
© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2012;2(4):278-289www.thecdt.org

Hifs and hypoxia response

In aerobic organisms, cells require the supply of oxygen 
(O2) for generating intracellular ATP through oxidative 
phosphorylation. O2 availability profoundly affects almost 
all biological processes, and therefore, the response to 
hypoxia, is critical for all organisms. During hypoxia, cells 
activate a number of adaptive physiological responses, 
which directly influence metabolism, redox homeostasis, 
vascular remodeling etc. Hypoxia inducible factors (Hifs) 
are key modulators of the hypoxia-induced transcriptional 
program des igned to  counteract  the  reduced O 2 
availability at both cellular and systemic levels (1). Hifs 
are heterodimeric factors consisting of an O2-regulated 
alpha subunit and constitutively expressed beta subunit. 
Three isoforms of Hifα have been identified in mammals. 
Hif-1α and Hif-2α are highly related in their amino acid 
structures, and molecular and biological roles of them are 
well characterized. Hif-1α is expressed ubiquitously, but 
Hif-2α and Hif-3α, in contrast, are selectively expressed in 

certain tissues, including vascular endothelial cells (2) and 
peritubular interstitial cells in the kidney (3). Hif-1α expression 
induces a switch from the oxygen-dependent oxidative 
metabolism in the mitochondria to anaerobic glycolytic 
metabolism in the cytoplasm, whereas Hif-2α is believed 
to be a master regulator of oxidant stress response (4). The 
function of Hif-3α is not entirely understood, but it is known 
to possess a variety of splicing isoforms and some of them act 
as dominant negative forms of Hif-1α and Hif-2α (5-10). 

Regulation of Hif activity by O2 tension has been 
demonstrated at transcriptional, translational and post-
transcriptional levels. O2-dependent control of Hifα 
protein stability is one of the classic and best characterized 
regulatory mechanism (Figure 1A). Under normal O2 
tension, or normoxic conditions, Hifα subunits are 
hydroxylated at conserved proline residues in the oxygen 
dependent degradation (ODD) domain (9). These 
modifications are mediated by three prolyl hydroxylase 
domain-containing enzymes (PHD1-3), which require O2 
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for their enzymatic activity (9). Prolyl-hydroxylated Hifα 
is then recognized by the E3-ubiquitin-ligase, von Hippel-
Lindau (VHL) complex and degraded by the ubiquitin-
mediated proteasome pathway. Under hypoxic conditions, 
Hifα prolyl hydroxylation is suppressed due to the lack 
of oxygen as a substrate of hydroxylation reaction and 
consequently Hifα proteins stabilization. 

Recently more factors which regulate Hif protein activity 
have been reported, such as factor-inhibiting Hif-1α (FIH1) 
an asparaginyl hydroxylase, histone deacetylases Sirtuins, 
several oncogenes and tumor suppressor factors, as well 
as a number of transcriptional regulators [reviewed by 
Majmundar et al. (11) and Semenza (12)], suggesting more 
complex and precise regulation of Hif complexes in several 

different cellular contexts (Figure 1B). 
During hypoxia, Hifα is stabilized and forms heterodimers 

with Hifβ, which causes conformational change in Hif-α 
that allows the HIF heterodimer to bind to hypoxia 
response elements (HREs) (13) scattered throughout the 
genome and activate the transcription of several hundreds 
of target genes (14,15). Typical examples of the target genes 
of Hif heterodimers include erythropoietin (16,17) and 
vascular endothelial growth factor receptor (18,19), which 
activate erythropoiesis and angiogenesis, respectively. Hif 
complexes also regulates genes that activate glycolysis, 
which include glucose transporters [such glucose transporter 
1 (GLUT1)], glycolytic regulatory enzymes like 6-phospho-
2-kinase/fructose 2, 6-biphosphatase (PFKFB1-4), 
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hexokinase II (HKII) and lactate dehydrogenase A (LDHA), 
as well as activating genes which diminish mitochondrial 
oxidative metabolism, including pyruvate dehydrogenase 
kinase 1 (PDK1) [reviewed by Iyer et al. (20), Bartrons and 
Caro (21), and Wheaton and Chandel (22)]. The net result 
is a metabolic switch from mitochondrial phosphorylation 
to glycolysis. These Hif complex mediated transcriptional 
programs regulate many biological processes including 
embryonic development, tumor progression and also stem 
cell properties such as maintenance, self-renewal and 
differentiation. 

Hypoxia signaling in adult stem cells

Hematopoietic stem cells (HSCs), which have capacities 
for both self-renewal and multi-lineage differentiation, 
continue to replenish all blood cells throughout the 
entire life span of an organism (23,24). The bone marrow 
microenvironment which house HSCs, known as niches, 
provide HSCs with regulatory signals essential for their 
maintenance, proliferation and differentiation. One of 
the hallmarks of the HSC niche is its low oxygen tension, 
hence the term “hypoxic niche” (25). A number of studies 
revealed that this hypoxic environment is required for 
HSC quiescence. Moreover, colony-forming ability and 
transplantation capacity increases when bone marrow cells 
are cultured under low oxygen tension (26-28). Therefore, 
this low oxygen environment is not only tolerated by HSCs, 
but is also essential to maintain their function (26,29,30). 
Our group, as well as others, recently reported that Hif-1α 
mRNA and protein are highly expressed in LT-HSCs where 
it plays a crucial role in role in the maintenance of HSC 
quiescence and stress resistance (31-33). 

Since HSCs are sustained for a long time, they have 
to evolve mechanisms to diminish, and resist many 
stressors including oxidative stress. Our group revealed 
that LT-HSCs utilize cytoplasmic glycolysis, instead of 
mitochondrial respiration for their energy production (32), 
thereby minimizing mitochondrial derived reactive oxygen 
species (ROS). We showed that HSC-specific deletion 
of Hif-1α results in increased rates of mitochondrial 
respiration and decreased glycolytic flux (33). Interestingly, 
Hif-1α appears to be regulated at multiple levels in HSCs. 
We recently reported that homeodomain transcription 
factor Meis1 plays an essential role in the maintenance 
of LT-HSC through transcriptional activation for Hif-1α 
(32,33) (Figure 2). Meis1 also regulates Hif-2α transcription, 
where loss of Meis1 results in downregulation of Hif-2α 

levels, and increased ROS levels. Intriguingly, systemic 
administration of ROS scavengers rescues the Meis1-/- 
phenotype in HSCs. These results strongly support the 
central role of hypoxia signaling and redox regulation in 
HSC maintenance and survival (32,33). 

In addition to the hematopoietic system, hypoxia and 
Hif genes also play important roles in other adult stem cell 
populations. The subventricular zone of the hippocampus, 
known as a neural stem cell (NSC) niche, shares low oxygen 
tension properties with the hypoxic HSC niche (34), where 
loss of Hif-1α decreases NSC proliferation, differentiation 
and neural maturation (34). Moreover, Hifs are upregulated 
in several cancer stem cells and play roles in their survival 
and differentiation [reviewed by Semenza (12), Kobayashi 
and Suda (35), Heddleston et al. (36), and Li and Rich (37)]. 
For example, Hif-1α and Hif-2α is expressed in glioma stem 
cells and are essential for their self-renewal and tumorigenic 
capacity (38,39). In addition, the Hif-1α  inhibitor 
echinomycin eradicates lymphoma and acute myeloid 
leukemia by eliminating cancer stem cells (40). Thus, 
hypoxia and Hif-1α upregulation appears to be a features 
shared by various types of stem cells and an important 
regulator of their stem cell properties. 

Tissue specific cardiac progenitors

It has been long thought that cardiomyocyte turnover does 
not occur in the adult mammalian hearts, because myocardial 
injury invariably results in irreversible scar formation (41-43). 
However, recent evidence suggests that the adult mammalian 
heart does in fact undergo some degree of cardiomyocyte 
renewal during normal aging (44-48) and disease (45,46,48-50). 
Unfortunately, this modest myocyte renewal is insufficient for 
restoration of contractile function following injury. In contrast, 
some species of fish (51,52) and amphibians (53-56), as well 
as fetal (57) and neonatal mammals (58) have a remarkable 
ability to regenerate damaged myocardium, which is mainly 
achieved by proliferation of pre-existing cardiomyocyte 
(58-61). Interestingly, current evidence suggests that the 
adult mammalian heart derives the small number of new 
cardiomyocytes from an unknown stem or progenitor cell 
source (62). 

Several reports indicate that the adult rodent and human 
myocardium harbors populations of stem/progenitor 
cells, which appear to have the potential to generate 
cardiomyocytes in vitro (63-65). These cells are potentially 
an attractive source for cardiac repair and therefore, over the 
past decade, extensive studies have examined their use for 
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cardiac regeneration [reviewed by Laflamme and Murry (49), 
Hansson et al. (66), and Choi and Poss (67)]. In mice, cells 
expressing the stem cell factor receptor c-kit, (68), stem 
cell antigen-1 [Sca-1, (69)], the transcription factor islet-1 
[Isl-1, (70)], and side population (SP) cells (71) have been 
identified as cardiac resident progenitor cells due to their 
ability to acquire a cardiomyocyte lineage in vivo. Moreover, 
progenitor cells in the postnatal human hearts have been 
also identified by the expression of c-kit, Sca-1, Isl-1 (72-77) 
or SP profile (78). Even though SP cells, c-kit+ cells, Sca-1+ 
cells and Isl1+ cells all have a capacity to differentiate into 
smooth muscle cells, endothelial cells and cardiomyocytes, 
they are clearly distinct cell population in several aspects. 
For example, Isl1 positive progenitor cells do not express 
c-kit as oppose to SP, Sca-1 positive and c-kit positive 
progenitor cells [reviewed by Guan and Hasenfuss (79), and 

Bollini et al. (80)]. In addition, their localization within the 
heart appears to be distinct, where SP cells, Sca-1+ cells and 
c-kit+ cells are mostly enriched in the atria (73,74), Isl1+ cells 
are found widely in ventricles and atria (70). It is therefore 
critical to determine which lineages these cells contribute to 
during normal cardiac homeostasis, ageing and after injury. 
However, definitive genetic fate mapping studies are still 
underway to conclusively determine which of these diverse 
cell populations are true cardiac stem or progenitor cells. 

The epicardium as a source of cardiac 
progenitor cells

Another type of resident cardiac progenitors has been 
identified based on anatomical localization to the epicardium, 
and expression of epicardial markers. In zebrafish, the 
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epicardium is activated within 1-2 days after injury (60,81,82), 
where it proliferates, expresses embryonic epicardial genes, 
and undergoes epithelial-mesenchymal transition (82-84). The 
adult mammalian epicardial cells are activated similarly by 
myocardial infarction and/or Thymosin β4 stimulation (85), 
where they proliferate, start to express embryonic epicardial 
genes (86), and secrete paracrine factors that modified the 
myocardial injury response (83,87-90). 

In the past few years, increasing evidences suggested that 
the epicardium also contains distinct progenitor cells during 
normal development and upon injury (reviewed by Schlueter 
and Brand (91,92). Epicardial derived cells contribute 
to cardiac fibroblast, vascular smooth muscle cells and 
cardiomyocytes during embryogenesis by lineage tracing 
with WT1-Cre (93) and Tbx18-Cre (94) lines [although the 
epicardial origin of cardiomyocyte remains controversial 
because it was revealed that the Tbx18 is not only expressed 
in epicardium, but also in developing cardiomyocytes (95)]. 
Moreover, Chong et al. showed that the adult epicardium 
contains multipotent stem cells, which have the capacity to 
differentiate into cardiomyocytes, vascular endothelial and 
smooth muscle cells (96). Moreover, taking advantage of 
the upregulation of WT1 in epicardium in the adult heart 
upon injury, Zhou et al. revealed by lineage tracing that 
adult epicardium-derived cells contribute to fibroblasts and 
perivascular smooth muscle cells, without contribution to the 
cardiomyocyte pool (83), except after priming with thymosin 
beta 4 (85). These studies support the role of epicardial cells 
as cardiac progenitors, although fate-mapping studies that 
unequivocally demonstrate that the epicardium is the source 
of turnover of cardiomyocytes are still lacking. 

Hypoxic cardiac progenitor cells

These studies reviewed above identify the epicardium as a 
potential source of cardiac progenitors, however whether 
the epicardium is the true cardiac progenitor/stem cell 
niche, and whether it shares the hypoxic properties with 
other stem cell niches in the adult organism is not clear. 
To answer this question, we recently sought to identify 
hypoxic regions in the uninjured adult mammalian heart, 
and we found that the epicardium and subepicardium 
represent the cardiac hypoxic niche (97). The epicardial and 
subepicardium (within three-cell layer from the epicardium) 
have the lowest capillary density across the ventricle, 
with over 50% of epicardial cells and less than 10% of 
the subepicardial cardiomyocytes express Hif-1α protein. 
Moreover, non cardiomyocytes isolated from this region 

and expanded in culture, are clonogenic, self-renewing, 
express cardiac progenitor and epicardial markers, and 
are capable of acquiring different cardiac lineages in vitro 
including endothelium, smooth muscle and cardiomyocyte 
lineages. These results provide proof that the epicardium 
and subepicrdium represent the hypoxic niche of adult heart 
which, like other hypoxic niches in the adult organism, 
houses a population of cardiac progenitor cells (Figure 3).

 In support  of  the l ink between the metabolic 
phenotype and stem or progenitor cell phenotype, we 
found that these hypoxic cardiac niche cells mainly rely on 
cytoplasmic glycolysis, rather than mitochondrial oxidative 
phosphorylation (and therefore we named them glycolytic 
cardiac progenitors, or GCPs). Not surprisingly, knockdown 
of Hif-1α in these cells resulted in metabolic shift from 
glycolysis to mitochondrial oxidative phosphorylation, which 
was associated with decreased in their rate of proliferation 
and spontaneous differentiation. These findings suggest that 
similar to LT-HSCs, Hif-1α is required for maintaining self-
renewing stem/progenitor cells within the hypoxic niche by 
regulating their glycolytic phenotype (97). 

A number of questions regarding hypoxic cardiac 
progenitor cells still remain unanswered. For example, do 
they contribute to the cardiomyocyte turnover during normal 
aging and after myocardial injury? To answer this question 
conclusively, fate-mapping studies are necessary. However 
lineage tracing of GCPs is currently not technically feasible, 
in part because there are no known specific marker of GCPs 
or of cardiac hypoxic niche cells. In addition, what is the 
relationship between the hypoxic response (for example 
which occurs after myocardial infarction) and proliferation, 
migration and differentiation of GCPs in vivo? It is known 
that high ROS levels force other types of stem cells (such as 
HSCs) to exit from quiescence, spontaneously differentiate, 
and lose their self-renewal capacity (98-100). ROS levels 
markedly increase in the myocardium following an acute 
myocardial infarction (101,102), at the time of ischemia/
reperfusion (103-105) and in chronic heart failure (106-108), 
where they play a major role in mediating cardiomyocyte 
injury and death [reviewed by (109-111)]. Taking the 
similarities between HSCs and GCPs into consideration, 
it is important to determine how an in vivo ROS-rich 
environment would affect GCPs, and whether this plays a 
role in the deleterious effects of ROS on the myocardium. 
Another important question is the potential mechanism 
of migration of epicardial/subepircardial cells toward 
the injured myocardium. It is thought that epicardial/
subepicardial cells can migrate into myocardial wall and 
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differentiate into cardiomyocyte (85), however, factors that 
control their migration remain still unknown. One possible 
mechanism is the hypoxia itself that occurs as the result of 
injury (112,113). Hypoxia is known to promote stem cell 
recruitment, for example HSC homing into hypoxic bone 
marrow niche, via Hif-1α mediated production of chemokine 
SDF-1/CXCL12 [reviewed by Shiozawa et al. (114), 
Kavanagh and Kalia (115), Suárez-Álvarez et al. (116), and 
Schulz et al. (117)]. Chemokines including SDF-1 are also 
upregulated in the heart after acute myocardial infarction 
and attract various progenitor cell populations, which possess 
cardioprotective properties [reviewed by Ghadge et al. (118), 
and Smart and Riley (119)]. Moreover, in zebrafish SDF-1/
CXCL12 is reported to regulate cardiomyocyte migration 
after injury (120). Therefore, it is plausible that hypoxia 
plays a dual role in maintenance as well as recruitment of 
epicardial cells after injury. However, a full understanding 
of the mechanisms that govern homing and migration of 
epicardial cells is still lacking.

Concluding remarks

One important question that presents itself is whether 
there is a true cardiac stem cell in the adult mammalian 
heart. While other adult tissues, like the hematopoietic 
system, certainly have true stem cells, it is unclear if this 
is the case in the heart, especially if one takes clues from 
cellular origin of the heart during development. A true 
adult heart stem cell, from the differentiation perspective, 

would have to give rise to all cells within the heart including 
endothelial cells, smooth muscle cells, fibroblasts and 
cardiomyocytes, however these cells are actually quite distinct 
developmentally. During embryonic heart formation, two 
different major sources in splanchnic mesoderm provide 
cardiac progenitor cells: one is heart field mesoderm, and the 
other is proepicardium [reviewed by Dyer and Kirby (121); 
Abu-Issa and Kirby (122); Lie-Venema et al. (123) and Ishii 
et al. (124)]. Heart field mesoderm mainly contributes to 
cardiomyocytes (Nkx2.5+ cells), endocardium and vascular 
endothelium (Flk1+ cells) (125-127). However, most of the 
cardiac vascular endothelial cells are descendants of pre-
existing endothelial cells in sinus venosus (128) with some 
contribution from the endocardium (129) from which cells 
sprout out and migrate within the myocardial wall. On 
the other hand, the proepicardium gives rise to epicardial 
cells, cardiac fibroblasts, part of vascular endothelium and 
vascular smooth muscle cells (93,94,130-132) [coronary 
smooth muscle cells are also derived from cardiac neural 
crest (133)]. Therefore, while the concept of a true cardiac 
stem cell is highly appealing, there is no definitive proof (by 
genetic fate mapping) to indicate that this type of cell exists 
and contributes to cellular turnover as in case of HCSs. In 
fact, the current evidence suggests that turnover of cells 
in the post-natal heart resembles that during development 
(Table 1). For example, fibroblasts and vascular smooth 
muscle cells are derived from the epicardium (93,94), 
vascular endothelial cells are descendants of proliferating 
and migrating endothelial cells originated from adjacent 

Cardiac
hypoxic  

niche

Epicardium and 
subepicardium

Figure 3 Cardiac hypoxic niche in epicardium and subepicardium. The hypoxic microenvironment houses metabolically distinct population 
of glycolytic cardiac progenitor cells (GCPs). Epicardial GCPs isolated based on low mitochondrial content are c-kit-; Sca-1-; Nkx2.5+ and 
can differentiate into endothelial cells, smooth muscle cells and cardiomyocytes in vitro
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endothelium (136-139) and/or circulating progenitor cells of 
bone marrow or peripheral endothelium (140-143) [although 
recently it has been questioned that these circulating 
progenitor cells really contribute to newly generated 
endothelial cells after the injury (144-146)]. Moreover, 
post-natal cardiomyocytes appear to be derived from pre-
existing cardiomyocytes (58,134,135), the epicardium [only 
after thymosin beta 4 priming (85)] or unknown progenitor 
cells (44,62). It is perhaps intriguing that these cell lineages, 
which replenish the adult heart, appear to recapitulate their 
developmental origin, and very rarely cross the boundary of 
major developmental lineage sources. 

It is important to remember that even if there is currently 
no irrefutable evidence of a “true” adult cardiac stem cell 
that carries out the function of replenishing all cell lineages 
in the heart during ageing and disease, this does not mean 
that many of the cell populations described above have no 
therapeutic value. On the contrary, mounting evidence 
suggests that cell therapy may in fact induce a measurable 
regenerative response in the adult myocardium, unrelated 
to their transdifferentiation capacity. An elegant example of 
a regenerative role of C-Kit cells was recently demonstrated 
by the Lee lab, where they clearly showed an increase in 
the number of newly formed cardiomyocytes, and improved 
systolic function after injection of C-Kit cells, although 
these cells were no longer present in the heart (150). 

In this review we summarized recent findings that 
highlight the emerging role of hypoxia signaling in stem cell 
niches, including the newly identified cardiac hypoxic niche. 
We propose that better characterizing of the epicardial 
hypoxic niche cells, in terms of their lineage differentiation 

potential, and the role of hypoxia signaling in regulating 
their function, are important targets for modulating the 
capability of resident cardiac stem/progenitor cells for 
therapeutic applications. 
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