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Human leukocyte  ant igen (HLA)-haploident ica l 
hematopoietic stem cell transplantation (HLA-haplo 
HSCT) is an alternative transplant option for the majority 
of patients with hematological disease and is available 
without search or acquisition costs to the patient (1-7). Over 
the past 2 decades, many haploidentical transplantation 
protocols, including T cell-replete and T cell-depleted 
(TCD) haplotype HSCT, depending on whether the 
allografts have been engineered in vitro, have demonstrated 
promising clinical outcomes (8-10). Several transplant 
centers have reported success with the transplantation of 
TCD peripheral blood stem cells (PBSCs) with a low rate 
of graft-versus-host disease (GVHD); however, serious 
infections and disease relapses resulting from delayed 
immune reconstitution remain the 2 most frequent causes 
of mortality after allogeneic HSCT, particularly in patients 

who receive extensive TCD CD34+ cell megadose allografts 
(5,11-14). Therefore, many centers actively pursue 
bone marrow transplantation without T-cell depletion 
using unmanipulated haploidentical transplant protocols  
(6-9,15-17). The approaches used include anti-thymocyte 
globulin (ATG) preparative regimens for partial in vivo  
T-cell depletion, granulocyte colony-stimulating factor 
(G-CSF)—primed grafts to polarize the T-cell response 
to a Th2-type pattern, and high-dose post-transplant 
cyclophosphamide (Cy) to preferentially deplete alloreactive 
T cells (17-21). In this review, we summarize advances 
in the development of new conditioning regimens, 
improvements in GVHD prophylaxis, the incidences of 
invasive fungal disease (IFD) and cytomegalovirus (CMV) 
infection after transplantation, and strategies to improve 
transplant outcomes. In addition, we discuss the future 
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directions of unmanipulated HLA-haplo HSCT.

Conditioning regimen of unmanipulated 
haploidentical transplantation

Transplant procedures using a myeloablative conditioning 
regimen

Peking University in China investigated the combination 
of G-CSF-primed bone marrow and peripheral blood 
with intensive immunosuppression using ATG for in vivo  
T-cell depletion. Other drugs in the conditioning regimen 
included cytosine arabinoside (Ara-C), busulfan (Bu), Cy, and 
semustine, and GVHD prophylaxis included cyclosporine 
(CsA), mycophenolate mofetil (MMF), and short-course 
methotrexate (MTX) (18). In the first report, the authors 
compared the clinical outcomes of HLA-haploidentical 
transplantation with those of HLA-matched sibling 
transplantation without ATG administration. The cumulative 
incidence of grade II to IV acute GVHD (aGVHD) was 
32% and 40% in matched sibling and haploidentical 
transplants, respectively (P=0.13). Surprisingly, treatment-
related mortality (TRM) was similar (14% vs. 22%), as were 
the relapse rate and overall survival (OS) (13% vs. 18% and 
72% vs. 71%, respectively). In an updated report, Huang  
et al. reported encouraging clinical outcomes in 145 Ph+ 
acute lymphoblastic leukemia patients and 450 acute myeloid 
leukemia patients who underwent unmanipulated HLA-haplo 
HSCT with the following conditioning regimen: total body 
irradiation (TBI) + methyl-N-(2-chloroethyl)-N-cyclohexyl-
N-nitrosourea (Me-CCNU) + Ara-C + Cy + ATG and Bu + 
Me-CCNU + Ara-C + Cy + ATG. The 3-year probability of 
leukemia-free survival (LFS) in AML patients was 74%, and 
the 5-year probability of LFS in Ph+ ALL patients was 65.8% 
(15,22). The results indicate that unmanipulated HLA-
haplo HSCT produces outcomes similar to those of identical 
sibling donor HSCT. 

A multicenter randomized controlled trial in southwest 
China studied the outcomes of unmanipulated HLA-haplo 
HSCT in high-risk AML patients using a combination of 
G-CSF priming during the chemotherapy conditioning 
regimen. G-CSF at 5 mg/kg daily was administered 
subcutaneously on days −10 to −7 of the chemotherapy-
based conditioning regimen, which comprised CCNU  
200 mg/m2 orally on day −9, high-dose Ara-C (4 g/m2) daily 
on days −8 to −7, Bu 3.2 mg/kg daily on days −6 to −4, and 
Cy 1.8 g/m2 daily on days −3 to −2 (23). Based on the known 
activities of G-CSF (24,25), the use of G-CSF-mobilized 

PBSCs and enhanced leukemic chemosensitization with the 
combination of high-dose Ara-C plus G-CSF priming in 
the conditioning regimen (25-28) is expected to decrease 
GVHD and leukemia relapse.

Transplant procedures using non-myeloablative (NMA) 
conditioning regimens

Although the incidences of graft failure and GVHD 
have been reduced through the use of myeloablative 
condit ioning regimens,  these procedures  remain 
associated with high regimen-related toxicity and TRM, 
mainly due to infectious complications, thereby limiting 
the applicability of haploidentical transplantations to 
the majority of patients. Therefore, the use of NMA 
conditioning regimens has been tested in multiple studies, 
with encouraging results (29).

Most NMA conditioning regimens incorporate the 
highly immunosuppressive drug fludarabine (Flu) (28).  
Studies from Tubingen, Germany and from Duke University 
in the United States have combined Flu-based conditioning 
with in vivo TCD using OKT3 (30) or CAMPATH (31) 
to enable the engraftment of HLA-haploidentical stem 
cells. These regimens were associated with acceptable 
non-hematologic toxicities and sustained donor cell 
engraftment in patients up to 66 years of age. OS at 1 year 
after transplantation ranged from 31% to 37% (32,33), 
establishing the feasibility of HLA-haploidentical HSCT 
after NMA conditioning.

Recently, a prospective, multicenter phase I/II study 
of unmanipulated, reduced-intensity HLA-haplo HSCT 
using a low dose of ATG and steroid was conducted in  
5 institutions in Japan (34). The study enrolled 34 patients 
with hematologic malignancies who exhibited advanced 
stage disease or who were at a high risk of relapse at 
the time of transplantation. The conditioning regimen 
comprised Flu, Bu, and ATG (Fresenius, 8 mg/kg), and 
GVHD prophylaxis comprised tacrolimus (Tac) and 
methylprednisolone (1 mg/kg). Thirty-three patients 
achieved donor-type engraftment. The cumulative 
incidences of grade II to IV aGVHD and extensive cGVHD 
were 30.7% and 20%, respectively. Fourteen patients 
(41.2%) exhibited relapse. The cumulative incidence of 
TRM at 1 year after transplantation was 26.5%. The 
survival rates at 1 year for patients with complete remission 
(CR)/chronic phase (n=8) and non-CR (n=26) statuses 
before transplantation were 62.5% and 42.3%, respectively. 
This transplantation protocol is safe and feasible if a suitable 
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donor is not available in a timely manner.

GVHD prevention of unmanipulated haploidentical 
transplantation

G-CSF-primed bone marrow (G-BM) and peripheral 
blood stem cells (G-PB)

G-CSF can induce T-cell hyporesponsiveness and a 
skewing toward a Th2 phenotype through an increase 
in plasmacytoid dendritic cells and a decrease in CD28-
CD80/86 signaling (35-38). Based on these findings, 
the Chinese researchers Huang et al. developed a HLA-
haplo HSCT protocol using myeloablative conditioning, 
intensified immunologic suppression with ATG, and a 
donor graft comprising G-CSF-primed bone marrow and 
PBSCs (17,18,23,35,38-40). Their most recent update 
included 450 acute leukemia patients (15), 231 (51.3%) of 
whom were assigned to undergo unmanipulated HLA-haplo 
HSCT. In this group, donors were treated with G-CSF  
5 mg/kg/day subcutaneously; BM cells were harvested on 
the fourth day of G-CSF, and PBSCs were collected on the 
fifth day. GVHD prophylaxis included CsA, MMF, ATG 
and methotrexate. The cumulative incidence of grades II to 
IV and III to IV aGVHD were 36% and 10%, respectively. 
The cumulative incidence of cGVHD was 42% at 1 year, 
and the 3-year disease-free survival (DFS) and OS rates 
were 74% and 79%, respectively (15).

Short-term Tac

The calcineurin inhibitor Tac possesses a 100-fold higher 
in vitro inhibitory activity against T cells compared with 
CsA and has been used for GVHD prophylaxis both alone 
and in combination with other immunosuppressive agents 
in patients undergoing HLA-matched HSCT (41,42). 
A low dose of Tac has been shown to induce functional 
regulatory T cells (Tregs) (43). Both Tac and MMF 
dampen Th1-related gene transcription and preserve Treg/
Th2 phenotypes (44). Our previous retrospective single-
arm studies demonstrated the feasibility of the decreasing 
stepwise addition of Tac in GVHD prophylaxis in patients 
undergoing HSCT with HLA-haplo donors. However, 
the long-term use of Tac led to an increased incidence 
of infection, especially CMV infection (45). Based on 
our previous study, we tested a short-term Tac protocol 
combined with MTX and MMF compared with a classical 
CsA + MTX + MMF for GVHD prophylaxis in patients 

undergoing HSCT from HLA-haplo donors. The 100-day  
cumulative incidences of grade III to IV aGVHD in 
patients receiving the short-term Tac regimen vs. the CsA 
regimen were 29.1% vs. 50.0% (P=0.005) and 3.6% vs. 
13.5% (P=0.027), respectively. No significant differences 
were found between the two groups in the incidences of 
cGVHD, relapse, and CMV infection or in DFS and OS. 
Lymphocyte subset analysis revealed that the number of 
T cells decreased to a lesser extent in the short-term Tac 
regimen within 3 months of transplantation (unpublished 
data). Thus, the short-term addition of Tac for GVHD 
prophylaxis in patients undergoing HLA-haplo HSCT is 
associated with a low incidence and decreased severity of 
aGVHD and does not increase the incidences of relapse and 
CMV infection.

Post-transplantation cyclophosphamide (PT/Cy)

PT/Cy is an attractive approach for crossing the HLA 
barrier in allo-HSCT because the treatment is cheap and 
strikingly effective and requires no special expertise beyond 
intravenous (IV) chemotherapy administration. A number 
of mechanisms likely contribute to the establishment of bi-
directional tolerance by PT/Cy, and these multistep process 
likely proceeds through several distinct and sequential 
phases. The first step includes the selective killing of 
proliferating alloantigen-stimulated T cells. Several lines 
of evidence support the differential sensitivity of naive T 
cells versus effector (Teff)/memory T cells to Cy-mediated 
killing. The relative resistance of donor Teff/memory T 
cells to PT/Cy, as demonstrated in mice, may contribute 
to the overall long-term reconstitution of peripheral T-cell 
pools and immune competence (46). These processes are 
important, given the slow recovery of thymic and T-cell 
functions after transplantation. The second step in the 
process of PT/Cy-induced tolerance includes the central 
deletion of donor HSC-derived anti-host T cells in the 
thymus. This mechanism, which is advantageous because it 
cannot be broken with TLR ligation and/or infections, is 
essential for maintaining lifelong tolerance after allografting. 
The existence of intrathymic clonal deletion after PT/Cy 
was also confirmed using superantigen-disparate murine 
allo-combinations, which is a well-studied system used 
to explain self-tolerance (46). In the final key step of PT/
Cy tolerance, a late breakdown of clonal deletion and an 
emergence of regulatory or suppressive T cells occur (20).  
The notion that CD4+ Tregs may also contribute to Cy-
induced tolerance is consistent with recent observations that 
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Foxp3+Tregs are critical for tolerance induction in MHC-
matched and MHC-mismatched models using anti-T-cell 
abs and co-stimulatory blockade (47).

Based on promising preclinical results, clinical trials of 
HLA-haplo HSCT using PT/Cy have been performed at 
many transplant centers. Luznik et al. (48) administered  
100 mg/kg PT/Cy over days +3 and +4 after a reduced-
intensity conditioning (RIC) regimen. The cumulative 
incidences of grades II–IV and grades III–IV aGVHD by 
day 200 were 34% and 6%, respectively, and the cumulative 
incidence of extensive cGVHD was 5%. Actuarial OS and 
event-free survival (EFS) at 2 years after transplantation 
were 36% and 26%, respectively. PT/Cy as GVHD 
prophylaxis was initially developed for haploidentical BMT 
after RIC, but several recent small studies have extended 
the approach to myeloablative conditioning and to the use 
of PBSCs as the graft source. Recently, Bacigalupo et al. (49)  
reported 148 patients with hematologic malignancies who 
received an unmanipulated HLA-haplo HSCT followed by 
PT/Cy. All patients underwent myeloablative conditioning 
comprising thiotepa + Bu + Flu or TBI + Flu. GVHD 
prophylaxis comprised PT/Cy on days +3 and +5, CsA 
(from day 0), and MMF (from day +1). The cumulative 
incidences of grades II-IV and III-IV aGVHD were 24% 
and 10%, respectively, and the incidence of moderate to 
severe cGVHD was 12%. The actuarial 22 months OS was 
77% for CR1 patients, 49% for CR2 patients and 38% for 
patients grafted in relapse (P<0.001). The study suggests 
that a myeloablative conditioning regimen followed by 
unmanipulated HLA-haplo HSCT with PT/Cy results in 
a low risk of acute and chronic GVHD and in encouraging 
TRM and overall survival rates.

IFD and CMV infection after transplantation

IFD incidence after transplantation

Due to the poor post-transplant immune reconstitution for 
HLA-haplo HSCT with ex vivo TCD, IFD is an important 
cause of morbidity and infection-related mortality (50). 
According to a study of 205 patients from Perugia (51), 
the risk of invasive aspergillosis (IA) after haploidentical 
transplantation with TCD was 2.7-fold higher than that 
after HLA-matched transplantation. Unmanipulated 
HLA-haplo HSCT included ATG preparative regimens 
for partial in vivo  T-cell depletion, G-CSF-primed grafts 
to polarize the T-cell response to a Th2-type pattern, 
post-transplantation rapamycin to favor regulatory 

T-cell population development, or high-dose post-
transplant Cy to preferentially deplete allo-reactive T cells 
(15,18,22,45,48,49). Huang et al. (52) reported a head-
to-head comparative study performed at a single center 
to assess whether the above-described strategies helped 
to reduce the IDF incidence. Of the 1,042 consecutive 
patients enrolled, 390 received the HLA-matched HSCT, 
and 652 received unmanipulated HLA-haplo HSCT. 
IFD was evaluated according to the revised EORTC/
MSG criteria, and only proven and probable cases were 
included. A total of 61 (5.8%) patients had IFD, including 
15 proven cases and 46 probable cases. The IFD incidence 
after unmanipulated HLA-haplo HSCT was significantly 
higher than that after HLA-matched transplantation (7.1% 
vs. 3.3%, respectively; P=0.007). IFD occurred later in 
patients receiving HLA-matched transplantation compared 
with patients receiving unmanipulated HLA-haplo HSCT 
(141.5 vs. 23 days, respectively; P=0.04). In multivariate 
analysis, aGVHD grades III to IV, extensive cGVHD and 
haploidentical transplantation were identified as significant 
risk factors associated with IFD. The prognosis of IFD 
was not associated with the type of transplantation. These 
results demonstrate that more active IFD prophylactic 
strategies should be adopted in the setting of unmanipulated 
HLA-haplo HSCT.

CMV infection after transplantation

CMV infection after HLA-haplo HSCT continues to 
adversely affect transplant outcomes (53-55) despite the 
use of prophylactic or preemptive treatment (56). Peking 
University researchers developed the GIAC protocol for 
HLA-haplo HSCT and observed that patients undergoing 
HLA-haplo HSCT had a higher 100-day cumulative CMV 
antigenemia incidence compared with a matched group 
(65% versus 39%), whereas the CMV-associated interstitial 
pneumonia incidence was the same in both groups (17% in 
both) (18). In Japan, Kurokawa et al. (57) conducted HLA-
haplo HSCT on 66 adults with hematologic malignancies 
using RIC without TCD. CMV antigenemia occurred in 
45 of 57 evaluable patients at a median of 19 days after 
transplantation. CMV-related diseases were diagnosed in  
3 patients, and one patient died of CMV colitis.

Immune reconstitution of the immune subsets likely has 
the greatest impact on clinical outcomes after HLA-haplo 
HSCT. In healthy CMV-seropositive individuals, high 
frequencies of CMV-specific CD4+ and CD8+ T cells that 
mediate the control of viral reactivation can be detected (58).  
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Both the quantity and quality of CMV-specific T cell 
recovery are essential for the immune control of CMV 
infection following HSCT. A strategy of deferred antiviral 
therapy based on the presence of a detectable functional 
CMV-specific T cell response at the time of CMV DNAemia 
documentation was clinically applied, allowing for the 
sparing of antiviral treatment in transplant patients (59).  
The process of immune reconstitution is influenced by 
patient- and transplant-related factors, including donor and 
patient ages, primary disease, transplant type, conditioning 
regimen, stem cell source, HLA disparity, GVHD, and 
infection (60). A recent study indicates that the selection of 
a young donor, the use of stem cells derived from PBSC or 
G-BM/PB, the occurrence of subclinical CMV reactivation 
while on antiviral therapy, the avoidance of GVHD, and the 
use of a decreased steroid dose can improve CMV-specific 
immune reconstitution (61).

Strategies to improve transplant outcomes

Donor selection

Most patients have more than 1 potential haploidentical 
donor, and various factors have been implicated in selecting 
the most suitable donor for HLA-haplo HSCT. Among 
these factors, killer immunoglobulin-like receptor (KIR) 
mismatch and donor-specific anti-HLA (DSA) antibodies 
are the main factors to be considered. 

KIR mismatch between recipients and donors has 
been associated with improved outcomes after HLA-
haplo HSCT in several studies (62,63). Ruggeri et al. (62) 
reported improved graft rejection, GVHD, and disease 
relapse rates among AML patients who received stem cells 
from donors with KIR mismatches in the GVH direction 
compared with those who did not. More recently, Symons 
et al. (63) reported similar results in a cohort of 86 patients 
with various hematologic malignancies who underwent 
unmanipulated HLA-haplo HSCT with non-myeloablative 
conditioning and PT/Cy with improved NRM, OS, and 
EFS among those transplanted with KIR-mismatch donors 
compared with those without KIR-mismatch donors (63).  
Although NK cell alloreactivity likely plays a role in the 
success of HLA-haplo HSCT, further studies are required 
to better define the role of KIR mismatch in donor 
selection and to exploit NK alloreactivity to improve post-
transplantation outcomes.

The presence of DSA by the cross-matching technique 
is considered an absolute contraindication to the use of 

that donor due to the indicated increased risk of graft 
failure (64). Three assays are available for measuring the 
presence of antibodies against donor HLA molecules: (I) 
lymphocytotoxic cross-matching; (II) flow cytometric cross-
matching; and (III) a solid-phase immunoassay (SPI) using 
fluorochrome-conjugated beads coated with single HLA 
molecules. The SPI is the most sensitive test for DSA (65). 
Recently, Ciurea et al. (66) analyzed 122 haploidentical 
transplant recipients prospectively tested for DSA. 
Retrospective analysis to detect C1q binding DSA (C1q + 
DSA) was performed on 22 allo-sensitized recipients. The 
presence of C1q+DSA was labeled as C1q positive, and 
the absence of C1q + DSA was labeled as C1q negative. 
Of the 122 patients, 22 (18%) had DSA, 19 of whom were 
women (86%). Seven patients with DSA (32%) rejected the 
graft. The median DSA level at the time of transplant for 
patients who failed to engraft was 10,055 mean fluorescence 
intensity (MFI) vs. 2,065 MFI for those who engrafted 
(P=0.007). According to this study, patients with high DSA 
levels (>5,000 MFI) appear to be at a much higher risk of 
primary graft failure. The presence of C1q + DSA should 
be assessed in allo-sensitized patients before HSCT, as 
reducing C1q + DSA levels might prevent engraftment 
failure in HSCT.

Donor lymphocyte infusion (DLI)

A few studies have investigated DLI after HLA-haplo 
HSCT. Lewalle et al. (67) proposed that 105 cells/kg should 
be the starting dose for DLI in patients undergoing HLA-
haplo HSCT. In a study conducted in Israel, 28 patients 
received prophylactic (n=6) or therapeutic DLI (n=22) in 
doses ranging from 1×102 to 1.5×109 T cells/kg (68). A 
clinical response to therapeutic DLI was observed in 6 of 
22 (27.3%) patients; a greater tumor burden was correlated 
with a lower response. Huang et al. (69) administered 
G-CSF-primed DLI to prevent disease recurrence. The 
authors analyzed the data of 88 patients with advanced-
stage acute leukemia after unmanipulated HLA-haplo 
HSCT whose treatment did (n=61) or did not (n=27) 
include G-CSF-primed DLI. The 2-year cumulative 
incidences of relapse in patients receiving prophylactic 
DLI vs. those not receiving prophylactic DLI was 36% 
and 55% (P=0.017), respectively. Estimated OS and EFS at  
3 years for patients receiving or not receiving prophylactic 
DLI were 31% vs. 11% and 22% vs. 11%, respectively 
(P=0.001 and 0.003). According to multivariate analysis, 
the use of prophylactic DLI after transplantation was an 
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independent prognostic factor for relapse. Subsequently, the 
authors retrospectively compared the anti-leukemic effects 
of chemotherapy alone and chemotherapy followed by 
modified DLI in patients with relapsed acute leukemia after 
unmanipulated HLA-haplo HSCT. In patients receiving 
chemotherapy followed by modified DLI, the complete 
remission rate was significantly higher (64.0% vs. 12.5%, 
P=0.000), the incidence of relapse was significantly lower 
(50.0% vs. 100.0%, P=0.000), and DFS was significantly 
improved (36.0% vs. 0.0%, P=0.000) compared with 
patients receiving chemotherapy alone (70). Zhou et al. (71) 
reported the long-term follow-up of 10 HLA-haplo HSCT 
patients infused with inducible human caspase 9-modified 
T (iC9-T) cells in vivo . These patients displayed immediate 
and sustained protection from major pathogens, including 
CMV, adenovirus, BK virus, and Epstein-Barr virus in 
the absence of acute or chronic GVHD, supporting the 
beneficial effects of this approach to immune reconstitution 
after haplo-HSCT.

Donor NK cell infusion

NK cell allo-reactivity may be exploited to improve the 
efficacy and safety of HLA-haplo HSCT. NK cells are 
thought to recognize their targets through both inhibitory 
and activating receptors. At Duke University Medical 
Center, 14 matched and 16 mismatched transplanted 
patients received a total of 51 NK cell-enriched DLIs. 
Long-term responders with multiple NK cell-enriched 
infusions and improved T cell phenotypic recovery 
exhibited improved durations of response and OS (72). 
Based on this exciting result, several studies evaluated the 
feasibility of NK cell infusions after HLA-haplo HSCT 
to utilize innate immunity against different tumors. 
Recently, the success of clinical-grade NK cell purification 
demonstrated that NK cell infusion is a promising method 
for prophylaxis and/or therapy for relapse after HLA-haplo 
HSCT (73). Yoon et al. (74) reported a series of 14 patients 
with acute leukemia or myelodysplastic syndromes who 
were infused with donor NK cells derived from CD34+ 
hematopoietic cells 6 to 7 weeks after TCR HLA-haplo 
HSCT. No acute side effects occurred, and 4 patients 
developed cGVHD. Four patients were alive and disease-
free 18 to 21 months post-transplantation. Two patients 
with active leukemia who received an NK cell infusion 
did not respond. Recently, Choi et al. (75) reported a 
series of 41 patients with hematologic malignancies who 
underwent HLA-haplo HSCT after reduced-intensity 

conditioning. The NK cells were infused into patients 
twice at 2 and 3 weeks after HSCT at an escalating dose 
from 2 to 10×107 cells/kg of body weight or available cells. 
At all dose levels, no acute toxicity was observed after NK 
cell infusion. No significant differences were found in the 
cumulative incidences of major HSCT outcomes, including 
engraftment, grade II to IV aGVHD, moderate to severe 
cGVHD, and TRM, in patients who received HLA-haplo 
HSCT and subsequent donor NK cell infusion compared 
to 31 historical patients who underwent HLA-haplo HSCT 
after the same conditioning regimen but without high-
dose NK cell infusion. However, a significant reduction 
was observed in leukemia progression (46% to 74%), and 
post-transplantation NK cell infusion was identified as an 
independent predictor of decreased leukemia progression 
(hazard ratio, 0.527). Prospective studies are required to 
explore the use of NK cells post-HLA-haplo HSCT.

Selected T-cell subset infusions

As an alternative approach to unmodified donor T cell 
infusions, several groups have tested the feasibility of donor 
T-cell infusions that were depleted of allo-reactive T cells 
(76-79) or that were introduced with a herpes simplex 
thymidine kinase suicide gene, allowing the allo-reactive 
T cells to be killed in the case of severe GVHD (80). In 
the haploidentical setting, Amrolia et al. (81) used an anti-
CD25 immunotoxin to deplete allo-reactive lymphocytes 
and infused allo-depleted donor T cells after ex vivo TCD 
haploidentical transplantation. Viral-specific responses 
were observed in 4 of 6 evaluable patients receiving higher 
doses of T cells with a low incidence of severe GVHD. 
Interestingly, loss of the HLA haplotype that differed 
from the donor’s haplotype in leukemic cells was recently 
reported in patients who relapsed after haploidentical 
transplantation and donor T cells infusion, indicating that 
escape from donor alloreactive T-cell killing represents one 
mechanism underlying leukemia relapse (82). Therefore, the 
status of mismatched HLA on relapsed leukemic cells may 
require examination before the utility of additional donor 
T-cell infusions is explored. In a study from Perugia (83),  
28 patients with high-risk hematologic malignancies 
received myeloablative conditioning followed by 2×106/kg  
freshly isolated donor Tregs. Four days later, patients 
received 1×106 conventional T lymphocytes (Tcons) 
and 10×106 highly purified CD34+ cells  from full 
haplotype donors. Although no post-transplantation 
immunosuppression was administered, the incidences of 
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aGVHD and cGVHD were extremely low. Interestingly, 
the pattern of post-transplantation immune reconstitution 
markedly differed from that of standard TCD HLA-haplo 
HSCT, with the rapid recovery of T-cell subpopulations, 
the development of a wide T-cell  repertoire,  and 
high frequencies of antigen-specific CD4+ and CD8+ 
lymphocytes. Significantly fewer CMV reactivation 
episodes and no CMV disease-related deaths occurred. 
Their innovative method of infusing regulatory T cells 
enabled the administration of larger amounts of mature T 
cells, which may lead to earlier immune reconstitution and 
improved outcomes.

Application of mesenchymal stem cells (MSCs)

Numerous studies have demonstrated that MSCs exhibit 
profound immune-modulatory functions both in vitro and 
in vivo  (84). MSCs modulate the proliferation, activation, 
and maturation of T and B lymphocytes in vitro in a dose-
dependent and time-limited manner (85,86). In adult 
patients undergoing transplantation from an HLA-identical 
sibling, MSC infusion is safe and possibly accelerates 
hematopoietic recovery and reduces the incidences of both 
acute and chronic GVHD. Lazarus et al. (87) previously 
demonstrated that the co-transplantation of MSCs with 
HSC is feasible and appears to be safe, without immediate 
or late MSC-associated transfusion toxicities. The 
sustained donor engraftment observed in patients treated 
with MSCs compared favorably to the risk of rejection 
observed in HLA-haplo HSCT recipients. Ball et al. (88)  
co-transplanted donor-derived MSCs in 14 children 
undergoing TCD haploidentical transplantation. None 
of the patients who received MSCs experienced either an 
adverse reaction or a graft failure. Additionally, Zhou et al. (89) 
and Weng et al. (90) also suggested that the transfusion of  
in vitro-expanded MSCs is a safe and effective salvage 
therapy for patients with steroid-resistant cGVHD. Our 
groups evaluated the safety and cGVHD prophylaxis 
efficacy of discontinuous MSC infusion in patients following 
unmanipulated HLA-haplo HSCT. We found decreased 
2-year cumulative incidences of both cGVHD and severe 
lung cGVHD. After MSC transfusion, the number of NK 
cells decreased, but the number of memory B lymphocytes 
and the ratio of Th1:Th2 increased (unpublished data).

Application of interleukin-2 (IL-2)

IL-2, a pleiotropic cytokine, plays a central role in 

immune responses. The administration of IL-2 early after 
HSCT during minimal residual disease might reduce the 
relapse rate and increase the immunocompetence of these  
patients (91). This effect could be due to a lymphoid 
orientation of primitive CD34+CD105+ cells expressing 
high-affinity IL-2 receptors. Thus exogenous IL-2 might 
lead to an enhancement of the graft-versus leukemia (GVL) 
effect (92). Liu et al. (93) studied 19 patients with acute 
lymphoblastic malignancy, including 6 patients receiving 
allografts from haploidentical donors, who underwent IL-2 
treatment for a high probability of disease recurrence after 
allo-HSCT. After a median follow-up of 6 months (range, 
3-19 months), 14 of 15 evaluable patients in the cohort were 
disease free (93.33%), whereas one patient in the ‘high-risk’ 
pre-transplantation category relapsed. The toxicities from 
IL-2 mainly included fever, pain, redness and swelling at the 
injection site. The authors concluded that the subcutaneous 
administration of low-dose IL-2 for 100 days or more could 
represent a safe and effective strategy for preventing relapse 
in acute lymphoblastic malignancy patients with a high risk 
of recurrence after unmanipulated allo-HSCT.

Future directions

Over the past several years, unmanipulated HLA-
haplo HSCT has been adopted by increasing numbers 
of transplant centers worldwide (9,15,23,33,94-96). 
Unmanipulated HLA-haplo HSCT provides an opportunity 
for patients to benefit from HSCT when an HLA-matched 
donor is not available. The final goal of HLA-haplo HSCT 
is to successfully overcome the HLA barrier and capture 
an optimal GVL effect with moderate GVHD. Several 
novel approaches exist that may be promising in the future: 
(I) selective but effective allo-depletion, which facilitates 
successful donor engraftment and improved post-transplant 
immune reconstitution while reducing the incidence 
of GVHD; (II) improved DLI to achieve a GVL effect 
without or with limited GVHD; (III) adoptive cellular 
immunotherapy with cells such as Tregs, NK/Tregs, MSCs 
and donor-derived NK cells as well as third-party cell 
infusion; and (IV) pathogen- or leukemia-specific donor-
derived T cell infusion, which could represent an additional 
approach for preventing opportunistic infection and 
reducing the leukemia relapse rate after HLA-haplo HSCT.
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