakers of CSCs in BC

Distinct and specific surface biomarker phenotypes can 
be used to distinguish CSCs from other tumor cells and 
normal stem cells. Currently, the most common method 
used to identify CSCs is fluorescence-activated cell sorting 
based on cell surface markers or intracellular molecules.

CD44

CD44 is a type I transmembrane glycoprotein that 
binds hyaluronan and a variety of extracellular as well 
as cell-surface ligands (42,43). The molecule exists in 
multiple spliced forms and shows enormous variability in 
glycosylation (42-44). The CD44 protein contains four 
major domains, including the conserved extracellular 

hyaluronan-binding and variably spliced regions, the 
transmembrane sequence, and the intracellular cytoskeletal-
signaling domain (44,45). CD44 plays an important role in 
adhesion, motility, proliferation and cell survival (46). It’s a 
useful marker for identifying CSCs in breast tumors as well 
as in various other tumors (6,24,47-49). It’s reported that 
ESA+ CD44+ CD24–/low Lin– cells were identified as breast 
CSCs (6). They found that, this population has a greater 
capacity for tumor formation in immunodeficient mice 
compared to other cell populations (6).

CD24

CD24 is a heavily and variably glycosylated 35-60 kDa GPI-
linked sialoprotein that is expressed on B cells, T cells, and 
keratinocytes (50). It is also a marker for exosomes released 
into the urine and amniotic fluid. CD24 binds to P-Selectin 
on activated platelets and vascular endothelial cells (51,52). 
The expression of CD24 is a hallmark of a wide range of 
epithelial cancers and has recently been used as an indicator 
of metastasis (53-55). The presence or absence of CD24 
on the cell surface has been used as a marker for putative 
CSCs, which seems to be tissue specific (56). The CD44+ 
CD24–/low population of cancer cells were defined as breast 
CSCs (6). They were found to have increased adhesion, 
invasion, and migration characteristics when compared with 
CD24 expressing cells (54,57). Recent reports showed that 
breast CSCs have a mesenchymal phenotype (58). Also, 
transformed BC cells could be able to switch between the 
mesenchymal and epithelial phenotypes (58). 

ALDH activity

ALDH belongs to the ALDH family which is a group of 
enzymes involved in oxidizing a wide variety of intracellular 
aldehydes into their corresponding carboxylic acids (59). 
There are different isoforms of ALDH and ALDH1 is 
a detoxifying enzyme responsible for the oxidation of 
aldehydes intracellular. The Aldefluor assay system has 
been developed to detect the activity of the ALDH1 
isoform (60). ALDH1 activity showed to be increased in 
CSCs and has since been successfully used to isolate CSCs 
in different cancers (61-65). Normal and cancer human 
mammary epithelial cells with increased ALDH activity 
have stem/progenitor properties by utilizing in vitro and 
in vivo experimental systems (13). In breast carcinomas, 
high ALDH activity identifies the tumorigenic cell fraction, 
which is capable of self-renewal and of generating tumors 
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that recapitulate the heterogeneity of the parental tumor 
(13,66). Also, it showed that ALDH1 was a predictor of 
poor clinical outcome of BC patients (64). In conclusion, 
ALDH1 activity has been widely used as a functional stem 
cell marker to isolate CSCs in BC. 

Side population (SP)

Hoechst 33342 is a DNA dye historically used for flow 
cytometric analysis of the DNA content of live cells (67). 
Hoechst is able to penetrate intact cell membranes and 
it could be also transported out of cells by ATP-binding 
cassette (ABC) transporters (68). SP cells can be identified 
using dual wavelength flow cytometry combined with 
Hoechst 33342 dye efflux. These cells have been detected 
in various human solid malignant tumors including BC 
(69-71). It’s reported that SP cells have increased resistance 
to chemotherapeutic agents and apoptotic stimuli (72,73). 
Also, SP cells have increased migratory potential and thus 
may play an important role in the metastatic spread of BC (74). 
However, recent studies have shown arising problems in 
using SP cells as a CSCs fraction because of conflicting 
results due to cross-contamination of the SP and non-SP 
fractions (75). 

Other biomarkers

Additional markers useful in characterizing breast CSCs 
were recently reported. CD133, identified for breast CSCs 
isolated from cell lines generated from mouse mammary 
tumors, is a known marker of CSCs in several solid tumors 
(76-78). An additional marker, PROCR, identified using 
gene expression profiling of primary BCs, is also a known 
marker of hematopoietic, neural, and embryonic stem cells 
(79,80). Other surface markers such as CXCR4 and ABCG2 
may be associated with CSC characteristics. CXCR4 was 
reported to promote metastasis in BCs (81). Recently, a 
highly tumorigenic subpopulation expressing PROCR+ESA+ 
was identified (82), and which may provide a CSC molecular 
signature in BC. 

Key signaling pathways 

The signaling pathways that regulate self-renewal and 
differentiation of CSCs are not well understood. However, 
it seems that there are some overlap in the key signaling 
pathways between CSCs and normal adult stem cells. Here 
we summarized some of these signaling pathways such as 

Wnt/β-catenin, Hedgehog (Hh), and Notch signaling that 
play a vital role in regulating BCSCs.

 

Wnt/β-catenin signaling pathway

The Wnt signaling pathway is critical for the regulation of 
embryogenesis, cell fate determination, self-renewal and 
differentiation of stem cells (83). It causes an accumulation 
of β-catenin in the cytoplasm and its eventual translocation 
into the nucleus to act as a transcriptional coactivator 
of transcription factors that belong to the TCF/LEF 
family (84). In the absence of Wnt signal, β-catenin is 
targeted by coordinated phosphorylation by CK1 and the 
APC/Axin/GSK-3β complex leading to its ubiquitination 
and proteasomal degradation. However, in the presence 
of Wnt ligand, the co-receptor LRP5/6 is brought in 
complex with Wnt-bound Frizzled. This leads to activation 
of Dishevelled (Dvl) by sequential phosphorylation, poly-
ubiquitination, and polymerization, which displaces 
GSK-3β from APC/Axin through an unclear mechanism. 
In addition, it allows β-catenin to accumulate and localize 
to the nucleus and subsequently induce a cellular response 
via gene transduction alongside the TCF/LEF transcription 
factors (84). Wnt/β-catenin signaling is implicated in the 
maintenance of CSCs of a variety of cancers including BC 
(83,85). For example, upregulation of β-catenin in stem cell 
survival pathway was shown to mediate the resistance of 
mouse mammary stem/progenitor cells to radiation (73). 
MMTV-Wnt1 transgenic mice could develop premalignant 
mammary hyperplasia with elevated stem cell numbers, 
and their subsequent carcinomas contain a CSC population 
defined by methods similar to those applied to human 
BCs (86). It’s also reported that Wnt proteins could act 
directly on mouse mammary stem cells to promote their 
self-renewal or expansion (87). 

Notch signaling

Notch signaling is an evolutionarily conserved pathway 
in multicellular organisms that regulates cell-fate 
determination during development and maintains adult tissue  
homeostasis (88). The Notch transmembrane signaling 
proteins are expressed in both stem cells and early 
progenitor cells. It has four different notch receptors, 
referred to as NOTCH1-4, which play an important role 
in normal breast development, cell fate, and stem cell self-
renewal (89). Aberrant Notch signaling has been implicated 
in the development and progression of both preinvasive 
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ductal carcinoma in situ and invasive BC (88,90). Notch 
signaling pathway is believed to be dysregulated in CSCs, 
ultimately leading to CSCs uncontrolled self-renewal. 
For example, it was shown that Notch signaling play an 
important role in the self-renewal function of malignant 
breast CSCs (88,91). Notch 4 is critical for normal mammary 
development, which could suppress differentiation of breast 
epithelial cells in vitro and development of normal mammary 
glands while promoting the development of mammary 
tumors in vivo (91). These observations suggest that 
alterations of Notch 4 signaling might be involved in the 
transformation of normal mammary stem cell to CSCs. 

Hh signaling

Hh signaling pathway is a highly conserved pathway that 
plays a critical role in embryonic growth and cell fate 
determination during development (92). Vertebrates consist 
of three main Hh homologs: Indian hedgehog (Ihh), Desert 
hedgehog (Dhh) and Sonic hedgehog (Shh). Pathway 
activation is initiated by binding of one of the three Hh 
homologs to Patched (Ptch), an Hh receptor necessary for 
proliferation, differentiation and cell fate (93). Hh signaling 
is triggered by binding of ligands with transmembrane 
receptor  Ptch  and  i s  subsequent ly  media ted  by 
transcriptional effectors belonging to the Gli family, whose 
functions is tuned by a number of molecular interactions 
and post-synthetic modifications (93). Hh signaling 
pathway is another major pathway that is involved in 
breast stem cell self-renewal (94). It’s reported that the Hh 
pathway takes part in regulating self-renewal of normal and 
malignant human mammary stem cells (92). Accumulating 
evidence also suggests that inhibition of Hh signaling in 
breast tumors may interfere with the maintenance of a 
putative CSCs subpopulation (94). Human breast CSCs, as 
identified by the CD44+ CD24–/low Lin– phenotype, show 
increased gene expression of PTCH1, GLI1 and GLI2 
compared to remaining tumor cells isolated from primary 
BCs (95). Additionally, it has been found that inhibition of 
Hh signaling increases the response of cancer cell lines to 
classical chemotherapies (96).

 

Breast CSCs as therapeutic targets

Accumulat ing studies  have demonstrated a  small 
subpopulation of CSCs exist in the cancer cell population. 
CSCs have powerful self-renewal capacity and tumor-
initiating ability, and are resistant to conventional cancer 

treatment such as chemotherapy and radiation (9). 
These conventional anticancer therapies are effective at 
debulking the tumor mass but spare the relatively quiescent 
CSCs, which are responsible for cancer recurrence. So 
it is necessary to develop therapeutic strategies acting 
specifically on CSCs. Therapeutic targeting of CSCs may 
therefore provide a novel strategy that is more effective 
than the current drugs targeting the bulk mature cancer 
cells in treatment of BC. Numerous therapeutic approaches 
aiming at eradicating CSCs have been developed in recent 
years such as targeting molecular markers and key signaling 
pathways, as well as inducing the differentiation of BCSCs.

The first approach is to target molecular markers of 
CSCs. CD44 is a CSCs surface marker and is upregulated 
in invasive breast carcinoma (6). It’s reported that targeting 
CD44 with the specific antibody P245 significantly 
inhibited the growth of human BC xenografts (97). 
Treatment with this antibody prevents tumor relapse after 
chemotherapy-induced remission in a basal-like human BC 
xenografts (7,97). Moreover, in the treatment of MCF-7 
BC, an anti-CD44 antibody-conjugated gold nanorod has 
been used to target and photo-ablate CD44+ cells, which 
display significant CSC characteristics (98,99). 

A second approach is to target key signaling pathways 
of CSCs. The stem cell signaling pathways play important 
roles in CSCs renewal and maintenance such as Notch, 
Wnt/β-catenin and Hh pathways. Small molecules of 
gamma secretase inhibitors (GSI) or Notch 4 neutralizing 
antibody have been shown to reduce the population of 
CSCs (100). GSIs are currently undergoing clinical trials for 
the treatment of advanced BC. It showed that oral GSI was 
well tolerated at a weekly dosing, but no clinical benefit was 
observed in patients with BC (101). Furthermore, inhibition 
of Wnt signaling by dietary polyphenols curcumin and 
piperine has been shown to decrease mammosphere 
formation and percentage of ALDH1-positive cells (102). 
Some studies also demonstrate that inhibitors of Wnt/
β-catenin signaling eradicated breast tumor-initiating cells 
in vitro and in vivo, which provide a compelling rationale for 
developing such antagonists for BC therapy (103). Finally, 
recent studies demonstrate that Hh signaling pathway 
plays an essential role in maintaining the CD44+ CD24–/low 
subpopulation, and this pathway might represent a new 
candidate for BC therapy targeting CSCs (104). 

Inducing differentiation of BCSCs is another approach 
to target CSCs. It will result in the loss of the potential 
to self-renewal in the CSCs. Enforced expression of let-7 
miRNA induced differentiation of CD44+ CD24–/low CSCs 
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and inhibited their ability to form tumors in mice (105).  
Most recently, Gupta et al. used a high-throughput 
screening approach to determine the anticancer activity 
of approximately 16,000 compounds. It was identified 
that salinomycin could selectively target CD44+ CD24–/low 
CSCs (106). Treatment of mice with salinomycin induced 
epithelial differentiation of tumor cells and resulted in 
inhibition of tumor growth (106). These findings suggest 
that inducing differentiation of CSCs might be a promising 
approach for breast cancer therapy.

Conclusions

In summary, recent studies have identified a small population 
of highly tumorigenic cells with stem cell properties 
in human BC that are referred to as BCSCs. They are 
considered to be the source of tumor initiation and 
maintenance. Also, growing evidence suggests that CSCs 
may be responsible for therapy resistance and relapse of 
BC. Current treatments of BC have shown efficacy in 
removing the bulk of differentiated cancer cells while 
failing to eliminate the BCSCs, targeting BCSCs might be a 
promising approach to treat BC metastasis and relapse.
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