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Hematopoietic stem cells (HSCs) are able to give rise to 
an organism’s entire blood system. They continuously 
differentiate into all of the blood cell lineages and 
possess the capacity for long-term self-renewal. In recent 
decades, remarkable progress has been achieved in the 
fight against hematological malignancies. Although 
novel chemotherapeutic regimens and targeted strategies 
have been developed, the most powerful weapon is HSC 
transplantation (HSCT). Since the first clinical trial 
of HSCT in the early 1960s, millions of patients with 
malignant or nonmalignant blood diseases have benefitted 
from HSCT, which is currently the most widely used 
therapeutic strategy involving stem cells worldwide (1,2). 
More than 50,000 patients are treated with allogenic or 
autologous HSCT each year. HSCs have been used to treat 
patients with leukemia and lymphoproliferative disorders. 
There are various types of leukemia including acute myeloid 
leukemia (AML), acute lymphoblastic leukemia, chronic 
myeloid leukemia (CML), chronic lymphoblastic leukemia, 
and myelodysplastic syndromes. Lymphoproliferative 
disorders include Hodgkin lymphomas, non-Hodgkin 
lymphomas (NHLs), and plasma cell disorders (3). In 
addition to hematological malignancies, HSCs have been 

used in the treatment of nonmalignant blood disorders (4), 
solid tumors (5), autoimmune diseases (6), and immune 
deficiencies such as human immunodeficiency virus 
disease (7). 

Despite these advances, the application of HSCT is 
greatly hampered by the lack of sources of HSCs. One 
solution for this demand is to expand HSCs in vitro. 
Unfortunately, HSCs are easily differentiated and lose 
their long-term self-renewal activities in vitro, so the 
expanded HSCs are unable to reconstitute the recipient’s 
hematopoietic system (8). Therefore, researchers in the 
fields of hematology and regenerative medicine have long 
sought the efficient expansion of functional HSCs. Thus, 
it is important to study the molecular mechanisms and 
regulatory networks that modulate the fate of HSCs to gain 
an understanding of hematopoiesis and to provide critical 
insight into the clinical applications of HSCs.

The expansion and maintenance of self-renewal in HSCs 
are regulated by several signaling pathways, such as the 
Notch (9), Wnt (10), bone morphogenetic protein (BMP) (11), 
mTOR (12), and Hedgehog (13) pathways, which are in 
turn regulated by both extrinsic and intrinsic mechanisms 
(Figure 1) (14). For example, the Wnt signaling required 
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for the self-renewal of HSCs is activated by extracellular 
proteins (e.g., WNT3A), which then up-regulate some 
of the genes implicated in self-renewal (e.g., HoxB4 and 
Notch1) and arrest the HSCs in an undifferentiated 
stage (10). The stemness of HSCs is niche dependent; it is 
essential for adult HSCs located in the bone marrow niche 
(osteoblastic niche and bone marrow vascular niche) (15,16), 
which include osteoblasts, osteoclasts, perivascular stromal 
cells, endothelial cells, macrophages, sympathetic neurons, 
and nonmyelinating Schwann cells (17). It provides physical 
interaction and secretes many growth factors and chemical 
modulators, such as NOTCH ligands (JAGGED-1/2) 
(18,19), WNT proteins (WNT3A) (10,20), BMPs (11), 
angiopoietin-like factors (21), thrombopoietin (22), stem 
cell factor (23,24), retinoic acid (25), CXCL12 (26), and 
E-selectin (27), that activate the regulatory pathways 
and maintain the self-renewal of HSCs or promote their 
proliferation. Recently, we found that angiopoietin-like 7 
derived from a stromal cell line is capable of promoting 
the expansion of human HSCs and increasing their 
repopulation activities via Wnt signaling. This finding 

provided new insight into the regulation of the fate of 
HSCs and a new method for in vitro culture of HSCs (28). 

In intrinsic mechanisms, under the cascade of these 
signaling pathways, transcription factors play the primary 
role in determining the gene expression profiles of stem 
cells. The current view is that the fate of HSCs is regulated 
by competition between transcription factor complexes (29). 
It is well established that transcription factors such as 
ICN (18,19), β-catenin (10,20), Myc (30), SMAD (11), 
STAT3/5 (31), CEBPα (32), HOXB4 (33), GATA2 (34), 
PU.1 (35), JUNB (36), and GFI1 (37) are necessary for the 
self-renewal process of HSCs (Figure 2) and that ex vivo 
over-expression of these code genes may result in expansion 
of the HSCs by restricting cell differentiation, resetting 
the cell cycle, and mediating cell division. Self-renewal 
is activated by diverse signals and regulated by many 
transcription factors, but these transcription factors are 
not the sole mediators; for example, Myc, NOTCH, and 
leukemic fusion proteins together stimulate self-renewal 
(38,39). Therefore, signaling through multiple pathways 
is likely to trigger a set of cellular events associated with 
self-renewal; the transcription factors then make a proper 

Figure 1 Extrinsic and intrinsic mechanisms that regulate cell 
fate of HSC. The expansion and maintenance of self-renewal in 
HSCs are regulated by both extrinsic and intrinsic mechanisms. 
Extrinsic mechanisms are dictated by niche, which provides 
physical interactions, growth factors and chemical modulators that 
trigger diverse signal transduction pathways. Intrinsic mechanisms 
are niche-dependent transcription factors that initiate expression 
of downstream target genes following extrinsic stimulations. TF, 
transcription factor.

Figure 2 Signaling pathways involved in the self-renewal of 
HSC. Signaling pathways are initiated when growth regulators 
and chemical modulators bind to respective cell surface receptors. 
Signaling pathways lead to the translocation of the transcription 
factors from the cytoplasm to the nucleus. These transcription 
factors then bind to the appropriate DNA sequences to regulate 
the self-renewal of HSC. BMP, bone morphogenetic protein; 
SCF, stem cell factor; FLT-3, Fms-like tyrosine kinase 3; TGF-β, 
transforming growth factor-β.
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response to these signals and endow a moderate self-renewal 
process with HSCs. Therefore, self-renewal and expansion 
occur autonomously in HSCs and are also affected by the 
niche; the HSCs must remain in a tightly controlled and 
precisely balanced stage.

Many studies have suggested that leukemia is a stem cell-
based disease (40,41). Although the existence and relevance 
of leukemia-initiating cells (LICs) or leukemia stem cells 
(LSCs) in acute lymphoblastic leukemia have remained 
elusive (42,43), LICs have been fairly well described in 
AML and CML by several research groups (41,44-46). 
LICs are a subset of cells that have the capacity to self-
renew, to give rise to more differentiated progeny, and to 
maintain the leukemia for long periods. Although LICs and 
HSCs differ in their production of differentiated cells, they 
have striking similarities. For example, like HSCs, LICs 
account for only a small subset of leukemic cells that are 
capable of extensive proliferation in vitro and in vivo. For 
most subtypes of AML, the cells capable of transplantation 
have a (CD34+, CD38–) phenotype, similar to that of 
HSCs (41,47). In addition, LICs are niche dependent, and 
xenograft transplantation assays have proven the role of 
niches in resistance to chemotherapy and in the cell cycle 
regulation of LICs (48,49). Furthermore, both normal 
stem cells and LICs depend on SDF-1-mediated CXCR4 
signaling for homing and mobilization (50). In addition, 
many molecular mechanisms that enable self-renewal, 
such as the Notch (51), Wnt (52,53), angiopoietin (54), 
and FGF (55) signaling pathways, are common to both 
normal stem cells and LICs. Increasing evidence suggests 
that certain subtypes of human leukemia may arise from 
mutations that accumulate in normal HSCs. For example, 
in CML, BCR–ABL fusion resulting from t(9;22) was found 
in HSCs (40). In addition, it has been reported that human 
CML can be induced in mice by introducing the BCR–ABL 
fusion protein into normal HSCs (56). Translocation of 
chromosomes 8 and 21 in HSCs results in RUNX1–ETO 
fusion and leads to AML (57). Furthermore, preleukemia 
clones with somatic mutations have been found in the HSCs 
of patients with AML (58). It has also been reported that the 
genetic alterations specific for T-cell lymphoma (59), follicular 
lymphoma (60) and hairy cell leukemia (61) could be traced 
to the HSC stage. The regulatory network tightly controls 
and maintains normal HSC function. Disturbances to these 
systems can lead to dysregulation of the HSCs, impairing 
their differentiation (62), increasing cell survival (63), 
and ultimately resulting in the abnormal proliferation of 
leukemic cells. Therefore, it is reasonable to assume that 

LICs may be derived from normal HSCs, and further 
studies should focus on the molecular mechanisms that 
transform HSCs into LICs.

Some of the biological features of HSCs have now 
been recognized, but the molecular mechanisms that 
underlie these properties are still not clearly understood. 
Investigation of the regulatory mechanisms of HSCs may 
help us to understand not only the origin of LICs but also 
to determine a means of expanding functional HSCs in 
vitro, which would have many beneficial clinical uses.
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