
© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2017;7(3):317-324cdt.amegroups.com

Introduction 

Assessment of observer variability represents a part of 
Measurement Systems Analysis (1) and is a necessary 
task for any research that evaluates a new measurement 
method. It is also necessary to perform observer variability 
assessment even for well tested methods as a part of quality 
control. It is also a favorite topic to be raised by reviewers 
during a peer review, often as a veiled disguise for a lack of 
credence in truthfulness of the data reported.

Yet, while it is obvious that some measure of observer 
variability is needed, there is a lack of standardization, with 
multiple parameters existing, and with little knowledge of 
what these parameters represent and often—even when 
calculated—presented in a such a cursory manner that the 
actual information is worthless. This is especially sensitive 
in the area of cardiovascular imaging. 

The purpose of this paper is twofold. The body of this 
paper aims to provide a description of the most frequently 
used methods and their interrelationships, weaknesses 
and strengths to an average biomedical journal reader. 
The complementary supplement provides the examples, 
equations and instruction on how to perform observer 

variability assessment for biomedical researchers. 

Observer variability in imaging studies: a case of 
echocardiography

We will use echocardiography to illustrate difficulties in 
defining what a proper assessment of observer variability 
is. With echocardiography, initial challenge lies in defining 
both what constitutes the individual sample (measurement 
unit) and who the observer is. Let us use as an example 
2-dimensional measurement of left ventricular (LV) end-
diastolic diameter (EDD). Do we define the sample as 
the combination of data acquisition and its subsequent 
measurement, or do we define it only as (off-line) 
measurement of already acquired data? Does the sample 
consist of a single measurement, or is it the mean of 
several measurements? Should observers be constrained 
by measuring the same cardiac cycle, or should they freely 
choose from several cardiac recorded cycles? Is the repeated 
measurement performed on the same a priori selected 
image, or does the observer selects an image from a specific 
clip? Should one also quantitate the error in image selection 
within the clip? What if one study contains three individual 
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single-beat clips while the other contains a single three-beat 
clip? What if different image depths, transducer frequencies, 
frame rates, post-processing algorithms were used in these 
three clips? Things get even more complicated when 
biplane measurements are considered. Yet echocardiography 
laboratories (and especially core echocardiography 
laboratories) have an additional and unaccounted layer of 
complexity, as most of the measurements are performed by 
sonographer and then approved by a supervising physician. 
In this setting, it is even unclear what “observer” means: the 
sonographer, the supervisor, or the particular sonographer/
supervisor pair? For example, a recent paper showed a 
much higher agreement with gold standard when ejection 
fraction was estimated by a pair of a sonographer and 
echocardiographer, rather than by either of them alone (2).  
Unfortunately, there is no easy way out of it, except by 
being aware of and very transparent on how these issues 
were dealt with.

In summary, when researchers report measurement 
variability, it is critical that they report exactly what 
they mean. The lowest level of variability occurs when 
a predefined frame within the clip is re-measured by the 
original observer (intraobserver variability) or a second 
one (interobserver variability). A second level occurs when 
different clips/frames from the same study are chosen for 
reanalysis, while the ultimate test of variability is when the 
study is repeated a second time and remeasured (test-retest 
variability).

Glossary

Before delving into the statistics, a few terms should 
concerning measurement of observer variability be defined. 
First is repeatability-the ability of a same observer to come 
up with a same (similar) result on a second measurement 
performed on the same sample. Second is reproducibility 
-the ability of different observer to come up with a same 
measurement. These two terms represent two main 
components of variability, and are related to method 
precision. They are quantified by some calculation of 
measurement error. Of note, most measures of interobserver 
variability by necessity represent the sum of repeatability 
(error intrinsic to single observer) and reproducibility (error 
intrinsic to between-observer difference). The third often 
used term is reliability, which relates measurement error 
to the true variability within the measurement sample. 
While reliability is often used as a measure of precision, it 
is strongly influenced by the spread of true values in the 

population, and therefore cannot be used as a measure of 
the precision by itself. Rather, it pertains to the precision of 
the method in the particular sample that was assessed, and 
therefore, unlike reproducibility and repeatability, is not an 
intrinsic property of the evaluated method (see below for 
further details). 

The person who does measurements is variably 
described as observer, appraiser, or rater; the subject 
of measurement may be a person (subject, patient) or 
an innate object (sample, part). Finally, the process of 
measurement is repeated in one or more trials. If two (or 
more) measurements are performed by a single observer, 
intraobserver variability is quantified. If measurements 
are performed by two (or more) observers, interobserver 
variability is quantified.

Finally, observer variability quantifies precision, 
which is the one of the two possible sources of error, the 
second being accuracy. Accuracy measures how close a 
measurement is to its “gold” standard, Often used synonym 
is validity.

Assessing measurement error (reproducibility 
and reliability): a case of single repetition

Let us illustrate variability assessment with a simple 
example. The researcher is interested in assessing variability 
of measuring LV EDD by 2-dimensional echocardiography. 
The minimum necessary to obtain variability assessment 
is to repeat the initial measurement once. If the researcher 
is interested in both intra and interobserver variability (as 
is usually the case), two observers (or raters) need to be 
involved. For intraobserver variability the first observer 
performs two measurements on each of the series of 
samples. For interobserver variability, the first measurement 
(not the average of two measurements!) of the first observer 
is paired to a single measurement of a second observer. How 
many types of observer variability measures can we calculate 
out of these data?

It turns out quite a lot. To illustrate it we show the 
three possible methods in Table 1, with a complete example 
provided in Table S1, with two computer generated data 
columns simulating pairs of first and second measurement 
performed on 20 subjects (samples) by the same observer 
(data are computer generated). As methods for calculating 
intra and interobserver variability in this particular setting 
are identical, only intraobserver variability assessment is 
shown. We will first describe what we arbitrarily named 
Method 1, in which we first form the third column which 
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contains individual differences between first and second 
measurements. Then, we calculate the mean and standard 
deviation of simple differences contained in this column. 
As it is likely that the mean will be close to 0 (i.e., that that 
there is no systematic difference (bias) between observers, or 
between two measurement performed by a single observer), 
most of the information is contained in a standard deviation. 
Of note, in the case of interobserver variability assessment, 
detection of significant bias between two observers 
indicates that a systematic error in measurement of one, 
or both, observers and should prompt a corrective action. 
Significance of this bias can be measured by dividing the 
mean bias with its standard error, with the ratio following t 
distribution with n-1 degrees of freedom.

With Method 2, we start by forming the third column 
that contains the absolute value of the individual difference 
of two measurements. In a second step we again calculate 
mean and standard deviation of this third column. Here the 
observer variability information is contained in both average 
value and its standard deviation. The obtained mean value 
is thus an average difference between the first and the 
second measurement. Finally, in the less often used Method 
3 (3), we form the third column by calculating standard 
deviation of individual pairs of measurements. Again, we 
then calculate mean and standard deviation of standard 
deviation of the third column. While it sounds unnecessarily 
complicated, it carries a hidden advantage: despite being 
calculated from the same data set, the mean and SD of 
the standard deviation of individual pairs is exactly √2 
times smaller than the observer variability calculated by 
Method 2. All three methods can be presented as calculated, 
or after normalization by dividing by the mean of the 
measurement pair-that is by showing percent, or relative 
variability. Whether one (reporting actual measurement 
units) or the other (reporting percent values) way of 
reporting is appropriate depends on the characteristics of 
the measurement error. If the measurement error is not 

correlated with the true value of the quantity measured (in 
other words, if the data are homoscedastic), one should 
use actual measurements units. If opposite is true, one 
should use percentages (or transform the data). In real 
life, homoscedasticity is often violated. Figure 1 shows an 
extreme example of the increase in intraobserver variability 
as the systolic strain rates increase with diminishing animal 
size (4). In that setting, it is much more meaningful to 
report a relative measurement of observer variability.

In summary, we have described three frequently used 
methods of measurement error reporting, all of them 
derived from the identical data set. Whichever of the three 
methods is used, the report should specify the measurement 
and contain both the mean and the standard deviation of 
the measurement, expressed both in actual measurement 
units and after standardization. The data should be shown 
independently for both inter and intraobserver variability. 
The final report should thus contain 8 numbers for each 
of the variables whose variability is tested. These numbers 
are: mean and standard deviation (2) for both intra- and 
interobserver variability (×2), expressed both in actual 
measurement units and as percentages (×2) resulting in 
2×2×2=8 numbers.

Assessing reliability: intraclass correlation 
coefficient (ICC)

Reliability, (i.e., concordance of repeated measurements in a 
particular set of samples) in observer variability assessment is 
usually calculated by ICC. The difference between standard 
Pearson correlation coefficient and ICC is that ICC does 
not depend on which value in each of the data pairs is the 
first and which is the second. Instead, ICC estimates the 
average correlation among all possible orderings of data 
pairs (5). Calculation of ICC is based on analysis of variance 
(ANOVA) table which separates the total variability of the 
sample (quantified by sum of squares), into the variability 

Table 1 Three methods of intraobserver variability calculation if only a single pair of measurements is available. Interobserver variability can be 
calculated in an analogous manner

Same observer Absolute intraobserver variability Relative intraobserver variability

Measure 1 Measure 2
Method 1: 
difference

Method 2: 
absolute 

difference

Method 3: 
individual SD

Method 1: 
difference

Method 2:  
absolute  

difference

Method 3:  
individual SD

A B A−B |A−B| √[(A−B)
2)
/2] A−B/[(A+B)/2] |A−B|/[(A+B)/2] √[(A−B)

2)
/2]/[(A+B)/2]

4.08 4.33 −0.25 0.25 0.18 6% 6% 4%
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Figure 1 An illustration of how observer variability behaves when the measurement error correlates with true value of quantity measured, 
using systolic strain rate as an example. (A) Two longitudinal systolic strain rate measurements, performed on mice, rats, rabbits, dogs 
and humans obtained by the same observer. All subjects taken from healthy populations. Notice that, as systolic strain rate increases with 
decreasing animal size, there is an increase in difference between two measurements (increased variability), illustrating the dependence of 
error on the mean value of the measurement; (B) Bland Altman plot of the same data, showing increasing distribution width of the data 
points with increasing average value; and (C) Bland Altman plot of the data expressed as percentage differences, with similar distribution 
throughout the range of average values.

due to differences in samples and variability due to error. 
Table S2 shows the example of how to calculate ICC in a 
paired data obtained by a single observer using a one- way 
ANOVA table. ICC can also be calculated on more complex 
samples with more than two repetitions or more than one 
observer (6). 

While ICC is frequently reported its use carries a 
significant flaw. Similar to Pearson correlation coefficient, 

ICC is sensitive to data range. For example, calculating 
ICC for left ventricular end-diastolic dimension (LVEDD) 
in patients with varying degrees of isolated constrictive 
pericarditis will likely result in a very low ICC (as the 
patients would have narrow range of LVEDD values), 
while the opposite would be found in patients with varying 
degrees of isolated aortic regurgitation (where patients’ 
LVEDD would vary from normal to most severely dilated) 
despite the technique being exactly the same in both cases 
(Figure 2). Illustrates this by showing ICC calculated from 
two measurements of LV strain performed by five individual 
sonographers on 6 subjects. As one can see, ICC varies from 
almost 0 (a theoretical minimum) to close to 1 (a theoretical 
maximum) with no relationship with individual observer 
variabilities calculated by standard error of measurement 
(SEM) (see below for further explanation).

Relationships between different methods that 
quantify measurement error and ICC: SEM

There is an underlying mathematical relationship between 
the three methods to quantitate measurement error 
described above. The sum of squares of mean and standard 
deviation of Method 1 is identical to corresponding sum 
of squares of method 2, and both are two times larger than 
the corresponding some of squares of Method 3. This 

Figure 2 Intraclass Correlation of Coefficient (ICC) as a measure 
of intraobserver variability plotted against corresponding 
SEMintra. Data were obtained by 6 sonographers measuring two 
times left ventricular strain in 6 healthy subjects, and are shown 
in Supplemental Table S3. Note no relationship between two 
measures of intraobserver variability with wide fluctuations in ICC.
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relationship is described by equation (see Appendix for 
derivation):

Varintra(inter)obs = (MeanAbsDiff
2 + SDAbsDiff

2)/2 = (MeanDiff
2 + 

SDDiff
2)/2 = MeanIndividual SD2 + SDIndividual SD2

Where Diff stands for simple difference method 
(Method 1), Abs Diff for absolute differences method 
(Method 2), and individual SD stands for Method 3, while 
Varintra(inter)obs stand for intra or interobserver variance. 
This is relevant, as the square root of observer variance 
represents a special case of the (inter or intra) observer’s 
SEM when only a single repeated measurement is available 
(see below for SEM definition and its calculation in the 
more general case of multiple observers and measurements). 
SEM is a standard deviation of the multiple repeated 
measurements obtained by measuring a same sample, as 
these measurements follow a normal Gaussian distribution 
(Figure 3). Intraobserver SEM in this case represents 
the variability of the measurements around their mean 
value when measurements are performed by a particular 
observer. Again, as it is assumed that this variability follows 
a normal distribution, an intraobserver SEM of 0.1 cm for 
an LVEDD measurement of 5.0 cm means that 67% of 
all repeated measurements performed by that particular 
observer on the same subject will be between 4.9 and 5.1 cm.  
Interobserver SEM in analogous circumstances means that 

67% of all measurements repeated by a second observer 
of the particular observer pair on the same subject will be 
between 4.9 and 5.1 cm. 

The relationship between SEM and ICC becomes clear 
if we inspect the ANOVA table used to calculate ICC. One 
notices that mean square error in the ANOVA table is equal 
to observer variance (and that is SEM squared) calculated 
using equation 1 above. In fact, ICC is equal to 1 minus the 
ratio of square of SEM and total variance of the sample (see 
Supplement for details).

Using Bland-Altman analysis to calculate 
observer variability

As Bland-Altman plots are often used in presenting 
intra- and interobserver variability, (7) several comments 
are in order. Bland Altman plots are simply a graphic 
representation of Method 1 on a Cartesian matrix, where 
simple differences between measurements pairs plotted 
on y axis are shown against average of measurement 
pairs on the x axis. The three horizontal lines on the 
graph represent mean of simple differences, and mean ±2 
standard deviations of simple differences. Please bear in 
mind that one often needs to show Bland-Altman plots 
in actual measurement units (i.e., when homoscedasticity 

Figure 3 Relationships between standard error of measurement (SEM), the width of the ±95% confidence interval (CI), and the minimum 
detectable difference (MDD), illustrated using the example of left ventricular end-diastolic dimension (LVEDD) measured from the M mode 
echocardiography. SEM is simply a standard deviation of the distribution of repeated measurements of LVEDD. 95% CIs are obtained by 
multiplying SEM by 1.96. MDD represents minimum difference between the two measurements (e.g., at baseline and at follow up) obtained 
on a same patient that can be deemed significant, and is obtained by multiplying CI by a square root of two. SEM is always lower when the 
repeated measurements are performed by a same person.

LVEDD, control

1 SEM 95% CI ~2 SEM
LVEDD, follow up

Gaussian error 
distribution curve of 

LVEDD measurements

Minimum 
detectable 
difference ~3 SEM
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is certain), and again expressed in percentages (i.e., when 
there is a suspicion that homoscedasticity is violated; 
see Figure 1B,C). As the graphs have to be shown for 
both inter and intraobserver variability, a total of four 
graphs are needed to report observer variability in full. 
Additionally, the usefulness of Bland-Altman plots when 
used for demonstrating bias (agreement) between methods 
is lost when applied in assessing precision of repeated 
measurement by the same method, as there should be no 
significant bias between first and second measurements 
(unless observer or sample is changed since the first 
measurement) (7). Finally, Bland Altman plots cannot be 
applied in the presence of more than 2 measurements (see 
below).

Generalized model of variability assessment

Although methods described above are almost universally 
used, they are hopelessly flawed, and for several reasons. 
The first one is that we cannot generalize intraobserver 
variability to all possible observers, as we have data available 
from a single observer only. In other words, one cannot 
generalize if the sample size is one. A similar argument 
applies for interobserver variability. The second issue is 
that the parameters, as described above, are of little use if 
no transformation of data, such as calculation of SEM, is 
performed.

Fortunately, the industrial age has given us ample 
experience to deal with these issues by developing a process 
called gauge reproducibility and repeatability assessment, 
which was relatively recently updated by using ANOVA 
statistics (1). Eliasziw et al. (8) have transferred these 
methods into the realm of medicine. In brief, the method 
uses a two way ANOVA to calculate intra and interobserver 
SEM from a dataset that contains repeated measurements 
(trials) from multiple observers (raters). Similar to ICC, 
calculation of SEM can be performed also in cases that 
include multiple measurements and with the observers 
treated both as random and fixed effects. The number of 
measurements is usually two, and the number of observers 
is usually three, but both may vary as long as all observers 
perform the same number of repeated measurements on all 
samples (subjects). The method to calculate SEM from the 
ANOVA table is straightforward. The Data Supplement 
provides a step-by-step description of calculations involving 
three observers measuring each sample twice, though the 
number of repetitions and observers can be easily changed. 
The method also can be generalized to assessment of test-

retest variability.
Of note, ICC can also be calculated using two way 

ANOVA data, although models become more complex and 
beyond the scope of this article. The limitations of ICC 
described above are again present in this setting.

Confidence intervals (CIs) of the SEM

Once we calculate SEM, the next, spontaneously emerging, 
question is the accuracy of its calculation. For intraobserver 
SEM, we can easily calculate 95% confidence using the 
approach of Bland (9) (see Supplement). This approach 
assumes there is no significant impact of observers. 
Calculation of the CIs for interobserver SEM is beyond the 
scope of this article.

Sample size for SEM determination

An important issue is what is the size and the type of 
samples needed to estimate SEM. Should it be a fixed 
percentage of the total sample studied? How should one 
select the individual samples from a larger population? 
Should it be random, or guided by specific criteria, e.g., 
after subdividing the original sample according to some 
characteristic that may influence SEM, such as image 
quality, or body mass index? Should the frequency of 
extreme values be the same as in the original data set, or 
should it be accentuated?

It is quite clear that the sample size has nothing to do 
with the size of original population and that it should be 
determined by how accurate the SEM estimate should be. 
Techniques of sample size population determination for 
assessment of standard deviation are known. Applying that 
to a case of 3 raters measuring 10 samples twice for a total 
of 60 measurements (10×3×2 sample, often used method in 
industry) with 50 degrees of freedom (see paragraph above), 
our intraobserver SEM will be within 19% of a true SEM at a 
confidence level of 95%.(10) Adding two more reviewers will 
decrease percentage to 14%, with similar gain obtained by 
adding a third measurement (trial) or by increasing the number 
of samples by half-all in all, not a substantial gain. Yet another 
way of calculating sample size that focuses on the width of 
95% CI is provided by Bland (11) (also see Supplement).

 

Utility of SEM

The first use of SEM stems from that, if properly obtained, 
SEM represents the characteristic of the method that 
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is independent of the sample that is measured. In other 
words, if for example, SEM for measurement of LV EDD is  
1 mm, it will be 1 mm in any laboratory that appropriately 
applies the same measurement process anywhere in the 
echocardiography community. While this is a somewhat 
idealized picture, as some observers may be more expert 
than others, appropriate and guideline-driven application 
of measurement may decrease this gap. In other words, the 
quantitation of the error size can be universally applied. 
The second use stems from that the SEM can be used to 
construct CI around the index measurement, a frequent task 
in the echocardiography laboratory, by multiplying SEM by 
1.96 for 95% CI or by 2.58 for 99% CI (Figure 3). In other 
words, when LV ejection fraction is measured as 50% using 
a method that has a SEM of 3%, this means that one can 
claim, with 95% confidence, that the true ejection fraction 
is between 43 and 56% (12). The third use of SEM lies in 
ability to calculate minimum detectable difference (MDD) 
(Figure 3) (12). Again using LV end-diastolic dimension 
as example, let us assume that LVEDD in patient with 
severe aortic regurgitation increased from 7.0 to 7.5 cm in  
6 months: is this difference real or due to error? The 
equation for MDD (assuming 95% CI) is:

MDD = 1.96 × √2SEM = 2.8 SEM
Thus, in the case of SEM being 1, 5 mm difference is 

definitely detectable and meaningful.
The fourth use of SEM is that it allows comparisons 

between two methods. One can compare, for example, LV 
end diastolic diameters taken before or after contrast for LV 
opacification. These comparisons can then be performed on 
both paired (i.e., measurements of both methods performed 
on the same sample) and unpaired data. The appropriate 
tests can be found elsewhere (13), while the supplement 
contains an example of the procedure.

Dealing with error dependence, observer bias 
and non-linearity

While measurement error should ideally be independent of 
the actual sample, in biology this is almost never the case. 
Again, Figure 1 illustrates an extreme example of the widening 
error in systolic strain rate measurement with decreasing 
animal size. As we have shown, the easiest way to normalize 
this type of error is to express it as a percent, as described 
above, although similar effects can be obtained by data 
transform (e.g., logarithmic, inverse or polynomial). The 
second issue is observer bias (as method bias is not something 
that can be quantified by precision assessment, given that only 

one method is evaluated and gold standard of a particular 
measurement is unknown). When a significant component of 
rater effect is detected in ANOVA, the easiest way to correct it 
is to identify the error, re-educate, and repeat the process. This 
in itself should be one of the major uses of observer variability 
assessment. Finally, non-linearity may be best detected by 
the presence of significant rater times sample interaction, 
where the process of identifying the error, re-educating, and 
repeating the measurements should be performed.

Extending the process of precision assessment 
to methods comparison

Usually, comparison between two (or more) methods is 
a domain of agreement analysis. However, sometimes, 
precision and agreement analysis may overlap. For example, 
some echocardiographic software programs have an 
automated method of LVEDD measurement. One can 
set up an experiment to calculate interobserver variability 
assessment that would match a manual measurement by a 
reader to a computerized determination of EDD. In this 
setting interobserver variability would measure the total 
error of both measurements and would enable to say, if for 
example one method measures 4 and the other measures 
4.5 cm, whether this difference is significant or not. One 
can also quantitate separately variability of two individual 
methods (8). Please note that in that setting, compared 
to Bland Altman analysis, we do not assess the bias (i.e., 
agreement) of the “new” method compared to “gold 
standard”: we are comparing the precision of two methods.

In summary, some form of the assessment of observer 
variability may be the most frequent statistical task in 
medical literature. Still, very little attempt is made to make 
the reported methods uniform and clear to the reader. This 
paper provides a rationale of why SEM is preferable to 
other markers, and how to conduct a proper repeatability 
and reproducibility assessment.
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Appendix

Proof of Eq. [1]
(I)	 We first prove that 

( ) ( )2 2 2 2
AbsDiff AbsDiff Diff DiffMean SDA Mean SD+ = +

Here we use population definition of SD to calculate 2
DiffSD :

2 2
Diff Diff

2

1
DifSD / Meaf n

K

i
K

=

  ∑= −    

Where Diff i (with i=1…K) stands for individual 
difference between a pair of measurements performed on 
the ith of K samples. 

Therefore, 

22 2 2

1 1

2 2
Diff Diff Diff DiffDiff DiffMean SD Mean / Mean /

K K

i i
K K

= =

   + = + − =  
 

∑ 


∑


                       22 2 2

1 1
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Diff Diff Diff DiffDiff DiffMean SD Mean / Mean /

K K

i i
K K

= =

   + = + − =  
 

∑ 


∑
 	

[1]

In the same manner we calculate SDAbsDiff and obtain: 

( ) ( )2 2 2 2
AbsDiff AbsD

2 2
1iff AbsDiff AbsDiff 1
AbsDMean SDA iM ff AbsDean / Me fn /fa iK K

i i
n K

= =
+ = + − =∑ ∑

                                
( ) ( )2 2 2 2

AbsDiff AbsD
2 2

1iff AbsDiff AbsDiff 1
AbsDMean SDA iM ff AbsDean / Me fn /fa iK K

i i
n K

= =
+ = + − =∑ ∑

	

[2]

As algebraically, (AbsDiffi)
2 = (|Diffi|)

2 = (Diffi)
2, we prove 

this identity.

(II)	 In a next step we prove that 

(MeanAbsDiff
2 + SDAbsDiff

2)/2 = MeanIndividual SD
2 + SDIndividual SD

2

To prove this, it is sufficient to prove that each individual 
SD calculated from the pair of measurements equals 
absolute difference of that pair of measurements divided by 
√2.

Individual SD is calculated by taking the square 
root of individual variance (Varindividual): Varindividual = 
[∑(Measurementi-Measurementaverage)

2/n−1)]
As only two measurements (Meas1,2) per sample are 

taken, n−1=1 so the equation for individual variance 
(Varindividual) becomes: 

[3]

( ) ( )
( ) ( )

( ) ( )

( )

2 2
2

2 2
individual 1 2

1 1 2 1

1 2

2

2
2

1

2 2
2 1

/

Var Meas average  Meas average

Meas Meas Meas Meas Meas Meas

Meas Meas Meas Meas

Meas Me

2 / 2

/ 2 / 2

s /a 2

= − −

= − + + − +      

= − + −      
 = − 

+

Thus, individual 1 2
2SD 2 AMeas bsDi /Meas ff 2= − =

With which we prove that for every sample each 
individual SD calculated from the pair of measurements 
equals absolute difference of that pair of measurements 
divided by √2.
(III)	Finally we prove that 

2 2
Individuaintra(int l SD Individuaer S) Dobs lVar Mean SD+=

As we mention in the text, we use analysis of variance 
(ANOVA) to calculate observer variance [Varintra(inter)obs] 
by treating samples as groups, replicate measurements 
representing within-group variability and within-group 
mean square (MSwithin) term representing observer variance. 
MSwithin in one way ANOVA is:

( ) ( )within
1 1

MS = /
inK

ij i
i j

Y Y N K
= =

− −∑∑  	 [4]

Where Yij is the jth observation in the ith out of K 
samples and N overall number of measurements, while n 
represents a number of measurements per sample and K 
= number of samples. As in this particular case there are 
2 measurements per sample therefore n =2 and N = 2K, 
observer variance (Varintra(inter)obs) becomes

2 2
int (int ) 1 2

1
(( ) ( ) ) /

K

ra er obs i i i i
i

Var Meas average Meas average K
=

= − + −∑ 	 [5]

Note  that  term ( ) ( )2 2
i1 i i2 iMeas -average Meas -average+  i s 

identical to the individual variance (i.e., square of individual 
SD, equation 4). 

We can then generalize Eq. [2] to write

( ) ( )( )

2 2 2
Individual SD Individual SD i

1

2 2
i1 i i2 i

1

intra(inter)obs

Mean SD ( Individual SD ) /

Meas average + Meas average /

Var

K

i
K

i

K

K

=

=

+ = ∑

= ∑ − −

= [6]
With that we prove the above identity. 



Supplementary 

The first two columns of Table S1. represent a computer 
generated simulation mimicking two measurements of LV 
end diastolic diameter (EDD) obtained by a single observer 
(Observer One) on 20 subjects averaging 5.0 cm and 
ranging from 4 to 6 cm, with differences from a true mean 
having a standard deviation of 0.15 cm and a mean value of 0. 
The additional columns represent corresponding absolute 
and relative measures of intraobserver variability calculated 
from the first two columns. Note that sum of squares of the 
averages and standard deviations calculated for the absolute 
difference and difference is equal. Also note that the sum of 
squares of the average and standard deviation of individual 
SDs is equal to mean square (MS) error calculated by one-
way ANOVA (see Table S2).

Below are two steps of calculating intraclass correlation 
coefficient (ICC) from the first two columns of Table S1. In 
a first step ANOVA table is generated (Table S2). 

In a second step ICC is calculated as:

( ) ( )ICC= m SSsubjects-SStotal / m-1 SStotal× ×  

Where m equals number of observations (trials); in 
this case is equal two. In this particular case, intraclass 
correlation coefficient is very similar to standard correlation 
coefficient. Also take note that the square root of the error 
term of this one-way ANOVA is identical to standard error 
of measurement (SEM) of this particular observer. Finally, 
please note that intraclass correlation coefficient is equal 
to 1 minus the ratio between the SEM squared and total 
(population) variance, in this particular case:

ICC = 1 – 0.142/(12.8/40) =0.94

Again, as the subject variability is a major part of total 
variability, larger the subject variability, larger the ICC (and 
vice versa) even if no changes in SEM occur. This lack of 
relationship is shown in Figure 2. Table S3 shows the original 
data from Figure 2, along individual SEM intra and ICC.

Calculating SEM

In a next example, inter and intraobserver variability of 
an experiment involving three observers (each of which 
measured each sample twice) will be evaluated using 
standard error of measurement (SEM). Table S4. shows, 
in addition to measurements made by the Observer One, 
two additional observers, of which the Observer Two 
overestimates the true values by 5% while Observer Three 
underestimates by 4%, with variability around these 
changed estimates of true value again having a standard 
deviation of 0.15 cm and mean value of 0. First step of 

analysis is obtaining a two-factor ANOVA table. But 
prior to that, we must first restructure the table (Table S5). 
represents a restructured table.

In a step 1 (Table S6) we obtain ANOVA table. 
In step 2, in order to calculate appropriate SEMs we 

first need to obtain corresponding variances (in Tables S7 
and S8 abbreviated by a sign of σ2) using MS of the error 
(MSE), observer (MSobserver), and observer x subject 
interaction (MSOxS) components of ANOVA (Table S7). 
Intraobserver variance (also known as repeatability) is 
identical to MS error. Observer variance (also known as 
reproducibility) is calculated from observer and interaction 
MSs and corresponding degrees of freedom (calculated as 
nxm). Interaction variance is calculated from observer and 
error MSs (with m as degrees of freedom); of note, it can be 
negative, and if so it is neglected. Interobserver variability 
variance represents the sum of Intraobserver variance, 
observer variance and interaction variance.

Finally, corresponding SEMs are calculated by taking 
a square root of variances (Table S8). Of note, there is a 
difference between calculations of interobserver variability 
for fixed or random effects. In usual clinical setting, where 
the sample of observers that are tested is thought to be 
randomly selected from a large population of observers, 
random effects are almost always used. In a particular 
setting where measurements are always performed by the 
same group of observers, fixed effects are used. 

Calculating confidence intervals (CIs) for 
intraobserver SEM

We are assuming that variability of measurements of 
individual sample follows normal distribution. If we also 
assume that there is no significant observer impact (which 
can be tested using ANOVA), then standard error (SE) of 
intraobserver SEM is: 

( )SE SEMintra/ 2 1n m= −  

with n(m − 1) being degrees of freedom, where n is 
number of samples and m is number of observations 
per sample. If there is a significant impact of observers, 
the degrees of freedom can be replaced by the degrees 
of freedom of the error term. 95% CIs are obtained by 
multiplying standard error by 1.96 for samples with n>30. 
Otherwise, t test statistics should be used.

To demonstrate calculation of standard error of 
SEMintra, let us use our example of 3 observers measuring 
twice each of the 20 samples (Table S4), and assume that 
observer impact was not present. Then:



( )SE 0.15 / 2 20 6 1 0.011= × − =  

Thus, 95% CIs are 0.129−1.71
As in this particular example there is an observer impact, 

and therefore 60 degrees of freedom should be used:

( )SE 0.15 / 2 60 0.014= × =

With 95% CIs of 0.122−0.177.

Determining sample size

One way to determine sample size is to a priori select the 
width of the CI for the SEM. Let us assume that we want to 
have CIs that are within 20% of the value of intraobserver 
SEM, and that we will use 3 observers that will measure 
each sample twice. We already know that:

( )95% CI= 1.96SE=SEMintra/ 2 1n m± −  

Then, the number of samples measured (n) is:

2 21.96 / 2 5 0.20 9.6 10 subjectsn = × × = 

If we want to double the precision we will need:

2 21.96 / 2 5 0.10 38.4 38 subjectsn = × × = 

In other words, for every doubling of precision, we need 
four times larger sample.

Comparing two SEMs

Unpaired data can be compared using F-test statistics. For 
paired data, t test statistics for observer variability can be 
calculated using the method of Mitchell et al., where:

2 2

2 2

-
var( ) ( )

methodA methodB

methodA methodB

SEM SEMt
SEM SEM

=
−

Where var (SEM2) equals:

( ) ( )2 4var 2 / 1SEM SEM n o m= × × × −  

Where n equals number of subjects (samples), o number 
of observers, and m equals the number of measurements per 
observer per subject.

Let us assume that in a study that involved 10 subjects, 
3 observers and 2 repeated measurements, we compared 
intraobserver variabilities of 2-dimensional and 3 
dimensional ejection fraction measurements, and that 
we obtained corresponding SEMs of 6% and 4%. The 
corresponding t test statistics is

2 2

4 4

6 4 2.4
2 6 / 30 2 4 / 30)

t −
= =

× − ×

With two tailed P value of 0.023.



Table S1 LV end diastolic dimensions measured twice by a same observer and corresponding absolute and relative measures of intraobserver 
variability

Measurement 1 Measurement 2

Absolute intraobserver variability Relative intraobserver variability

Absolute 
difference

Difference Individual SD
Absolute 

difference (%)
Difference (%) STDEV (%)

4.77 4.77 0.00 0.00 0.00 0 0 0

4.33 4.08 0.25 0.25 0.18 6 6 4

4.37 4.36 0.02 0.02 0.01 0 0 0

5.80 5.88 0.08 −0.08 0.06 1 −1 1

5.38 5.20 0.18 0.18 0.12 3 3 2

4.79 4.93 0.14 −0.14 0.10 3 −3 2

5.45 5.07 0.39 0.39 0.27 7 7 5

4.32 4.14 0.18 0.18 0.13 4 4 3

4.30 4.61 0.32 −0.32 0.22 7 −7 5

4.59 4.86 0.27 −0.27 0.19 6 −6 4

5.41 5.30 0.10 0.10 0.07 2 2 1

5.16 5.16 0.01 −0.01 0.00 0 0 0

5.39 5.30 0.09 0.09 0.06 2 2 1

4.61 4.72 0.11 −0.11 0.08 2 −2 2

4.60 4.53 0.07 0.07 0.05 1 1 1

4.58 4.44 0.14 0.14 0.10 3 3 2

5.67 6.09 0.42 −0.42 0.30 7 −7 5

3.99 4.16 0.17 −0.17 0.12 4 −4 3

5.05 4.84 0.21 0.21 0.15 4 4 3

5.98 5.92 0.06 0.06 0.05 1 1 1

Average = 0.16 0.01 0.11 3.3 0.2 2.3

SD = 0.12 0.20 0.08 2.4 4.1 1.7

mean
2 
+ SD

2 
= 0.039 0.039 0.020

LV, left ventricular.

Table S2 Calculating intraclass correlation coefficient (ICC) using one-way ANOVA applied to Table S1 data

Source of variation SS Df MS F P value

Subjects 12.3672813 19 0.650909542 33.09184797 3.90126E−11

Error 0.393395705 20 0.019669785

Total 12.76067701 39      

ICC = (2x12.4−12.8)/[(2−1)x12.8]=0.93834; Pearson correlation coefficient =0.9387; SEM = √(MSerror) =0.14025. SEM, standard error of 
measurement.



Table S3 Original data used to construct Figure 1

Patient Observer Trial Strain SEMintra ICC

42 a 1 18.9 0.48 0.88

43 a 1 18.6    

44 a 1 21.3    

45 a 1 23.8    

46 a 1 18.1    

47 a 1 18.9    

42 a 2 19.4    

43 a 2 19.1    

44 a 2 21.7    

45 a 2 23.2    

46 a 2 19.1    

47 a 2 19.6    

42 b 1 18.3 0.37 0.76

43 b 1 18.6    

44 b 1 21.1    

45 b 1 20    

46 b 1 18    

47 b 1 18.9    

42 b 2 18.2    

43 b 2 18.5    

44 b 2 20.3    

45 b 2 20.2    

46 b 2 18.8    

47 b 2 19.1    

42 c 1 19.1 0.48 0.57

43 c 1 18.5    

44 c 1 20.1    

45 c 1 20.6    

46 c 1 18.4    

47 c 1 19.4    

42 c 2 18.6    

43 c 2 18.3    

44 c 2 18.8    

45 c 2 21    

46 c 2 18.4    

47 c 2 19.8    

42 d 1 19.1 0.62 0.01

43 d 1 19.6    

44 d 1 20.8    

45 d 1 20.6    

46 d 1 19.4    

47 d 1 19    

42 d 2 19.5    

43 d 2 18.9    

44 d 2 19    

45 d 2 20.9    

46 d 2 19.4    

47 d 2 19    

42 e 1 18 0.82 0.49

43 e 1 18.9    

44 e 1 22    

45 e 1 20.2    

46 e 1 16.5    

47 e 1 19.8    

42 e 2 18    

43 e 2 19    

44 e 2 19.6    

45 e 2 19.5    

46 e 2 16.8    

47 e 2 18.9    

ICC, intraclass correlation coefficient.



Table S4 Initial data set of repeated measurements by three observers in 20 patients

Patient
Observer one Observer two Observer three

Measure 1 Measure 2 Measure 1 Measure 2 Measure 1 Measure 2

1 4.77 4.77 4.91 4.88 4.41 4.64

2 4.33 4.08 4.11 4.26 3.94 4.05

3 4.37 4.36 4.35 4.26 3.92 4.15

4 5.80 5.88 6.11 6.16 5.54 5.37

5 5.38 5.20 5.68 5.48 4.99 5.07

6 4.79 4.93 4.99 4.99 4.68 4.72

7 5.45 5.07 5.54 5.34 5.15 4.94

8 4.32 4.14 4.08 4.40 3.72 4.11

9 4.30 4.61 4.53 4.46 3.98 4.07

10 4.59 4.86 4.85 5.18 4.53 4.69

11 5.41 5.30 5.60 5.74 4.96 5.10

12 5.16 5.16 5.19 5.58 5.12 4.72

13 5.39 5.30 5.22 5.50 5.20 5.02

14 4.61 4.72 5.16 5.28 4.39 4.71

15 4.60 4.53 4.97 4.68 4.20 4.51

16 4.58 4.44 5.10 4.94 4.46 4.40

17 5.67 6.09 6.37 6.13 5.65 5.50

18 3.99 4.16 4.35 4.27 3.91 3.68

19 5.05 4.84 5.16 5.19 4.71 4.71

20 5.98 5.92 6.14 5.94 5.49 5.83



Table S5 Restructured table

Patient Measurement Observer LVEDD

1 1 1 4.77

2 1 1 4.33

3 1 1 4.37

4 1 1 5.80

5 1 1 5.38

6 1 1 4.79

7 1 1 5.45

8 1 1 4.32

9 1 1 4.30

10 1 1 4.59

11 1 1 5.41

12 1 1 5.16

13 1 1 5.39

14 1 1 4.61

15 1 1 4.60

16 1 1 4.58

17 1 1 5.67

18 1 1 3.99

19 1 1 5.05

20 1 1 5.98

1 1 2 4.91

2 1 2 4.11

3 1 2 4.35

4 1 2 6.11

5 1 2 5.68

6 1 2 4.99

7 1 2 5.54

8 1 2 4.08

9 1 2 4.53

10 1 2 4.85

11 1 2 5.60

12 1 2 5.19

13 1 2 5.22

14 1 2 5.16

15 1 2 4.97

16 1 2 5.10

17 1 2 6.37

18 1 2 4.35

19 1 2 5.16

20 1 2 6.14

1 1 3 4.41

2 1 3 3.94

3 1 3 3.92

4 1 3 5.54

5 1 3 4.99

6 1 3 4.68

7 1 3 5.15

8 1 3 3.72

9 1 3 3.98

10 1 3 4.53

11 1 3 4.96

12 1 3 5.12

13 1 3 5.20

14 1 3 4.39

15 1 3 4.20

16 1 3 4.46

17 1 3 5.65

18 1 3 3.91

19 1 3 4.71

20 1 3 5.49

Table S5 (continued)

Table S5 (continued)

Patient Measurement Observer LVEDD

1 2 1 4.77

2 2 1 4.08

3 2 1 4.36

4 2 1 5.88

5 2 1 5.20

6 2 1 4.93

7 2 1 5.07

8 2 1 4.14

9 2 1 4.61

10 2 1 4.86

11 2 1 5.30

12 2 1 5.16

13 2 1 5.30

14 2 1 4.72

15 2 1 4.53

16 2 1 4.44

17 2 1 6.09

18 2 1 4.16

19 2 1 4.84

20 2 1 5.92

1 2 2 4.88

2 2 2 4.26

3 2 2 4.26

4 2 2 6.16

5 2 2 5.48

6 2 2 4.99

7 2 2 5.34

8 2 2 4.40

9 2 2 4.46

10 2 2 5.18

11 2 2 5.74

12 2 2 5.58

13 2 2 5.50

14 2 2 5.28

15 2 2 4.68

16 2 2 4.94

17 2 2 6.13

18 2 2 4.27

19 2 2 5.19

20 2 2 5.94

1 2 3 4.64

2 2 3 4.05

3 2 3 4.15

4 2 3 5.37

5 2 3 5.07

6 2 3 4.72

7 2 3 4.94

8 2 3 4.11

9 2 3 4.07

10 2 3 4.69

11 2 3 5.10

12 2 3 4.72

13 2 3 5.02

14 2 3 4.71

15 2 3 4.51

16 2 3 4.40

17 2 3 5.50

18 2 3 3.68

19 2 3 4.71

20 2 3 5.83

LVEDD, left ventricular end-diastolic dimension.



Table S6 Step 1 of calculation of standard error of measurement (SEM) using from data from Table S5: obtaining 2-factor analysis of variance 
data output (SPSS software). Relevant output is in black

Tests of between-subjects effects, dependent variable: LVEDD

Source Type III sum of squares Degrees of freedom (df) Mean square (MS) F Sig.

Corrected model 43 59 0.730 34.0 0.000

Intercept 2,890 1 2,890.125 134,648.8 0.000

Observers (O) 4 2 2.061 96.0 0.000

Subjects (S) 38 19 2.012 93.7 0.000

Observer × subject interaction (O × S) 1 38 0.019 0.9 0.630

Error 1 60 0.021    

Total 2,935 120      

LVEDD, left ventricular end-diastolic dimension. Measurements per observer per subject. Number of: o =3; n=20; m =2.

Table S7 Step 2: calculating appropriate variances (mean sum of squares) 

Repeatability and reproducibility terms Related to Variance nomenclature Equation σ
2

Repeatability (Intraobserver variability) Intraobserver variability σ
2 
error MSE 0.021

Reproducibility (observer variability) σ
2 
observer (MSobserver – MSO × S)/(nxm) 0.051

Interaction σ
2
S × O (MSO × S-MSE)/m 0.000

Total R and R (interobserver variability) Interobserver variability σ
2
R & R Sum of the cells above 0.073

MSE, MS of the error.

Table S8 Final standard error of measurements (SEM)

SEM type Equation Equals

SEM intra √(σ
2 
error) 0.15

SEM inter, fixed effects √(σ
2 
error + σ

2 
S × O) 0.15

SEM inter, random effects √(σ
2 
error + σ

2 
observer + σ

2
S × O) 0.27


